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Effect of film thickness and dielectric environment on optical transmission
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2Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
(Received 11 November 2011; revised manuscript received 12 December 2011; published 12 January 2012)

We present a detailed theoretical study for the spectral position of transmission resonances appearing in isolated
subwavelength apertures in metallic films. We provide analytical expressions for the resonant wavelength as a
function of the film thickness and the dielectrics surrounding (and filling) the system that are valid for hole
shapes supporting large-cutoff wavelengths and for both isolated and periodically arranged holes. Our results
are quantitatively valid in the microwave and terahertz regimes, but they also have qualitative validity in the
optical regime. Our results show that for unfilled holes, in the limiting case when the hole is in a very thin
film (metal thickness much smaller than the wavelength), the transmission resonance is controlled by a length
scale related to the vanishing of the effective admittance of vacuum, as seen from the hole. On the contrary,
for metal thicknesses larger than half the wavelength, the transmission resonance is controlled by the cutoff of
the fundamental waveguide mode inside the hole. When thin films and high-index dielectrics are combined, the
spectral location of the maximum transmission can be strongly redshifted compared to the cutoff wavelength of
the apertures, and transmission intensity is substantially enhanced.
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I. INTRODUCTION

During the last decades, there has been an increasing
interest in transmission resonances through holes drilled in
metal films. Broadly speaking, we can identify two kinds
of resonances: those associated with extended surface modes
and those identified with modes localized in the vicinity of
individual holes.

Resonances based on extended modes appear in hole
arrays and lead to the phenomenon of extraordinary optical
transmission (EOT).1,2 For optically thick metal films (i.e.,
when δ < h < λ, where δ is the skin depth, h is the film
thickness, and λ is the incident wavelength) in a symmetric and
uniform dielectric environment (with dielectric constant ε),
these resonances emerge at λR ≈ √

εp, with p being the
periodicity of the array. The transmission process has been
described as a resonant interplay between surface-plasmon
polaritons (SPPs) at each side of the metal surface evanescently
coupled through the holes.3 Also EOT has been reported4,5

in optically thin metal films (h � δ), where transmission
may occur through both the holes and the metal layer. In
this case, the coupling of light with short-range surface
plasmons redshifts the EOT peak to wavelengths larger than
the periodicity of the array.

Localized resonances are essentially Fabry-Perot (FP) reso-
nances. For symmetric dielectric configurations (and vacuum
inside the apertures), the spectral location of the resonance
appearing at the largest wavelength is λR ≈ λc,6–16 where
λc is the cutoff wavelength of the empty apertures. They
have been attributed to the propagation of light through
the fundamental waveguide mode (the least decaying one)
inside the holes, and their appearance is related to the strong
reduction of the propagation constant of such a mode close
to λc. This implies that the field inside the holes does not
experience a strong decay, photons spend a long time in
the system, and transmission resonances can eventually take

place. Recent numerical studies and experiments of near-field
enhancement17–19 and enhanced transmission20–22 have shown
unexpected redshifts of the near field and transmission features
compared to λc. These works consider either isolated holes or
arrays of apertures combined with dielectric substrates and are
developed in the terahertz (THz) and optical regimes. In these
works, a qualitative and phenomenological description of the
unusual redshift of the localized resonance, based on the film
thickness and the dielectric substrates, is presented. However,
quantitative theory for the location of λR is lacking. The fact
that these transmission resonances appear in both hole arrays
and single holes indicates that the electromagnetic (EM) modes
responsible for the resonances are localized. Since they may
appear beyond the cutoff wavelength, throughout this paper
we will refer to this phenomenon as localized extraordinary
optical transmission (LEOT).

Here we present a mathematical description of the LEOT
phenomenon that provides analytical expressions of λR as a
function of the film thickness and the dielectric environment.
We consider both symmetric dielectric configurations (where
the dielectric constants of the cover, ε1, and the substrate,
ε3, are the same) and asymmetric ones (ε1 �= ε3) for any film
thickness. We also reveal that different combinations of the
dielectrics outside and inside the apertures (ε2) may blueshift
or redshift the transmission resonance compared to that of
a homogeneous system (i.e., ε1 = ε2 = ε3). We demonstrate
that the spectral position of the maximum transmittance is
controlled by a length scale that characterizes the coupling of
the hole with radiation (λ0).

Our theoretical approach is valid for any hole shape,
provided it fulfils the condition

√
ε2λc >

√
A, where A is

the “hole area.” Examples of these “large-cutoff holes” are
rectangular and annular holes with a large aspect ratio or
apertures of any shape filled23 with a sufficiently large ε2.
In particular, to illustrate our findings we consider both
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rectangular and annular holes, and we discuss the differences
with empty circular apertures (which do not support large-
cutoff wavelengths). By comparing with finite-difference time
domain (FDTD) numerical results, we show that our results
are virtually exact in the THz and microwave regimes and
qualitatively valid in the optical regime.

