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Role of surface plasmon polaritons in the optical response of a hole pair
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The optical emittance of a hole pair perforated in an opaque metal film is studied from first principles using
the coupled-mode method. The geometrical simplicity of this system helps us to understand the fundamental
role played by surface plasmon polaritons (SPPs) in its optical response. A SPP interference model without
fitting parameters is developed from the rigorous solution of Maxwell’s equations. The calculations show that
the interference pattern of the hole pair is determined by two scattering mechanisms: (i) the electric field
excited by the external illumination at the hole openings before the hole-hole interaction is established and
(ii) the re-illumination of the holes by the in-plane SPP radiation. The conditions for constructive and destructive
interference only depend on the phase difference provided by each of the two scattering mechanisms.
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I. INTRODUCTION

The extraordinary transmission through nanohole arrays
milled into metallic films1 is attributed to the resonant
excitation of surface electromagnetic (EM) modes by the
incident light.2 In the optical regime these surface EM modes
are surface plasmon polaritons (SPPs) modified by the metal
corrugation. The light-SPP coupling is made possible by the
additional grating momentum provided by the scattering of
the incident light by the hole array. Nevertheless, interference
of excited SPPs is set up even for two interacting holes.3–7

Increasing the number of holes, the transmission is enhanced
due to better defined peaks of the structure factor, appearing
at the reciprocal lattice vectors.8 It must also be noted that
light-SPP interaction is not the single mechanism behind the
extraordinary optical transmission (EOT). The EOT physical
scenario is completed by the excitation of localized and
Fabry-Pérot modes,9–16 which may also contribute the whole
process (see Ref. 17 for a comprehensive review).

The aim of the present paper is to study the interference
pattern of the simplest interacting system: a hole pair. Since the
original proposition of the “nanogolf” effect by Sönninchsen
et al.,3 several groups have measured the optical interaction of
two holes, see for example Refs. 6,7, and 18. These groups
have used basic SPP resonant models in order to explain
the characteristic optical transmittance of the hole dimer,
which oscillates as a function of the hole-hole distance, with
period equal to the SPP wavelength. These approaches have
in common that the relevant scattering channels are assumed
ad hoc: only SPP scattering channels are included in the final
optical response.

In this paper we make no such assumption and solve
Maxwell’s equations from first principles using a coupled-
mode method (CMM).17,19 We shall consider the two possible
radiative channels: freely propagating light radiated out-of-
plane into the far field, and SPP power scattered along the metal
plane. The out-of-plane power Prad, normalized to the power
incident on the hole area, gives the far field transmittance
T . This is the quantity commonly used to characterize EOT.
However, to the best of our knowledge, the in-plane SPP

power PSPP has not yet been measured for a hole pair. We
shall analyze the relevant scattering mechanisms for each
radiative channel. Moreover, we shall derive, without fitting
parameters, the conditions for constructive and destructive
interference, hereafter conditions for interference (CI), that
explain experimental interference patterns.6,18

The paper is organized as follows. In the next section we
briefly review the CMM and give the expressions for PSPP and
Prad. The assumptions behind the CMM and some cumbersome
mathematical formula are reported in the Appendix. For the
sake of completeness, Sec. III summaries the emittance of
a single hole. Section IV discusses the optical response of
the hole pair. A subsection is devoted to clarify the scattering
mechanisms dominating the conditions for interference. At the
end we outline the main conclusions of the paper.

II. THEORETICAL FRAMEWORK

Figure 1 renders the hole-pair geometry studied in this
paper. Two identical circular holes of radius rh, separated
by a distance R, are milled into an infinite metal film of
thickness h and dielectric function εm. In general, the metal
film lays on a substrate with dielectric constant ε, it is covered
with a dielectric superstrate ε1, and the space inside the
holes is characterized by a dielectric constant ε2. For the
sake of simplicity, ε = ε1 = ε2 = 1 is used in this paper. We
consider in what follows that the metal film is illuminated
by a normal-incident p-polarized plane wave, oriented along
the main axis of the hole pair, as shown in Fig. 1. We shall
focus on the energy power radiated into the transmission
region (z > 0).

Maxwell’s equations are solved self-consistently using
a convenient representation for the EM fields.17,19 In both
substrate and superstrate the fields are expanded into an infinite
set of plane waves with both p and s polarizations. Inside the
holes the most natural basis is a set of circular waveguide
modes. Convergence is fast achieved with a small number of
such modes.20,21 In fact, we shall see that the fundamental
waveguide mode is a good approximation for our problem.
The assumptions behind this coupled-mode method, as well
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R
FIG. 1. (Color online) Schematic representation of the hole-pair

geometry.

as its relevant constitutive quantities, are briefly reviewed in
the Appendix under the single mode approximation.

