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Abstract: We analyze both experimentally and theoretically the physical
mechanisms that determine the optical transmission through deep sub-
wavelength bull’s eye structures (concentric annular grooves surrounding
a circular hole). Our analysis focus on the transmission resonance as a
function of the distance between the central hole and its nearest groove. We
find that, for that resonance, each groove behaves almost independently,
acting as an optical cavity that couples to incident radiation, and reflecting
the surface plasmons radiated by the other side of the same cavity. It is the
constructive contribution at the central hole of these standing waves emitted
by independent grooves which ends up enhancing transmission. Also for
each groove the coupling and reflection coefficients for surface plasmons
are incorporated into a phenomenological Huygens-Fresnel model that
gathers the main mechanisms to enhance transmission. Additionally, it is
shown that the system presents a collective resonance in the electric field
that does not lead to resonant transmission, because the fields radiated by
the grooves do not interfere constructively at the central hole.
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1. Introduction

The Extraordinary Optical Transmission (EOT) through subwavelength apertures in metallic
films [1,2] has received much attention since its first report [3]. In particular, periodic structures
around a nano-aperture are of great interest because the optical transmittance through these sys-
tems can be largely tailored with respect to that of an isolated aperture. Bull’s eye (BE) struc-
tures, consisting of a subwavelength aperture surrounded by annular grooves, have revealed
that the transmitted light through the aperture can be strongly boosted and concentrated due to
the excitation of surface plasmons (SP) launched by the periodic corrugations [4–13]. Attention
has recently been given on coherent optical properties that are at play on BE structures where
the direct transmission of light through the aperture interferes with an SP component launched
by the corrugations. In this context, it has been realized that BEs can be carefully designed
as to suppress any bright background in sensitive darkfield detection and imaging -so called
SWEDA microscopy [14, 15]. When the periodic surrounding grating is designed as a Bragg
reflector for the illumination wavelength, the BE structure behaves as a plasmonic micro-cavity
around the hole, with strong potential in nanolithography and data storage [16]. Given these
promises, it is important to discuss thoroughly the coherent properties of the BE structure, from
both experimental and theoretical point of views. From a theoretical point of view, most works
have considered the one dimensional version (1D, a slit surrounded by linear grooves) [17–24]
which is both simpler to compute (due to the translational symmetry in one direction) and easier
to analyze (in a periodic 1D system all grooves have the same electromagnetic response, while
in the BE the response of each groove depends on its radius).

In this paper we go beyond the 1D analysis, providing a detailed description and analysis of
BE transmission properties. By considering the interfering contributions of the direct transmis-
sion through the hole and the SP component in the transmission process, we reveal experimen-
tally how the two contributions determine the transmission spectra of a BE. We also carry out
numerical calculations accounting for the cylindrical symmetry of the BE system. This allows
us to give analytical expressions for the most relevant parameters that determine the optical be-
havior of the BE. We find that the mechanism to enhance transmission is related to constructive
interference at the central hole of standing SP waves independently emitted by each groove.
Furthermore, a simple phenomenological model that gathers the main mechanisms to enhance
transmission is provided.

2. Experimental results and phenomenological model

2.1. Experimental results

A schematic of a BE structure is displayed in Fig. 1(a). For all the following experiments, the
structure is milled in a h= 280nm thick Au film deposited on a glass substrate using focused ion
beam (FIB) lithography technique. In order to obtain EOT in the optical regime, the distance
between consecutive grooves (the “period”, p) is chosen as p = 600nm. Dimensions charac-
terizing grooves and hole are in the subwavelength regime: all grooves have 90nm depth and
220nm width, and the radius of the central hole is rc = 125nm. We consider N = 6 annular
grooves, a typical number that fulfills the compromise between small structure size and high
field enhancement [10]. The sample was illuminated from the corrugated side with collimated
white light and the far-field transmission spectra were recorded with an optical microscope
Nikon TE200, coupled to an Acton spectrometer and a Princeton Instruments CCD camera.

