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In this paper we explore from a fundamental theoretical point of view, transmission phenomena of acoustic
waves transferred through a single subwavelength slit milled into a sound-hard plate that is textured by surface
corrugations. It is shown that the enhanced acoustical transmission unambiguously is linked to the excitation of
acoustic surface waves and Fabry-Perot modes within the aperture. With the former resonant condition, we
give a prescription on how these surface waves are induced and connected to the formation of a collimated
sound beam in the far field.
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I. INTRODUCTION

It is now more than one decade ago since Ebbesen et al.1

discovered the extraordinary optical transmission �EOT� of
light through an array of subwavelength holes in a metallic
film. Since then, this discovery has entailed numerous pub-
lications in terms of fundamental research but also regarding
technological aspects. To this we can count the ability to
enhance light transmission through a single aperture and to
compress the diffracted radiation into a narrow beam.2 Al-
though there has been a great deal of debate and controversy
behind the mechanism of EOT, it is now widely accepted
that a resonant excitation of surface-plasmon polaritons
�SPPs� on and through the structure gives rise to the obser-
vation of enhanced transmission. In particular, the discovery
of EOT spectrally below the optical regime, at megahertz
and tetrahertz frequencies, where bound surface modes in the
form of plasmons only are located weak, led to the consid-
eration of the sustainability of spoof SPPs in perfect conduct-
ing materials.3,4 In the case of sound waves several work on
both theory and experiments has been performed in order to
study the acoustical analogy.5–12 One of the main difference
between holey structures for light and sound propagation is
the absence of polarization for a longitudinal-acoustic wave,
which always makes the lowest waveguide mode inside ap-
ertures propagative, exhibiting no cutoff.8 Also nonopaque
screens made out of sound-soft materials, which is giving
rise to the coupling with structure-borne sound, make a clear
statement on not to be a trivial analogy to its optical
counterpart.11

In this paper we want to call the attention to the theoret-
ical study on the enhanced acoustical transmission and
beaming effect through a single slit in a perfect rigid body
�PRB�. Due to a large impedance contrast, this PRB approxi-
mation is well suited for fluid-borne sound funneled through
rigid materials such as steel or brass. This paper is a follow
up to a Brief Communication where we presented simula-
tions regarding sound transmission and collimation of an iso-
lated aperture flanked by corrugations, on a superior level.7

We provide detailed derivations on an exact formalism which
enables an entire thorough understanding of the problem
given. As we are introducing corrugations into the rigid

structure, we are able to study the scattering properties and
its influence on the sound transmission such as the formation
of the compressed beam. The basic mechanisms presented
here are evocative of those found for electromagnetic
radiation.2,13,14 Also, the current methodology applied ad-
verts to the one used for the simulation of other finite plas-
monic systems.15,16 Similar to SPPs, we demonstrate how the
right tuning of acoustic surface waves �ASWs� together with
Fabry-Perot �FP� such as groove-cavity resonances is giving
rise to enhanced performances of sound on a subwavelength
scale.

II. THEORETICAL FORMALISM

Linear acoustics comprises small pressure fluctuation that
forms a traveling wave of low intensity. Consider an inviscid
�lossless� fluid �liquid or gas� that is at rest. To connect the
motion of the fluid with its compression or expansion, a re-
lationship between the particle velocity � and the mass den-
sity � is to be deduced. Regarding the forces, one has to
apply Newton’s second law and relating the sum of the
forces acting on an element of fluid to its acceleration or rate
of change in momentum. These two constituents are the
foundations to describe acoustic waves of small disturbances
in the absence of viscosity �constant entropy�, that are gath-
ered within the linearized Euler’s equations,