The flux power traversing the hole is distributed into two
channels19: (i) out-of-plane radiation, freely propagating into
the far field, and (ii) SPP power, scattered along the metal
plane. The calculation of these two quantities is straightfor-
ward within the CMM after we know the amplitude of the fun-
damental waveguide mode at the hole openings E′

i , where i =
1,2 labels each hole. For a normal-incident plane wave,
both holes receive the same illumination I (A1), therefore
E′

1 = E′
2 ≡ E′ due to the symmetry of the system with respect

to the central point of the hole pair; E′ hence reads

E′ = GνI

[Gsh + Ghh(R) − �]2 − G2
ν

, (1)

where the hole-hole propagator Ghh(R) [Eq. (A4)] represents
the coupling of the two holes as a function of the hole-hole
distance R. This interaction can be seen as a re-illumination of
the hole i by the magnetic field GhhEj radiated from the other
hole j . Notice that there is also a self-illumination term for each
hole Gsh, which adds to the single-hole scattering mechanisms
represented by both � [Eq. (A2)] and Gν [Eq. (A3)]. Using
Eq. (1), the out-of-plane power emitted by the hole pair
simplifies to

Prad(R) = |E′|2grad(R), (2)

where the propagator grad(R) = gsh
rad + gint

rad(R) provides the
far field radiated from the hole pair, gsh

rad represents the
contribution of each single hole, and gint

rad(R) [Eq. (A8)] is
a term arising from the interference of the fields radiated by
the two holes.

On the other hand, we can obtain the power radiated
into SPPs by computing the contribution from the plasmon
pole in the propagator.19 The power of the scattered SPPs
is first computed at a point r on the metal surface several
SPP wavelengths away from the nearest edge of the hole pair,
by integrating the in-plane radial component of the Poynting
vector, defined with the SPP fields, on a cylindrical surface of
radius r and semi-infinity extension in z > 0; the power in the
plasmon wave is then calculated using the known decay length
of the SPP. The integrated power reads

PSPP(R) = |E′|2gSPP(R), (3)

where the propagator gSPP(R) = gsh
SPP + gint

SPP(R) provides the
total SPP field radially scattered along all possible angular
directions in the metal plane, gsh

SPP [Eq. (A11)] represents the
contribution of each single hole, and gint

SPP(R) [Eq. (A12)] is
the interference term

FIG. 2. Normalized-to-hole-area out-of-plane (Prad) and in-plane
SPP (PSPP) emittance as function of the hole radius rh (in nm) for a
single hole milled in a silver film, free standing on air (h = 250 nm
and λ = 700 nm). Symbols and lines represent converged results
and the single mode approximation, respectively. The inset show the
cutoff wavelength, λc (in nm).

Nevertheless, the hole-hole interaction can not be fully
understood without a previous knowledge of the optical
response of a single hole, which is briefly reviewed in the
next section.

III. SINGLE HOLE EMITTANCE

The emittance spectrum of a single circular hole is
described in this section for the sake of completeness,
although this issue has been largely studied, see for example
Refs. 3,9,10,14,15,18–23, and references therein. The behavior
of both Prad and PSPP is depicted in Fig. 2 as function of the
hole radius, for a free-standing Ag film with h = 250 nm. The
Ag dielectric function εm(λ) is fitted to data in Ref. 24. It
is equal to εm = −19.9 + 1.15 i for the incident wavelength,
λ = 700 nm, which is kept constant in the paper. Both Prad and
PSPP are normalized to the power incident on the hole area.

Figure 2 renders PSPP for both the fundamental mode
approximation (dashed line) and converged results (open
circles). Both curves practically overlap, so the fundamental
mode is enough to achieve converged results for this emittance
channel. For the out-of-plane emittance the agreement between
single mode (solid line) and full calculations (full circles)
is slightly worse, but still the difference is less than 15%
and tendencies are well captured in the parameter range
considered. The single mode approximation is therefore used
in the rest of the paper.

As already stressed in Ref. 20, PSPP(rh) presents a broad
peak with maximum at rh = 190 nm, close to the cutoff radius,
rc = 168 nm for λ = 700 nm. The cutoff wavelength λc is
represented in the inset of Fig. 2 as a function of rh. The
resonance appears in the field at the opening |E′| (not shown),
while the decay for rh > rc is due to that in the single hole
SPP propagator gsh

SPP [Eq. (A11)]. For rh > rc most of the the
energy is radiated out of the plane. In this case, both gsh

rad (not
shown) and Prad reach a fast saturation with the hole radius.
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IV. OPTICAL RESPONSE OF A HOLE PAIR

We define the normalized hole pair emittance as the power
radiated into each channel, out-of-plane [Eq. (2)] or in-plane-
SPP [Eq. (3)], divided by twice the corresponding emitted
power of a single hole located at R = 0, that is,

ηrad(R) = Prad(R)

2P sh
rad

= |E′
N |2gN

rad(R), (4)

ηSPP(R) = PSPP(R)