Figure 2(a) shows the transmission spectra measured as a function of the incident wavelength
λ . The scale of colors in the figure is linear, and in arbitrary units. The figure shows the expected
resonances at wavelengths slightly larger than the period (in this case λ ≈ 660nm) [5, 17].
However, considering the possibility that additional coherent effects can modulate the optical
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Fig. 1. (a) Schematic representation of a BE structure, consisting of a metal film of thick-
ness h deposited on a glass substrate, perforated by a central hole with radius rc and N
concentrical circular grooves (all with the same width wg and depth hg) separated by a
period p. The variable distance between the hole the nearest groove is a1. (b) SEM image
of a experimental structure milled by FIB lithography. The scale bar corresponds to 2 μm.
(c) Sketch of the re-illumination SP component as implemented in the phenomenological
model described in the text.

enhancement associated with these resonances, we have explored further the transmission dy-
namics by changing also the distance a1 between the central hole and its nearest groove. When
the spectra are displayed in the λ − a1 parameter space, they clearly show that the resonant
profile is modified as the distance a1 is varied. In order to have a first understanding of this
rather complex landscape, we have developed a simple phenomenological model that captures
the main mechanisms playing a role at λ = 660nm.

2.2. Phenomenological model

To test the validity of the model compared to actual experiments, we consider the most simple
situation of a normal incidence illumination of the BE. In its form, the model:

• treats the groove array as a resonant “black box” with an EM response characterized by
a general complex coupling coefficient, γ , which gives the fraction of normally incident
field amplitude that the groove array locally couples into SP,

• considers the central hole being illuminated by the incident EM field and re-illuminated
by light coming from the array via SP,

• accounts for hole re-illumination as an SP-assisted two-path scattering process: (i) one
direct path from the array to the hole and (ii) and a secondary path corresponding to SP
back reflected by the groove array to the central hole with complex reflection amplitude
r (see a schematic representation in Fig. 1(c)),

• assumes that the hole is sufficiently small so that the illumination of the hole (by either the
incident EM field or the light coming from the array) depends only on the field amplitude
and not on the parallel wavevector. In this case, the transmittance through the hole, can
be expressed as T = TSH

∣
∣Farray

∣
∣2, where TSH is the transmission of light through a single

hole, and Farray is the field at the hole in the presence of the array divided by that for an
isolated hole.
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Fig. 2. (a) Optical transmittance for the considered bull’s eye with N = 6 annular grooves,
h = 280nm, hg = 90nm, wg = 220nm and rc = 125nm. The spectra are acquired as a func-
tion of both distance between the hole and the first groove, a1, and incident wavelength λ .
The color scale is linear and in arbitrary units. (b) Experimental transmittance collected at
λ � 660 nm as a function of a1, normalized to the transmission maximum. The continuous
line is a fit from the phenomenological model of Eq.(1) with fitting parameters discussed
in the text. (c) Zoom of the results in panel (b) over a smaller region of a1 values, in loga-
rithmic scale. (d) CMM calculations for the transmission of light normalized to hole area.

#142697 - $15.00 USD Received 14 Feb 2011; revised 24 Mar 2011; accepted 28 Mar 2011; published 12 May 2011
(C) 2011 OSA 23 May 2011 / Vol. 19,  No. 11 / OPTICS EXPRESS  10433



Under these conditions, the re-illumination term can be expressed in terms of the (complex
valued) SP wavevector ksp as

Farray ≈ 1+ γ
√

a1 e(ikspa1) + rγ
√

a1 e(3ikspa1) (1)

The first term represents the incident EM field, the second one accounts for the light mediated
by SP going directly from the groove array to the central hole, whereas the third term represents
the light that goes from one side of the “black box” to the other one, and then is reflected back to
the central hole. In principle, the parameters γ and r are expected to depend smoothly on a1 and
λ but, as the exact dependence is unknown, they will be initially considered as constants. Only
a full numerical calculation will be able to define these parameters properly and to evaluate
their exact dependencies, along with the role played in enhanced transmission by the different
EM couplings between BE elements -see below. In Eq.(1), the cylindrical symmetry has been
accounted for by considering the SP as planar cylindrical waves. For a propagation over a
distance x, the field amplitude associated to a SP locally launched at the level of the cylindrical
groove is proportional to e(ikspx)/