��

�t
+ � · ���� = 0,

��

�t
+ �� · ��� = −

�p

�
. �1�

In Eq. �1�, energy terms are disregarded and will not be part
due to the absence of thermal gradients. For the pressure p,
velocity �, and density �, one can write: p= p0+ p�, �=�0
+��, and �=�0+��, where the terms p0, �0, and �0 denote
the background pressure, velocity ��0=0�, and density in an
undisturbed medium, respectively. The primed quantities p�,
��, and �� describe the variation in the corresponding mag-
nitudes due to the presence of a low-amplitude acoustic field
in the medium. If one now substitutes those quantities into
Eq. �1� and only linear terms in the primed quantities are
taken into account while all higher-order terms are neglected,
one obtains two simple equations,
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2�0

p� = 0, � p� − i��0�� = 0 �2�

that after straightforward algebra yield a simple wave equa-
tion for linear sound propagation in fluids. Here, use has
been made of monochromatic radiation and the isentropic
relation p�= � �p

��0
�s��=c2�� upon assuming adiabatic and re-

versible conditions. For more details regarding this deriva-
tion one should refer to Refs. 17 and 18. Figure 1 is the
structure under the present examination devoted to the study
of collimation and enhanced transmission of sound waves.
This single isolated slit �width a� milled into a sound-hard
plate �thickness h� is textured by indentations �height hg� at
the upper and the lower interface �separation ��. In order to
study the sound phenomena theoretically, we will start out
defining a supercell with lattice parameter Lx along the x
axis. Later, as we are going to study the enhanced transmis-
sion of sound through a single slit flanked by a finite number
of surrounding corrugations, the limit Lx→� must be taken.
We define an index of refraction for sound as n=c0 /cp which
is nothing but �K0 /�0

��p /Kp, with c, K, and � representing
the phase velocity �thermodynamic speed of sound�, the bulk
modulus, and density, respectively, where the zero and p in-
dices refer to a reference medium �such as air� and phase
�any arbitrary medium�, respectively. Consequently it is con-
venient to rewrite n=��r /Kr into relative terms, which gives
a unity refraction index for air. Initially we will assume the
structure given in Fig. 1 to be periodic of constant Lx and
starting to deduce a wave description in region I. In this
particular periodic case, we expand the wave into Bloch
states by means of a reciprocal-lattice vector. Note, as of
translational invariance along the y axis of the structure, it is
sufficient to regard the sagittal �xz� plane. Also, only the
z-component vz� of the velocity vector will be taking into
account because vz� is employed for the matching technique
and in order to simplify the notations, we choose to reject the
primes in p� and vz� as given in Eq. �2�, though it is clear
that acoustical quantities are considered. The acoustic field
associated to the incident and the resulting reflected wave,
�z�0�, represented as a sum of plane waves weighted with
their corresponding reflection coefficients R�, is

�pI�z�� = Ykz
0

I �kx
0�eikz

0z + �
�=−�

�

R�Ykz
�

I �kx
��e−ikz

�z,

�vz
I�z�� = �kx

0�eikz
0z − �

�=−�

�

R��kx
��e−ikz

�z. �3�

Here the free space plane waves �x �kx
��= eikx

�x

��
, incident wave

vector k0= �kx
0 ,kz

0� and the scattered components k�

= �kx
� ,−kz

�� containing discrete diffraction order � in the range
�=−� , . . . ,0 , . . . ,� comprising in-plane scattering where

kx
�=kx

0+ 2�
Lx

� and kz
�=��nIk0�2− �kx

��2 with 2�
Lx

� representing
the reciprocal-lattice vector in the primitive cell of constant
Lx. Yk is the so-called admittance that governs the relation-
ship between pressure and the velocity, derived from the mo-
mentum equation in Eq. �2� which for the reflected wave, in
particular, is nothing but Ykz

�
I =c0�p

I k0

kz
� . Together with 	= 2�

k0

we define the angle of incidence with respect to the normal
of the surface as 
, so with no loss of generality, kz

�

=k0�nI
2− �sin 
+� 	

Lx
�2. If ��=sin 
+� 	

Lx
we reach to the fi-

nal simplifications of kz
�=k0

�nI
2−��

2 and henceforth Ykz
�

I

=
c0�p

I

�nI
2−��

2 .