2P sh
SPP

= |E′
N |2gN

SPP(R), (5)

where E′
N is the ratio of the electric field at the hole openings

E′
N (R) = E′(R)

E′
sh

= [Gsh − �]2 − G2
ν

[G(R) − �]2 − G2
ν

, (6)

and we have used that the illumination of an isolated hole is
equal to the illumination of each hole in the pair for a normal
incident plane wave; while the ratios for the out-of-plane and
SPP propagators are given by

gN
rad(R) = grad(R)

gsh
rad

, (7)

gN
SPP(R) = gSPP(R)

gsh
SPP

. (8)

The normalized emittances ηrad and ηSPP are depicted
in Fig. 3 as a function of the hole-hole distance R for
increasing hole radius; rh = 100 nm (blue dashed line), 150 nm
(red solid line), and 250 nm (black short-dashed line). In
Fig. 3 the interhole distance R is normalized to the SPP
wavelength λSPP = 2π/Re[kSPP], where kSPP (A10) is the SPP
propagation constant in silver; λSPP = 682.3 nm for the chosen
λ = 700 nm.

In accordance with experimental works,6,7 the computed
powers ηrad and ηSPP oscillate with period λSPP. However, ηrad

behaves different than ηSPP as a function of the hole radius.
The amplitude of ηrad strongly oscillates with rh, while ηSPP

does not. Indeed, increasing rh from 100 to 150 nm at fixed R

we can transform a maximum of ηrad into a minimum. To the
best of our knowledge this dependence of ηrad on rh has not
been previously reported. Moreover, in the thin-film limit it has
been found that the CI only depend on the edge-edge distance,
and not on rh. Further experimental work is needed to study
the dependence on rh for opaque metal films and hole sizes
larger that the metal skin depth (the region of the parameter
space targeted in this paper). Nevertheless, it is worth stressing
that the available experimental data6,7 reported the same CI
for very different systems.25 In both cases rh is very small
(∼λ/20), but while Ref. 6 considers a thin gold layer (h =
20 nm) on a glass substrate, Ref. 7 uses an optically thick silver
film immersed in a medium with refractive index n = 1.45.
Both experimental CI are the same as for a third different
system, the particular case rh = 150 nm in Fig. 3(a), that is,
maxima are at R/λSPP = m − 1/4, minima at R/λSPP = m +
1/4 (both represented with arrows), and ηrad = 1 at R/λSPP =
(m + 1)/2 (represented with vertical dashed lines), where m =
1,2,3, . . . .

In contrast, the amplitude of ηSPP shows a stronger
dependence on R, but does not present such large variations

FIG. 3. (Color online) (a) Normalized out-of-plane emittance ηrad

and (b) normalized in-plane SPP emittance ηSPP as function of R/λSPP

for increasing rh; rh = 100 nm (blue dashed line), 150 nm (red solid
line), and 250 nm (black short-dashed line). The holes are milled
in a free standing Ag film of thickness = 250 nm. The illumination
wavelength is λ = 700 nm. The CI reported in Sec. IV A are included
in both (a) and (b) for rh = 150 nm: maxima (at R/λSPP = m − 1/4
for ηrad and R/λSPP ≈ m for ηSPP) and minima (at R/λSPP = m +
1/4 for ηrad and R/λSPP ≈ m − 1/2 for ηSPP) are represented with
arrows, while vertical dashed lines are used for the condition η = 1
[at R/λSPP = (m + 1)/2 for ηrad and R/λSPP ≈ (2m + 1)/4 for ηSPP];
m = 1,2,3, . . . .

with size of the holes. Maxima of ηSPP occur close to the
conditions for constructive interference of SPPs at the flat
metal surface (R = mλSPP), while minima appear close to
conditions for destructive interference of SPPs between the
holes [R = (2m − 1)λSPP/2].

As the energy traversing the holes is distributed into the
out-of-plane and in-plane channels [Eq. (A15)], ηrad and ηSPP

behave as complementary scattering channels, so they do not
have the same kind of extreme value (a maximum, a minimum,
or η = 1) at the same R. In particular, there is neither a trans-
mission enhancement nor suppression of ηrad at the conditions
for constructive interference of SPPs. Such counterintuitive
behavior was stressed in Ref. 7, where experimental results
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FIG. 4. (Color online) (a) Normalized out-of-plane emittance ηrad

(red solid line), its constituent terms |E′
N |2 (black short-dashed line),

and gN
rad (dark-yellow dashed line), and the approximate expression

for ηrad (orange dash-dotted line) of Eq. (10). (b) Normalized
SPP emittance ηSPP (blue solid line), its constituent terms |E′

N |2
(black short-dashed line) and gN

SPP(magenta dashed line), and the
approximate expression for ηSPP (violet dash-dotted line) of Eq. (14).
All these quantities are represented as function R/λSPP. The hole
radius is rh = 150 nm, the rest of parameters are the same as in
Fig. 3.

have been nicely fitted to a SPP interference model although
this data also shows that ηrad = 1 at R = mλSPP.