√
x. The total field amplitude will scale as

√
x after integrating

over the whole cylindrical groove, explaining the
√

a1 dependency in Eq. (1).
Figure 2(b) shows a fit of the transmittance obtained at λ = 660nm with this phenomenolog-

ical model for |γ|= 0.014 and |r|= 0.65. The same beating when a1 is varied is found for other
wavelengths around λ = 660nm. This fit allows interpreting the observed spectral resonances
which arise from the interference between (i) the field directly re-routed by the grooves into the
hole and (ii) the field re-routed by one side of the array that, before reaching the hole, suffers
a reflection at the other side of the array. The contribution (i) essentially selects a1 values
corresponding to the transmission resonances that dominate the transmission spectra in a
standing-wave pattern (c.a. every λSP/2) while (ii) is responsible for the secondary transmission
peak at a1 ∼ 990nm. In other words, the optical spectra acquired in the λ −a1 parameter space
are revealing unambiguously the coherent character of the BE structure which can therefore be
envisioned as a genuine sub-micron SP cavity. Controlling the optical transmission is therefore
possible through the choice of a1 values. Figure 2(c) demonstrates a selective modulation of the
transmission of almost 2 orders of magnitude. The dephasing between the SP component and
the direct transmission through the hole is thus directly related to the cavity radius. At a specific
value of a1, the two components can destructively interfere, leading to a strong suppression
of the transmission signal as displayed in Fig. 2(c). The recently shown SWEDA effect is
based on the same discussion with similar interference effects at play within the BE cavity [14].

3. Numerical results and theory

In order to go beyond this phenomenological model, we have carried out numerical calcula-
tions based on the Coupled Mode Method (CMM) [26]. Within the CMM, the EM fields are
expanded in terms of eigenmodes in each different region in space (plane waves in the semi-
infinite regions and waveguide modes inside the hole and grooves). Imposing the appropriate
matching conditions leads to a coupled system of equations for the modal amplitudes of the
electric field at the entrance, E, and at the exit, E ′, of the cavities. In the case of subwavelength
holes or grooves, considering only one mode per cavity (the T E11 mode in both the hole and
the grooves [25]) already provides a good approximation to the transmission properties [2,26].
In this case, the modal amplitudes are governed by:

⎧

⎪⎨

⎪⎩

−ΣnEn +∑
m

GnmEm = In +Gν
n E ′

n

−ΣnE ′
n +∑

m
GnmE ′

n = Gν
n En

(2)
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Fig. 3. For the geometrical parameters in Fig. 2, computed re-illumination from the grooves
in the central hole (panel (a)) and amplitude of the electric field at the entrance of the fourth
annular groove |E4| (panel (b)), as a function of a1 and λ . Panels (c) and (d) show the same
as panels (a) and (b), respectively, but for a system of “disconnected” grooves, i.e. by setting
Gnm = 0 for n �= m. Grey lines depict the condition 2an = mnλSP for each annular groove.
The white line in panel (a) renders the spectral dependence for the transmittance through a
single hole (×1000).

where n is an index that labels cavities (n = 0 for the hole, and n = 1....N for the grooves).
The CMM method provides analytical expressions and a physical interpretation for all the

objects in the system above (see Ref. [26, 27] for further details): In accounts for the external
illumination impinging directly on the grooves or holes; Σn represents the light that comes back
to the aperture after bouncing back and forth inside the cavities, and the term Gν

n is linked to
the coupling of EM fields at the two sides of the film through the holes. Finally, Gnm represents
the EM coupling between different apertures, mediated by diffraction modes.

As a technical note, in the simulations we apply surface impedance boundary conditions
(SIBC) [28] at the horizontal surfaces for the dielectric response of the metal. For each cavity
(groove or hole) the propagation constant along the vertical direction is computed exactly. The
spatial profile of the fundamental waveguide mode is obtained considering perfect electrical
conductor approach in the waveguide since, in this case, the overlap with plane waves is known
analytically [25]. Based on our experience on 1D structures, where due to the higher symmetry
the obtained results can be compared with virtually exact numerical simulations, we expect that
the use of this approximation rigidly blue shifts the transmission spectra by ≈ 50nm.
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3.1. Bull’s eye response

Figure 2(d) renders the transmittance (normalized to the hole area) computed within the CMM
for the nominal parameters of the experimental setup. The dielectric constant for gold is taken
from the experimental values tabulated for a clean metal surface in Ref. [29]. Due to this fact
we expect that the theoretical calculations for transmission will be overestimated as compared
to those obtained experimentally, since in the FIB process, absorption in gold may increase.
The simulations also present stripes of enhanced optical transmission in the λ − a1 parameter
space, appearing around λR = 630nm, i.e., within the expected accuracy of the model, and with
a difference of about 100nm in a1 values which we attribute to possible imperfections and
deviations from nominal parameters of the fabricated structures, but also to the approximations
done within the CMM formalism.