Region II �0�z�h� can be modeled as cavities with per-
fect rigid walls. Within this PRB approximation no sonic
energy is penetrating into the material, which is valid for a
broad range of frequencies, e.g., steel, brass, or concrete.
Thus the boundary conditions in the apertures are as follows:
�p
�n =0 at x= 

a
2 , which is nothing but a vanishing normal

component of the particle velocity vx with respect to the
adjacent faces within the slit in a unit cell. This statement
complies with vz to be zero at top and bottom interfaces
corresponding to z=0 and z=h. The normalized modes of the

cavity waveguide is given as �x �� ,m�=�2−�0m

a cos qx
m�x−x�

+ a
2 � if �x−x��� a

2 otherwise zero, where x�=�� is the phase
depicting the discrete groove ��� locations whereas the mth
slit waveguide mode is in the range �m=0,1 ,2 , . . . ,�� with
qx

m= m�
a . The entire eigenvalue expression for the field inside

the slit is the following:

�pII�z�� = �
m,�

Yqz
m

II �Am,�eiqz
mz + Bm,�e−iqz

mz��m,�� ,

�vz
II�z�� = �

m,�
�Am,�eiqz

mz − Bm,�e−iqz
mz��m,�� �4�

with wave vector and admittance as qz
m=��nIIk0�2− � m�

a �2 and

Yqz
m

II =c0�p
II k0

qz
m =

c0�p
II

�nII
2 −�m

2 , respectively, while �m= m	
2a . Am,� and

Bm,� are the expanded wave amplitudes that are to be solved
for in the matching procedure. Region �II�, however, can
further be decomposed according to the phase and groove
cavities either on the side of wave irradiation or emission. If
Eq. �4� describes the wave motion in the grooves at the side
of wave irradiation, we express the groove modes in the
emission side as

�pII�z�� = �
m,�

Yqz
m

II �Cm,�eiqz
m�z−h� + Dm,�e−iqz

m�z−h���m,�� ,

�vz
II�z�� = �

m,�
�Cm,�eiqz

m�z−h� − Dm,�e−iqz
m�z−h���m,�� , �5�

whereas the only location where sound can propagate
through the entire structure is within the central slit, which is
when �=0,

FIG. 1. �Color online� Schematics of a single slit surrounded by
finite corrugations, made out of a perfect rigid body, impenetrable
for airborne sound waves impinging on the structure.
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�pII�z�� = �
m,0

Yqz
m

II �Am,0eiqz
mz + Bm,0e−iqz

mz��m,0� ,

�vz
II�z�� = �

m,0
�Am,0eiqz

mz − Bm,0e−iqz
mz��m,0� . �6�

In the lowest region �III� �z�h�, the acoustic waves emerge
in which the fields, as in Eq. �3�, are expanded out in linear
diffracted Bloch waves with T� being the transmission coef-
ficient,

�pIII�z�� = �
�=−�

�

Ykz
�

IIIT��kx
��eikz

��z−h�,

�vz
III�z�� = �

�=−�

�

T��kx
��eikz

��z−h�. �7�

Clearly Eq. �7� is a solution for waves traveling only in one
direction, toward increasing values for z. At all interfaces the
matching conditions are applied on the pressure p while be-
ing projected over cavity modes �m� ,��� of indentation ��,
such as on the fluid particle velocity vz that is projected over

plane waves �kx
���. It follows from this, that all linear-

expansion coefficients in Eqs. �3�–�7� can be extracted, when
one first imposes continuity in pressure p at the openings and
the endings of the slit/grooves, and second does so regarding
the velocity vz though along the entire unitcell at the inter-
faces z=0,h. Following this sequential scheme, one creates a
systematic top-down �from region I to III� wave mode cou-
pling approach that with given attributes �functions�, owns
the ability to describe the entire acoustical problem under
study, and yields a quantitative field representation through
out all space. As we are mainly interested in subwavelength
apertures, we consider that only the fundamental propagating
slit eigenmode ��x �� ,0�→ �x ���� is excited. In this respect,
we find it convenient to define some modal velocity fields
with respect to the matched interfaces and the corresponding
phase. For ��0 at the grooves: at the bottom of the grooves
at the impinging side, the velocity vz

I�z=hg=hin� vanishes
due to the perfect rigid wall that the pressure field encoun-
ters, hence with �in=e2ik0hin the wave amplitudes read