The out-of-plane radiation ηrad (4) is mainly determined by
E′

N , that is, by the change in the field at the hole due to the
presence of the other hole. This is illustrated in Fig. 4(a), where
ηrad is compared with both |E′

N |2 and gN
rad. We observe that the

interference between the radiative field of the two holes, given
by gN

rad, practically does not change the total transmission
for hole-hole distances larger than 2λSPP. Conversely, the
normalized in-plane propagator gN

SPP plays an important role
setting up the CI for ηSPP (5), see Fig. 4(b). Although
the contribution of |E′

N |2 cannot be neglected, the interference
pattern of gN

SPP resembles the behavior of ηSPP.
The CI developed in the next section strongly depend on the

properties of the in-plane propagator Ghh(R), which is behind

the interference pattern of both radiative channels. We use the
following decomposition of the in-plane propagator:

Ghh(R) = Ghh
rad(R) + Ghh

SPP(R) + Ghh
ev (R), (9)

where Ghh
rad(R) [Eq. (A8)] represents the contribution of radia-

tive modes, Ghh
SPP(R) [Eq. (A9)] designates the contribution of

the plasmon pole to evanescent modes, and Ghh
ev (R) [Eq. (A13)]

denotes the contribution of the remaining evanescent modes.
This decomposition is the most natural way of connecting Ghh

[Eq. (A4)] to the radiative propagators grad [Eq. (2)] and gSPP

[Eq. (3)], as well as to recover previous results for the PEC.8

Additionally, it is also related to the decomposition proposed
in Ref. 26 in order to compare SPP with non-SPP mediated
interaction.

The real and imaginary parts of Ghh
rad(R), Ghh

ev (R), and
Ghh

SPP(R) are compared with Ghh(R) in Fig. 5 for the same
parameters of Fig. 4. The most relevant feature observed in
Figs. 5(a) and 5(b) is that the main contribution to Ghh(R)
comes from the SPP propagator Ghh

SPP(R), which has a simple
analytical form [Eq. (A9)]. This allows us to find analytical
expression for CI that will be presented in the next section.
Notice that the agreement between Ghh(R) and Ghh

SPP(R) has
been previously reported for 1D defects separated a distance
larger that 2 − 3λ.27 Regarding non-SPP channels, Ghh

rad(R)
decays faster than Ghh

SPP(R) being negligible small for R equal
to a few λSPP. On other hand, the real part of Ghh

ev (R) is
vanishing small (see the Appendix), while its imaginary part
is in antiphase to Ghh

rad(R). It must be noted that, as expected,
the relative contribution of the different propagators changes
when we approach the PEC limit.26–29

A. Conditions for interference

In this section we compute the conditions for constructive
and destructive interference of both out-of-plane and in-plane
radiative powers. We start with the simpler of these two
quantities, ηrad.

Three approximations simplify the study of ηrad. First, its
interference pattern is accurately described by the normalized
square field amplitude ηrad ≈ |E′

N |2, see Fig. 4(a). Second,
Ghh(R) ≈ Ghh

SPP(R), as we have learned from Fig. 5. Third,
Ghh

SPP(R) � Gsh. This last approximation is valid for R �
λSPP, but we shall see it gives results that work surprisingly
well even for R ∼ λSPP. Expanding E′

N (6) into Mclaurin series
of Ghh

SPP(R)/Gsh and keeping only the leading term, we find

E′
N = E′

E′
sh

≈ 1 − 2 ZE Ghh
SPP(R),

where ZE = Esh/I [Eq. (A7)] is the effective impedance
of a single hole, which gives the modal amplitude at the
hole opening normalized by the external illumination. From
the simplified expression for E′

N we can deduce that the
interference pattern of the hole pair is set up by both the
single hole impedance and the re-illumination of one hole by
the other.

The CI for ηrad can be written in terms of the phase
difference provided by both ZE and Ghh

SPP(R). We thus define
the single-hole phase shift, φZE , from ZE = |ZE| exp(iφZE),
as well as the phase difference acquire by the SPP
when traveling from one hole to the other, φhh, from
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FIG. 5. (Color online) (a) Real and (b) imaginary parts of the
propagator Ghh(R) (black solid line), as well as its constituent terms
for radiative modes, Ghh

rad(R) (red dashed line), SPP modes, Ghh
SPP(R)

(blue short-dashed line), and remaining evanescent modes Ghh
ev (R)

(green dash-dotted line). We use the same geometrical parameters of
Fig. 4.