One of the main advantages of the CMM formalism is that it allows us to differentiate
amongst different mechanisms involved in the transmission process. For instance, we have
considered BE structures with and without a central hole. We have found that the amplitude of
the electric field at the entrance of the grooves, En, is not affected by the presence of the central
hole, making evident that, for the range of parameters considered, the cross-section of the hole
is much smaller than those of the grooves. This result indicates that, at a given wavelength, it is
possible to analyze separately the optical responses of the array and the central hole, justifying
one of the assumptions of the phenomenological model described above.

To obtain additional insight on the effect of the array, Fig. 3 shows the computed maps for
the light going from the groove array to the central hole, IG (panel (a)) and the amplitude of the
electric field at the entrance of the fourth groove, |E4| (panel (b)), which is taken as a represen-
tative illustration of the field at the surface. In the spectral band close to λR both IG and |E4|
present hot spots with locations in the λ − a1 plane that coincide with those of the transmit-
tance. However, for wavelengths larger than the cutoff of the hole (which, for the parameters
considered occurs at λc ≈ 589nm), both IG and |E4| present spectral features that are not ob-
served in the total transmittance, as the latter is strongly suppressed by the small transmittance
of the central hole. Notice that |E4| presents an even stronger resonance at λ ≈ 800nm than at
λR. Actually, the calculations show that all grooves present a resonant electric field at the same
wavelength, pointing to a collective behavior. However, this resonant field does not lead to a
resonant IG, because the fields radiated by the grooves do not interfere constructively at the cen-
tre of the structure. We have found (not shown here) that when the groove depth increases, the
collective resonance enhances and red-shifts, whereas the one at λR also increases in intensity
but its spectral position remains invariable.

To understand the origin of the “hot stripes” in IG and En that lead to EOT, we now consider
the response of a set of isolated annular grooves (by simply setting Gnm = 0 for n �= m). Panels
(c) and (d) in Fig. 3 show the same calculations as in panels (a) and (b), respectively, but when
grooves are “disconnected”. The re-illumination map when grooves do not interact presents
a similar pattern to that of IG when the full interaction is considered: there are high intensity
features at λR ≈ 630nm only for some values of a1. This result clearly shows that maxima in IG

originate from the constructive interference at the hole of the EM fields radiated by each groove
(Ig) which, at those wavelengths, can be considered as isolated. The comparison between |E4|
in the connected (Fig. 3(b)) and isolated cases (Fig. 3(d)) reenforces this interpretation: in the
spectral region close to λR, where the resonance in both IG and T occur, |E4| is similar for both
an isolated and a “connected” groove. In contrast, these two situations lead to very different
|E4| in the resonance appearing at λ ≈ 800nm, adding further evidence to the association of
this resonance to a collective behavior.

From now on we concentrate on the spectral region close to λR, where the transmission
resonances occur. The previous analysis show that, in this case, the grooves can be considered
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as independent of each other. We find that an isolated shallow groove (with h << λ , as those
considered in this work), re-illuminates the centre of the structure maximally when an integer
number of SP wavelengths fits inside each ring cavity, that is, 2an = mnλSP, where mn is an
integer and an is its average radius. This is consistent with the fact that, in the optical regime
and at distances larger than 2−3λ , SP are the main contribution to the EM field at the surface
radiated by a surface defect [30,31]. This condition is represented by the grey lines in Fig. 3(d)
for the fourth groove, and as a collection of straight lines in Fig. 3(c), one for each groove
(n = 1, ...,6). Notice that in Fig. 3(c) all lines cross at several points, where the re-illumination
from each groove is maximal simultaneously. For a collection of grooves with average radius
an = a1 +(n− 1)p, where n does not necessary have to be consecutive (eventually providing
aperiodic structures), these maximal points are given by the conditions

λSP ≈ p
l

(3)

a1 ≈ m
λSP

2
(4)

where m and l are integers. Moreover, all partial re-illuminations interfere constructively in that
case. This explains the maximum in IG that occurs in both the disconnected case (Fig. 3(c)) and
the connected one (Fig. 3(a)). The small deviation between the actual values of a1 and λ for
maximum IG and those given by Eq. (3) and Eq. (4) are due to the influence of both groove
width and, principally, groove depth which are not taken into account in the simple model
outlined above. Actually, considering hg enlarges the optical path length that light must cover
which eventually translates into a larger effective ã1. Therefore, grey lines in Fig. 3 intersect at
larger a1 values than those where actual hot spots in the reillumination process, occur. In the
limit of very shallow grooves, hot spots and the intersection of grey lines coincide (results not
shown here).