B� = �inA�. �8�

This statement is very useful in order to write down the
identities for the modal field at the input side,

v� = A� − B�,

�inv� = A� + B�. �9�

Similar we can unravel expressions for the modal velocity at
the emerging side with �out=e−2ik0hout inside the grooves
�hg=hout�,

D� = �outC�. �10�

From this we also deduce the definitions for the modal ve-
locity field at the output side,

v�� = C� − D�,

�outv�� = C� + D�. �11�

�in and �out are equivalent to the bouncing back and forth of
acoustic wave motion inside grooves placed either at the in-
put or output side, respectively, as described, e.g., in Ref. 8.
For �=0 at the slit: the central slit is reminiscent to the
conventional case where we impose continuity through an
aperture. At that spatial location we match the open groove
cavity with the slit waveguide modes and together with the
definitions,

v0 = A0 − B0,

v0� = D0 − C0, �12�

we hereby illustrate that the central slit, unlike for ��0,
couples the incident to the emerging field that is occurring
via the interface coupling function GV,

A0 + B0 = �0v0 + GVv0�,

D0 − C0 = �0v0� + GVv0. �13�

With all those terms defined in Eqs. �9�–�13� we can con-
clude the modal expansion by gathering all terms into the
following system:

�G�� − �in�v� + �
����

G���v�� − ��0GVv0� = I�
0 ,

�G�� − �out�v�� + �
����

G���v��
� − ��0GVv0 = 0 �14�

with

GV =
Yqz

0
II

sin qz
0h

, �15�

�in =
Yqz

0
II

tan qz
0hin

, �16�

�out =
Yqz

0
II

tan qz
0hout

, �17�

�0 =
Yqz

0
II

tan qz
0h

. �18�

The irradiation term I�
0 and the overlap function G��� are

containing a phase with regards to indentation ��, as those
terms govern the coupling to an incident wave and diffrac-
tion, respectively. The irradiation term reads

I�
0 = 2iYkz

0
I S00 �19�

with S00=� a
�sinc

kx
0a
2 e−ikx

0x�. The overlap function can be re-
stated into a Green’s function on a position basis,
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G��� → Gx,x�

= �x�G̃�x��

=
i�

	
�

x�−a/2

x�+a/2 �
x��−a/2

x��+a/2

H0
�1��k0�x − x���dxdx� �20�

and be solved seminumerically, with H0
�1� the zero-order

Hankel function of the first kind. The overlap function
couples the fundamental �m=0� groove ���0� or slit ��
=0� cavity mode inside indentation � over diffracted waves
into indentation ��. Note in here how we have eliminated the
supercell �discrete diffraction order� formalism into a con-
tinuous spectrum Lx→� representation.

III. ANALYSIS

In the following we shall acquire insight into the trans-
mission properties of the single isolated slit milled into a
sound-hard plate, Fig. 1, and deduce the importance of the
surface corrugations. Concerning this matter, we will assume
that the surrounding fluid is the same as inside the slit. In
order to study the transmission efficiency, it is convenient to
normalize the transmittance to the acoustic intensity that im-
pinges on the slit, which is the following expression Tslit

= 1
a Im�����0GVv�v��

��. We consider subwavelength slits and
corrugations �ka�1� which justifies the assumption that only
the fundamental waveguide mode is excited. Figure 2 shows
the transmittance of a structure with h=0.7�, hg=0.2�, and
a=0.08� for various numbers of surface indentations �N
=0,1 ,2 ,5 ,10�, patterned both at the wave irradiation and
emission side of the plate. The most apparent features in the
transmittance spectra are two wide-banded peaks located at
		0.8� and 		1.7�. These resonances that do not seem to
be affected by the number of surface corrugations are deter-
mined by the overall plate thickness h, which governs the
formation of standing waves in the slit. In other words, these
peaks are associated to the excitation of slit-cavity modes of

the FP type, which occurs at 	FP= 2h
l for l=1,2 in this case.