Ghh
SPP(R) = |Ghh

SPP(R)| exp(iφhh). An approximate expression
for φhh can be obtained replacing the Hankel function in
Ghh

SPP [Eq. (A9)] by its asymptotic expression H
′(1)
1 (x) ≈

(πx/2)−1/2 exp[i(x − π/4)]. We have then φhh = kSPPR −
π/4. Keeping again the leading term in the expansion of |E′

N |2,
we obtain

ηrad ≈ 1 − 4
∣∣ZEGhh

SPP

∣∣ cos(kSPPR + φZE − π/4). (10)

This equation clearly shows that the out-of-plane radiation
depends both on the phase picked up by the field given the
illumination provided by the external field and on the optical
path traveled by the SPP when going to one hole to the other.

The approximate equation (10) is compared with full
calculations in Fig. 4(a). As ηrad ≈ |E′

N |2, we find that Eq. (10)
slightly underestimates |E′

N |2 for R < λSPP, but the agreement
is excellent for R > λSPP. This nice agreement is related to the
fact that non-SPP waves at the metal plane decay faster than
SPP waves as a function of the distance, see Fig. 5. The leading
role of SPP waves for large R have been already stressed in

Refs. 26–29. Equation (10) also agrees with the one proposed
in Ref. 7 following an intuitive interference plasmon model,
which, in contrast to first-principles derivation of (10), contains
fitting parameters.

It is straightforward to derive the CI of ηrad from Eq. (10)
assuming that the absolute value of Ghh

SPP changes smoothly
with R, and that the dependence on R mainly comes from its
phase. Then we have that extrema of ηrad appear at

kSPPR − π

4
+ φZE = nπ, (11)

where the integer value of n is equal to n = 2m − 1 for
maxima, n = 2m for minima, and m = 1,2,3, . . . ; while the
condition for ηrad = 1 is shifted in π/2 with respect to the
previous expression, that is,

kSPPR − π

4
+ φZE =

(
m + 1

2

)
π. (12)

The single-hole phase shift φZE is depicted in Fig. 6(a) as
function of the of the hole radius rh, and for increasing metal
thickness h = 100 nm (blue dashed line), 150 nm (red solid
line), and 250 nm (black short-dashed line).

The large variation in φZE as function of rh (up to π/2 for
increasing rh from 50 to 250 nm) accounts for the oscillations
in ηrad observed in Fig. 3(a). As an example, we choose
in Fig. 6(a) the point rh = 150, h = 250 nm, for which
φZE = −π/4. Equations (11) and (12) give simple expressions
for this specific value of φZE . We thus obtain maxima of ηrad at
R/λSPP = m − 1/4, minima at R/λSPP = m + 1/4, and η = 1
at R/λSPP = (m + 1)/2, with m = 1,2,3, . . . . We compare
these CI with full calculations in Fig. 3(a). An excellent
agreement is obtained even for small values of R/λSPP. The
same agreement is observed for any given value of rh (not
shown).

It is also worth to say that ηrad is largely independent on
the metal thickness h (although it is computed for a given
value of of h in optically thick film) because φZE is practically
independent on h, see Fig. 6.

Notice that the CI represented by Eqs. (11) and (12), which
are valid for a wide range of hole sizes (larger than the metal
skin depth) and opaque metal films, are expressed in terms
of the distance between the centers of the holes. A previous
work6 suggested that, for thin-metal films and small hole sizes,
the CI are a function of the edge-edge distance, independently
from the hole radius. In our notation, this could only occurs
if φZE + 2rh/λSPP = 0 in Eq. (10). However, we observe in
Fig. 6(a) that −2rh/λSPP (dash-dotted line) is equal to φZE

only for a small region of the parameter space. This novel
behavior demands further experimental work on opaque metal
films and hole sizes larger than the metal skin depth.

Similar CI can be developed for the in-plane scattered
power ηSPP. As commented in the discussion of Fig. 4(b),
both terms |E′

N |2 and gN
SPP contribute to ηSPP in Eq. (5). We

take the approximate expression of |E′
N |2 from Eq. (10) and

use the asymptotic expression gN
SPP = 1 + 2J ′

1(kSPPR) found
in the Appendix. We recall that the last relation is exact only
when absorption is neglected, but it is a good approximation if
absorption is present. Using again the asymptotic expansion of
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FIG. 6. (Color online) (a) Single-hole phase shift for the out-
of-plane emittance φZE as function of the hole radius rh and for
increasing metal thickness h; h = 100 nm (blue dashed line), 150 nm
(red solid line), and 250 nm (black short-dashed line). The dash-dotted
line represents the hole diameter normalized by λSPP. (b) SPP phase
shift for the in-plane emittance of a single hole φZP .

the Bessel function, the in-plane emittance is thus simplified
to

ηSPP ≈ |E′|2
[

1 + 2

√
2

πkSPPR
cos(kSPPR − π/4)

]
. (13)

This equation tells us that, given the normalized amplitude
of the electric field at the hole opening E′

N , the interference
pattern of the in-plane scattering power is determined by
the SPP optical path between the two holes. However, in order
to quantify the CI of ηSPP, we should include the modulation of
the field given by |E′

N |2 [Eq. (10)]. Expanding the two terms
in Eq. (13) up to the first order in Ghh