These scaling laws are in good correspondence with experimental results. Main resonances
shown in Fig. 2 appear at λ = 660nm, very close to λR, as it is predicted by Eq. (3) for l = 1,
but they also obey Eq. (4), with m = 1,2,3,4, in the range of parameters here studied. In order
to stress the importance of following this set of simple equations when designing BE structures,
we also conducted the experiments appearing in Fig. 4. This figure shows transmission spectra
and the expected resonant wavelengths λR for BE structures with different geometrical param-
eters (see caption) with a1 = p for different periods. Again the difference between the simple
prediction and the experiment is attributed mainly to the influence of groove depth. Note that
these λR values are calculated from Re[ksp[λR]] = 2π/(p/l), being l = 2, and that a1 values are
properly selected with m = 4. This draws a straightforward analogy with periodic hole arrays
where higher order SP modes can be excited at specific wavelength in agreement with a grating
law of the kind of Eq. (3). To our knowledge, such measurements have never been presented to
date on a BE structure.

As said before, the CMM provides analytical expressions for all objects appearing in Eq. (2)
which, in principle, have to be evaluated numerically. However, we find that, to a very good
approximation, the elements Gnn and G0n (related to how a groove re-illuminates itself or the
central hole, respectively) satisfy:

G0n(an) = σ(an)eikspan

Gnn(an) = β (an)+ Γ(an)e2ikspan (5)

where σ(an), β (an), and Γ(an) are fitting complex coefficients that depend smoothly on an.
Equation (5) can be interpreted physically in the following way: the groove re-illuminates the
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Fig. 4. Transmission spectra measured through BE structures with N = 5, h = 280nm,
hg = 90nm, wg = 330nm, rc = 170nm, and different periods (see label) being a1 = p. For
each period, the predicted location of λR is indicated. These wavelengths follow Eq. (3), so
that Re[ksp[λR]] = 2π/(p/l), being l = 2, and Eq.(4) with m = 4.

hole via SP while, for the self re-illumination, the groove can be considered as composed by two
parts (left and right). These parts re-illuminate themselves (leading to the β (an) contribution)
and one another (the Γ(an) term).

3.2. Isolated groove response

Since the previous analysis indicates that the array response can be understood as the response
of isolated grooves, let us now consider an isolated groove with the same hg and wg as before
and of average radius a. To simplify the notation, we write G0n = G0(a) and Gnn = G(a). As
an illustration of the validity of Eq. (5), Fig. 5 shows |G0(a)| and |G(a)| calculated both exactly
(using Eq. (2)) and fitted through Eq. (5), together with |σ(a)|, |β (a)|, and |Γ(a)| obtained
from the fit. This illustration is for the geometrical parameters considered in this paper and
λR = 630nm, but we have checked that the validity of Eq. (5) is not restricted to these particular
case.

Equation (5) also allows for a simplified analysis of the re-illumination process of a single
groove, Ig(a) =G0(a)E(a), which can be written in the language of the Huygens-Fresnel model
[32]. Equation (2) in combination with Eq. (5) gives

E(a) =
I(a)

G(a)+Σ(a)
≈ I(a)

β (a)+Σ(a)
· 1

1− r(a)e2ikspa (6)

where

r(a)≡ −Γ(a)
β (a)+Σ(a)

(7)
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Fig. 5. For the geometrical parameters in Fig. 2 and λR = 630nm, comparison between the
exact values for |G0|, |G| obtained directly from Eq. (2), and those fitted using Eq. (5), as a
function of a. The inset shows |σ(a)|, |β (a)|, and |Γ(a)| values as a function of a.

CMM

Fig. 6. Reillumination of a single groove,
∣
∣Ig

∣
∣, as a function of a. The black curve represents

the exact calculations obtained directly from Eq. (2). The blue and red curves show the
result after fitting α(a) and r(a) and truncating the sum in Eq. (9) to jmax = 1 and 2 terms,
respectively. Geometrical parameters as in Fig. 3 and λR = 630nm.
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Fig. 7. Calculation (within the CMM model) for α(a) (panel (a)) and r(a) (panel (b)) for
different set of parameters. The black curve is for the system considered in Fig. 2, which is
taken as the reference. For the other cases, the labels give the parameters that are different
from those in the reference.