However, when the surface of the plate which is facing the
sound irradiation side is patterned, we are able to excite
bound surface modes which is giving rise to a huge enhance-
ment of sound funneled through the subwavelength slit. Ob-
viously those bound modes �BMs� must be leaky to ensure
the coupling to radiating waves in the event of sound trans-
mission. We will later elucidate the importance of the surface
corrugations at the output side with regards to the sound
emission. At a wavelength equal the period �, one finds a
transmittance minimum for all cases ���0� which is the
Woods anomaly. This minima becomes more apparent the
higher the number of indentations is chosen, which is remi-
niscent to a groove grating when diffracted waves become
grazing. This minimum is accompanied with a strong peak
arising slightly above the period �	���, which is connected
to the excitation of ASWs due to the periodicity of the struc-
ture, allowing incident sound binding to surface states. In
order to shed some light on the above given transmittance
properties, let us briefly recall the physical mechanisms in-
volved when sound is impinging on a groove grating.19 This
problem is easily described if we employ periodicity in our
formalism and seek bound modes. The formalism, gathered
with Eq. �14� can straightforwardly be applied to groove
gratings by rejecting the homogeneous term as of no wave
emerging interface and canceling the term responsible for the
external irradiation I0 as only bound surface states are
sought, such as GV that cannot provide interface coupling to
the output side due to the absence of perforations,

G − � = 0, �21�

now with G= a
���

k0

kz
� sinc2 kx

�a
2 . From Fig. 3 it becomes evident

how the surface modes supported by a groove grating easily
can be tuned by the groove width a and depth hg, controlling
the bands location in the nearest proximity to the sound line
and the flatness, respectively. For 	���a, when diffraction
effects safely can be neglected, the overlap function reduces

FIG. 2. �Color online� Influence on the normalized to area trans-
mittance spectra, dependent on the numbers of surface corrugations
�N, see color legend for the value� with the geometries as specified
in this figure. The acoustic plane wave is impinging normal incident
on the structured system. The corrugations are symmetrically placed
at the upper and lower side of the structure as the inset depicts.

FIG. 3. �Color online� Inset shows a schematic representation of
a groove grating where sound is incident in the positive z direction.
Bound modes dispersion relation, Eq. �21�, for different geometrical
parameter a ,h normalized to the period � inside the first Brillouin
zone. In here the influence of the groove depth and width on the
band shape is calculated.
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to G= a
�

k0

�kx
2−k0

2 and consequently simplifies Eq. �21� into

kx = k0�1 +
a2

�2 tan2 k0hg. �22�

Equation �22� is an analytical dispersion relation of the ad-
dressed hybrid nature between groove-cavity modes and
ASWs in a groove grating. This given, we can summarize the
resonant mechanisms involved in the transmission process
through the slit supported by the corrugations in the follow-
ing context: Groove cavity modes 		4hg: in order to boost
sound through the central slit ��=0� mediated by the surface
corrugations, obviously v0 in Eq. �14� must be large, which
is provided with large v�. For large values of v� we can
write: �G��−�in�	0 which in the long-wavelength limit 	

�a is determined by 	=
4hg

2n+1 , where n is an integer. Those
cavity modes can also be determined from Eq. �22� in which
kx→�. Interestingly, those bound modes resemble SPPs in a
flat metal surface approaching �s=�p /�2, where �p is the
plasma frequency of the metal. The asymptotic value in Eq.
�22� is approached for infinite parallel momentum that yields
an acoustic BM frequency for a groove grating: �BM
=�c /2hg, here controlled by the groove height hg. Slit wave-
guide modes 		2h: this component is governed by the
thickness of the structure which is the excitation of FP reso-
nances in the isolated slit. For hg→0 in Eq. �14� we obtain
the following resonant condition:

tan k0h =
2 Re�Gslit�
�Gslit�2 − 1

�23�

that in the limit of extremely small apertures �Gslit→0� pre-
dicts the appearance of transmission peaks close to the con-

dition sin k0h=0, which are the peaks around 		0.8� and
		1.7� in Fig. 2. Note also how this transmittance reso-
nance, analytically is predictable by: Tres

slit= 	

�a .8 We have seen
that the introduction of indentations does not affect these FP
modes significantly. In-phase radiation 		�: this is the
aforesaid resonance attributed to the excitation of surface
modes of wavelength close to the period. At that particular
wavelength, all sound emitted from the groove � over
groove �� reaches the central slit. This is the event leading to
the emergence of a strong resonance �	��� seen in Fig. 2.
In that particular figure, we see how all the three different
mechanisms is giving rise to transmittance peaks, which fur-
ther can be optimized by the right interplay of those compo-
nents as adopted in Ref. 7.