SPP/Gsh, ηSPP can be
straightforwardly rewritten to

ηSPP ≈ 1 + 4
∣∣ZSPPG

hh
SPP

∣∣ cos(kSPPR + φZP − π/4), (14)

where the effective impedance for the SPP channel ZSPP =
ZE − (4|Gsh

SPP|)−1 takes into account both the excitation of
the EM field inside the hole, characterized by ZE , and the
excitation of the SPP at the hole, given by (4|Gsh

SPP|)−1. Like

for the out-of-plane channel, the approximate Eq. (14) shows
an excellent agreement with full calculations in Fig. 4(b). How-
ever, the behavior of φZP (defined from ZSPP = |ZSPP|eiφZP )
differs from φZE . Figure 6(b) renders φZP as a function of rh,
showing a characteristic peak centered near the cutoff radius
rc = 168 nm, cf. Fig. 2. The phase difference with respect to
φZE is about π/2 for rh � rc, and decreases to zero for rh > rc.

The extreme values of ηSPP (14) satisfy

kSPPR − π

4
+ φZP = nπ, (15)

where the integer value of n is equal to n = 2m for maxima,
n = 2m − 1 for minima, and m = 1,2,3, . . . . Notice that
the values of nπ for ηSPP are shifted in π with respect
to the extreme values of ηrad (conditions for maxima are
replaced by conditions for minima, and vice versa). This
shifting is determined by the fact that the power traversing
the hole is radiated into two complementary channels: ηrad

and ηSPP. As for ηrad, the condition ηSPP = 1 is shifted in π/2
with respect to the previous expression for extreme values,
that is,

kSPPR − π

4
+ φZP =

(
n + 1

2

)
π. (16)

In Fig. 3(b) we compare full calculations with the CI for the
case rh = 150 nm, h = 250 nm, for which φZP = 0.27 rad ≈
π/4 [see Fig. 6(b)]. As for ηrad, an excellent agreement is
obtained. Similar trends are found for rh = 100 and 250 nm
(not shown).

V. CONCLUSIONS

We have studied the emission pattern of a hole pair,
focusing our attention in the role played by SPP resonances.
Starting from the rigorous solution of the problem, we have
developed a SPP interference model that does not contain
fitting parameters. This model provides simple analytical
expressions for the interference pattern of both the out-of-plane
and in-plane radiation channels, which nicely agree with full
calculations for noble metals at optical frequencies.

In agreement with experimental reports, both radiated pow-
ers oscillate with period λSPP. However, they show different
trends as a function of the hole-hole distance and the hole ra-
dius. The amplitude of ηrad strongly oscillates with the hole ra-
dius, while the amplitude of ηSPP has a stronger dependence on
R, but does not present such large variations with the
hole size.

Maxima of ηSPP occur close to the conditions for construc-
tive interference of SPPs at the flat metal surface (R = mλSPP),
while minima appear close to conditions for destructive in-
terference of SPPs between the holes [R = (2m − 1)λSPP/2].
The quantities ηSPP and ηrad have complementary condi-
tions for constructive and destructive interference, because
the power traversing the hole is distributed into these two
channels.

We have also shown that two scattering mechanisms
determine the interference pattern of the hole pair: (i) the
electric field excited by the external illumination at the hole
openings before the hole-hole interaction is established and
(ii) the re-illumination of the holes by the in-plane SPP radia-
tion. The conditions for interference only depend on the phase
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difference provided by each of the two scattering mechanisms.
The first mechanism is quantified by an effective impedance,
with a given single-hole phase; while the additional phase
provided by the second mechanism is just the optical path
of the SPP traveling from one hole to the other. Our model
explains that the oscillations of ηrad as a function of the hole
size are due to the large variation in the effective impedance
of the single hole.
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APPENDIX: COUPLED-MODE METHOD

In this section we briefly review the coupled-mode method
for the optical transmission through holes, under the funda-
mental waveguide mode (TE11) approximation. We refer to
Ref. 19 for the expressions of the full multimode formalism and
their derivation. Within the CMM, Maxwell’s equations are
solved self-consistently using a convenient representation for
the EM fields. In both substrate and superstrate (see Fig. 1), the
fields are expanded into an infinite set of plane waves with both
p and s polarizations. Inside the holes the most natural basis is
a set of circular waveguide modes.30 The parallel components
of the fields are matched at the metal/dielectric interface using
surface impedance boundary conditions (SIBCs).31 Although
SIBCs neglect the tunneling of EM energy between the two
metal surfaces, this effect is not relevant for a metal thickness
larger than a few skin depths.