Expanding the denominator we get:

E(a) =
I(a)

β (a)+Σ(a)

∞

∑
j=0

[

r(a)e2ikspa
] j

(8)

Notice that this expression contains the “multiple scattering” between the left and the right side
of the annular groove. Finally, if we substitute the latter in Ig(a) = G0(a)E(a), we obtain:

Ig(a) = α(a)eikspa
∞

∑
j=0

[

r(a)e2ikspa
] j

(9)

with

α(a)≡ σ(a)I(a)
β (a)+Σ(a)

(10)

Figure 6 shows the exact results for Ig(a) and the fitted curve replacing α(a) and r(a) in
Eq. (9). The excellent agreement between the two calculations confirms the validity of the
approximations involved in the derivation of the simplified model. Note also that considering
just the first two terms ( jmax = 1) in the sum in Eq. (9) already provides a good approximation.
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x

with x = 0.45. The inset shows the corresponding calculations for |rarray|.

In Fig. 7 we plot the coupling and reflection coefficients for the groove parameters previously
considered (continuous black curves). Additionally, we present results for other representative
geometries still in the subwavelength regime, which result from the one considered throughout
this paper by increasing and decreasing some geometrical parameters (and, in each cases, for
the corresponding values of λR). These results show that, in all cases, the coupling amplitude
α increase with groove radius, while the reflection amplitude r is practically independent of a.
The dependence of α with a can be approximately fitted to α(a) ∝ a2/3. This result, which is
relevant to studies in BE structures based on the Huygens-Fresnel approach, can be traced back
to arise from the exact a1/2 dependence of I(a) (i.e., the illumination of a groove is proportional
to its area), plus an additional dependence with a of the coefficients entering Eq. (5) (see inset
in Fig. 5). The computed reflection coefficient turns out to be smaller than the one given by the
phenomenological model ∼ 0.65 (which can only be helpful in an interpretation context). These
studies also suggest that the width of the groove is not a parameter with a strong influence on
the results (provided it is in the subwavelength regime).

In the spectral region where transmission resonances occur (where grooves can be treated
independently), we can obtain the total re-illumination at λR provided by an array of grooves
placed at an as IG = ∑n Ig(an). Thus, following Eq. (9)

IG = αarray eikspa1

(

1+ rarray e2ikspa1

)

(11)

with

αarray = ∑
n

α(an)e
iksp(n−1)p

rarray = r · ∑n α(an)e3iksp(n−1)p

∑n α(an)eiksp(n−1)p
(12)

where, according to Fig. 6 and Fig. 7, the reflection coefficient r is assumed to be independent
of a1, and jmax = 1. Additionally, if the condition p · Re[ksp] ≈ 2πl (being l an integer) is
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fulfilled, which is also the condition for validity of the independent-groove model, rarray ≈ r
and αarray ≈ ∑n α(an).

In the CMM formalism, Farray = 1+ IG/I0, so Eq. (11) recovers the phenomenological model
given by Eq. (1). Moreover, in Fig. 8 we show |αarray| as a function of a1 for the same geo-
metrical parameters considered in Fig. 2 at λR = 630nm. Notably, we find for large a1 values
that |αarray| behaves as a0.45

1 ∼√
a1, as predicted by the simple phenomenological model. Note

also that, despite the slow dependance of αarray with a1, the reillumination at the centre of the
hole strongly oscillates with a1, due to the exponential terms in Eq. (11). Additionally, inset in
Fig. 8 shows that |rarray| hardly depends on a1, as it was expected from Fig. 7.

4. Conclusions

We have analyzed the optical transmission in bull’s eye structures as a function of the distance
between the central hole and its nearest groove, a1, in the case when all groove depths and
widths are subwavelength. We have shown that the transmittance presents maxima for given
values of a1 and wavelength, which are due to constructive interference of the light reemitted
by grooves (which in that case behave almost independently) into the central hole. This reemit-
ted light is in the form of surface plasmons. Furthermore, each groove acts as two connected
cavities and, for fully explaining the transmittance spectra, the reflection by one cavity of the
surface plasmon radiated by the other cavity must be taken into account. We have shown that the
amplitude for coupling of incident radiation into a groove increases with groove radius, while
the reflection coefficient of a groove for surface plasmons does not. These ingredients have been
combined to give a simple Huygens-Fresnel view of the total coupling and reflection of light
by the groove array. Finally, our results show that there is not a direct correspondence between
field enhancement at the surface and transmission enhancement, as there are resonances in the
groove array that do not lead to strong re-illumination at the central hole.
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