Apart from the ability to enhance the sound transmission
through one subwavelength slit, we will now demonstrate
how the diffraction of sound, when it emerges from a sub-
wavelength aperture, can be controlled. This is accomplished
with the corrugations at the emission side of the plate shown
in Fig. 1, as they are affecting the formation of the beam
when the acoustic wave is emerging the exit side of the
structure. For a structure consisting of N=10 grooves and the
geometries as captured in Fig. 2, we are calculating pressure
field �p�x ,z�� maps in the far field. By means of an angular
intensity distribution analysis �which we have not shown
here�, it is found that the used geometries is giving rise to a
collimated beam of low angular divergence, where the far-
field intensity strongly is influenced by hg. All field plots in
Fig. 4 clearly illustrate the presence of an enhanced acousti-
cal transmission by virtue of a strong pressure-field confine-
ment at the slit toward the output side of the structure. The
pressure-field maps correspond to the transmittance peaks at
		0.8�, 1.1�, and 1.7� illustrated in Fig. 2. At 		1.1�

FIG. 4. �Color online� Pressure field �p�x ,z�� map in the far field
for a structure containing N=10 surface corrugations symmetrically
around the central slit and geometries as in Fig. 2. Each panel, as
indicated from left to right corresponds to wavelengths 		0.8�,
1.1�, and 1.7�, respectively. All field plots have been calculated
with the mode matching technique described in the previous
section.

FIG. 5. �Color online� Beam steered pressure field �p�x ,z�� map-
ping of sound through a structure with same geometry as in Fig. 2
and N=10, though with unequal groove distances ����0�
=1.11����0�.
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though, an ASW is also excited at the output side of the
structure, this then is scattered away by the grooves, and
interferes constructively with the wave at the slit, giving rise
to elongated focal spot in the far field, as has been illustrated
in the central panel of Fig. 4. If now, for example, the unit
length � is chosen to be 10 mm in size and the sample is
immersed in water, collimation of ultrasound aided by the
excitation of ASWs is performed around 1.35 MHz. In order
to perform elongated beam steering in the far field, a simple
aperiodicity is introduced in the groove spacings. Consider a
corrugated plate, with the geometries as depicted in Fig. 2.
The discrete groove locations, as specified formerly, are �
�0 for grooves located to the right-hand side �RHS� of the
central slit ��=0� and ��0 representing the left-hand side
�LHS�, all placed at the structures upper and lower side, si-
multaneously. The main difference in the geometries com-
pared to the one in Fig. 2 is the period: ����0�=���=0�
and ����0�=1.11����0�. As a consequence of this aniso-
tropic surface pattering, the collimated beam is inclined to
the side of larger period ����0�=1.11����0�, as one may
observe in Fig. 5, for 		1.15�.

IV. CONCLUSION

For a single slit surrounded by corrugations within a per-
fect rigid plate, we have demonstrated how acoustic waves

efficiently can be transferred through this aperture. It has
been shown that the main mechanism giving rise to an en-
hanced transmission is governed by the right choice of geo-
metrical parameters, which allows the coupling to Fabry-
Perot, groove-cavity, and acoustic surface resonances. In
particular, by flanking the transmission with surface corruga-
tions, sound which is emerging the structure can be chan-
neled in a well-defined direction as a collimated beam. By
further scaling or tuning the structure, enhanced transmission
such as the beaming effect can occur for various other fre-
quencies. Moreover, it is also possible to control the spatial
location of an elongated focal spot in an off-axis orientation,
by texturing the surface corrugations with different periods at
the LHS and the RHS of the central slit. Finally, this simple
device for advance controlling of sound is an excellent can-
didate for ultrasonic detecting and scanning.
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