At the lateral walls of the holes we choose the PEC
approximation for the sake of analytical simplicity. We are
thus neglecting absorption losses at the walls. Nevertheless, we
upgrade the PEC approximation introducing two phenomeno-
logical corrections. First, the propagation constant of the PEC
fundamental mode is replaced by the one computed for a real
metal. This improves the comparison between CMM and both
experimental and FDTD results for both the spectral position
of the peaks and the dependence of optical properties on the
metal thickness. Second, enlarging the radius of the hole by
one skin depth simulates the real penetration of in field into
the metallic walls. This value for the enlargement provides the
best agreement with FDTD simulations for an infinite periodic
array of holes.21

After matching the fields at the interface we arrive to the
following system of tight binding-like equations:

[Gsh − �]E1(R) + Ghh(R)E2(R) − GνE
′
1(R) = I1,

[Gsh − �] E′
1(R) + Ghh(R)E′

2(R) − GνE
′
2(R) = 0,

where Ei is the modal amplitude of the electric field at the
input opening of the ith hole, i = 1,2, and E′

i is the same
quantity but at the output opening. Two additional equivalent
equations are needed for E2 and E′

2. Other relevant quantity is
the illumination provided by the normal-incident p-polarized

plane wave, with wave number kλ = 2π/λ and admittance
Y0 = √

ε1, onto the lowest energy mode

I ≡ I1 = I2 =
√

2Y0

1 + zsY0

kλ√
u2 − 1

, (A1)

where zs = ε
−1/2
m is the metal impedance. In order to obtain

a transmittance normalized by the flux impinging on the area
covered by the holes, the illumination term I already contains a
factor (πr2

hY0)−1/2. The constant u satisfies J ′
1(u) = 0,30 where

J (x) is the Bessel function of order 1, and the prime denotes
derivation with respect to its argument

The quantities � and Gν represent scattering mechanisms
already present in single holes. � is related to the bouncing
back and forth of the waveguide fields inside the holes. Its
value is

� = Yw

f +
w eikzh +f −

w e−ikzh

f +
w

2 eikzh −f −
w

2 e−ikzh
, (A2)

where kz is the propagation constant of the waveguide mode,
h is the metal thickness, f ±

w = 1 ± zsYw, Yw = kz/kε2 is the
admittance for the excited TE11 mode, and kε2 = √

ε2kλ. The
quantity

Gν = 2Yw

(
f +

w

2 eikzh −f −
w

2 e−ikzh
)−1

(A3)

reflects the coupling between EM fields at the two sides of a
given hole.19

The propagator Ghh(R) represents the coupling of the
two holes. It results from the projection of the Green’s
dyadic onto the waveguide modes in the holes. For the
TE11 mode, Ghh can be written as the following integral
in the plane of the reciprocal space parallel to the metal
surface:

Ghh(R) = G0

∫ ∞

0

[
Gp(q)

qz + z′
s

+ Gs(q)

q−1
z + z′

s

]
qdq, (A4)

where G0 = 4k2
ε r

2
h

√
ε/(u2 − 1) and the two terms in the

integrand represent the contribution of p- and s-polarized plane
waves in the infinite semispace in contact with the metal
surface. The denominators of these two terms stand for the
response of the metal plane. In particular, the p term has a pole
at the SPP wave vector. The numerators Gp and Gs account
for both the single hole response, which is a function of the
hole radius rh, and the hole-hole interaction, a function of R.
They read

Gp(q,rh,R) = J 2
1 (kεqrh)

k2
ε q

2r2
h

J ′
1(kεqR), (A5)

Gs(q,rh,R) = J
′2
1 (kεqrh)(

1 − k2
ε q

2r2
h

u2

)2

J1(kεqR)

kεqR
. (A6)

The integrand is written in adimensional units normalizing
the wave vector by kε = kλ

√
ε. Notice that the R-dependent

Bessel functions are obtained after the angular integration in
the k‖ = kεq(cos θ, sin θ ) plane, where θ defines the direction
of the component of wave vector parallel to the metal plane k‖.
The dielectric constant ε characterizes the dielectric material
in contact with the metal surface (see Fig. 1, ε = ε1 = 1 is
used in this paper).
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The self-interaction term Gsh is obtained after tacking
the limit R → 0 in Ghh(R), that is, using the identities
limx→0 J ′

1(x) = limx→0 J1(x)/x = 1/2.
Another relevant function is the effective impedance ZE ,

which is determined by the the three scattering mechanisms of
the single hole (Gsh, Gν , and �),

ZE = Esh

I
= Gsh − �

(Gsh − �)2 − G2
ν

. (A7)

We compute Ghh using the decomposition Ghh = Ghh
rad +

Ghh
SPP + Ghh

ev (9), where Ghh
rad(R) represents the contribution

of radiative modes, Ghh
SPP(R) designates the contribution of

the plasmon pole to evanescent modes, and Ghh
ev (R) denotes

the contribution of the remaining evanescent modes. The
contribution of Ghh

rad(R) can be written in terms of the
functions gint

rad(R) and 
Ghh
rad(R), which always take real

values,

Ghh
rad(R) = gint

rad(R) + z′∗
s 
Ghh

rad(R),

where

gint
rad(R) = G0

∫ 1

0
dq

(
qqzGp

|qz + z′
s |2

+ qqzGs

|1 + qzz′
s |2

)
(A8)

provides the interference term of the far field radiated from the
holes (2), while the term proportional to the metal impedance
z′
s reads


Ghh
rad(R) = G0

∫ 1

0
qdq

(
Gp

|qz + z′
s |2

+ q2
z Gs

|1 + qzz′
s |2

)
.

Both integrals are computed for free-propagating states (0 �
q � 1). The real part of z′

s is very small for typical noble
metals, making Re[Ghh

rad] ≈ gint
rad and Im[Ghh

rad] ≈ |zs |
Ghh
rad a

good approximation for Ghh
rad. The same relations hold for the

single hole propagator Gsh
rad.

For nonpropagating states (q > 1) the integrand in Ghh(R)
is prolonged into the complex q plane, see Ref. 19 for details.
The residue of the Cauchy integral gives the SPP wave confined
to the metal/air interface

Ghh
SPP = πiz′

sG0
J 2

1 (kSPPrh)

k2
SPPr

2
h

H
′(1)
1 (kSPPR), (A9)

where kSPP is the parallel component of the SPP wave vector

kSPP = kε

[
ε εm(λ)

εm(λ) + ε

]1/2

. (A10)

Equation (A10) defines kSPP for a real metal and rigorous
boundary condition at the metal/dielectric interface. In order to
improve the accuracy of our model we use Eq. (A10) instead of
the approximate SPP wave vector for SIBCs, kSIBC

SPP = kε[ε(1 −
ε−1

m )]1/2. Besides the coupling propagator Ghh
SPP, we define the

radiative propagator gSPP, which provides the total SPP field
radially scattered along all possible angular directions in the
metal plane (3). We have that gSPP = gsh

SPP + gint
SPP, where the

single-hole contribution read

gsh
SPP = π |z′

s |alG0

2

∣∣∣∣J1(kSPPrh)

kSPPrh

∣∣∣∣
2

, (A11)

and the interference term is equal to

gint
SPP(R) = gsh

SPP

[
2Re

[
J ′

1(kSPPR)
] + J ′

1(2iIm[kSPPR]) − 1
2

]
,

(A12)

while al = |kzp|Re[kSPP]/(Im[kzp]|kSPP|), and kzp = (k2
ε −

k2
SPP)1/2. Notice that gN

SPP = gint
SPP/g

sh
SPP (8) is independent

of rh.
For the sake of convenience, the integral for non-SPP

evanescent states is computed along the vertical contour
q = 1 + ih ≡ q+, h ∈ [0,∞), after the integral variable is
changed from q to h

Ghh
ev = G0

2

∫ ∞

0
q+dh

(
Gp

κz − iz′
s

− G∗
p

κ∗
z − iz′

s

− κzGs

1 + iz′
sκz

+ κ∗
z G∗

s

1 + iz′
sκ

∗
z

)
, (A13)

where κz = √
2ih − h2, and the Bessel function J1(x) in both

Gp (A5) and Gs (A6) is replaced by a Hankel function of the
first kind H

(1)
1 (x).

The propagator Ghh is further simplified when the metal
absorption is neglected, that is, for Im[εm] = Re[z′

s] = 0
and Im[z′

s] = −|z′
s |. We find for the radiative modes that

Re[Ghh
rad] = gint

rad, and Im[Ghh
rad] = |zs |
Ghh

rad, while for SPP
modes Re[GSPP(R)] = gSPP(R) = gsh

SPP[1 + 2J ′
1(kSPPR)]. For

the remaining evanescent modes we obtain that Ghh
ev is

a pure imaginary function. The same relations that hold
for Ghh are valid for Gsh. Therefore, only the radiative
and SPP terms contribute to the real part of in-plane
propagator,

Re[Gsh + Ghh(R)] = grad(R) + gSPP(R). (A14)

Under the lossless metal approximation, the total power
traversing the two holes simplifies to Phole = Re[GνEE′∗].19

We rewrite it in terms of E′ with help of the relation GνE =
[Gsh + Ghh(R) − �] E′, that is,

Phole = |E′|2Re[Gsh + Ghh(R)].

As � (A2) is purely imaginary for a lossless media, this term
does not contribute to Phole. Using (A14) we then have

Phole = Prad + PSPP. (A15)

This equality represents the conservation of the power flux
traversing the hole. These results can be easily generalized
to an arbitrary number of holes, waveguide modes, and
noncylindrical geometries. It is also worth to mention that
including absorption the computed powers differ in less than
5% from the lossless case, even for a large number of
defects.19–21

Finally, we recall that PEC is a particular case of a
lossless metal with z′

s = 0. In this case Ghh
rad = gint

rad, while
for nonpropagating states of a PEC only Ghh

ev survives because
Ghh

SPP = 0.8
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