This paper is organized as follows: In Sec. II we describe the
theoretical method used, the coupled-mode method (CMM). In
Sec. III we study the location of maximum transmission of an
isolated aperture in a symmetric dielectric configuration, and
the differences between empty circular apertures and annular
holes are also discussed. Asymmetric systems are considered
in Sec. IV, and the extension of our results to hole arrays and
the optical regime appears in Sec. V. Finally, conclusions are
presented in Sec. VI.

II. COUPLED-MODE METHOD

To get physical insight into the origin of the strong redshift
of λR found when opaque thin films (δ << h << λ) and high-
index dielectrics are combined, here we summarize the main
ingredients and expressions of the theoretical formalism used,
the coupled-mode method. We refer to Refs. 24 and 2 for
details and derivations.

We take the metal as a perfect electrical conductor (PEC)
(i.e., the dielectric constant of the metal is |εm| = ∞), which
is a good approximation for metals in the THz regime, and
illumination at normal incidence (the electric field points
parallel to the x direction; see schematics in Fig. 1). Within
the CMM, space is divided into three different regions: the
illuminated region (I), the holey-metal region (II), and the
transmission region (III). Electromagnetic fields are expanded
into the proper eigenmodes in each one: plane waves in regions
I and III and waveguide modes inside the holes (region II).
More precisely, plane waves are characterized by the in-plane
component of the wave vector k = (kx,ky) (the z component of
the wave vector satisfies kz = √

ε1,3 g2 − k2, with g = 2π/λ)
and the polarization, σ = p or s.

Within the PEC approximation, the EM modes inside
the apertures coincide with the waveguide modes of those
apertures, which are known analytically for some geometries
(see Refs. 25 and 26 for further details). In the case of
subwavelength holes, considering only the least decaying
mode inside the apertures provides a good approximation of
transmission properties.2,26,27

Imposing the appropriate matching conditions at the inter-
faces (I-II and II-III), we obtain a coupled system of equations

0I

PEC
1

2

3

h

I

II

III

x

z

FIG. 1. (Color online) Diagram of the systems under study with
an arbitrary hole aperture perforated on a metal film of thickness h.
The structure is illuminated by a p-polarized plane wave at normal
incidence. We consider semi-infinite dielectrics at illumination and
transmission regions, with dielectric constants ε1 and ε3, respectively,
and a dielectric constant ε2 filling the holes.

for the modal amplitudes of the electric field at the entrance
(E) and exit (E′) sides of the cavities:

(GI − �)E − GνE
′ = I0,

(1)
(GIII − �)E′ − GνE = 0,

whose solution is given by

E = (GIII − �)

(G+ − �)2 − G2
ν − (G−)2

I0,

(2)

E
′ = Gν

(G+ − �)2 − G2
ν − (G−)2

I0.

In the above expressions, I0 accounts for the external illumi-
nation impinging directly on the holes, and it measures the
overlap between the incident plane wave and the fundamental
mode inside the hole, � represents the light that comes back to
the aperture after bouncing back and forth inside the cavities,
and the term Gν is linked to the coupling of EM fields at
the two sides of the film through the holes. It is important to
remark that both � and Gν depend on h and the propagation
constant inside the apertures β as

� = i
β

g

eiβh + e−iβh

eiβh − e−iβh
,

(3)

Gν = 2i
β

g

eiβh

e2iβh − 1
.

Also, in Eqs. (1) and (2), Green’s functions GI (λ; ε1) and
GIII (λ; ε3) represent effective admittances (in regions I and III,
respectively) that account for the EM coupling of the aperture
and the external radiation as seen by the holes, and we have
defined

G+ = [GI (λ; ε1) + GIII (λ; ε3)]/2,
(4)

G− = [GI (λ; ε1) − GIII (λ; ε3)]/2.

The general expression for hole arrays can be written as
GI = i

∑
kσ Y I

kσ |Skσ |2, where Y I
ks = kz/g and Y I

kp = ε1 g/kz

(and the same for GIII with ε3). The overlaps are defined as
an integral over the hole shape

Skσ =
∫

dr|| �Vσ · �E||(r||) · ei�k||·�r|| , (5)

with the bivectors �Vp = (kx,ky)/k||, �Vs = (−ky,kx)/k|| and
k2
|| = k2

x + k2
y . In the expressions of GI,III for hole arrays, k

runs over the reciprocal lattice vectors, whereas for isolated
holes the sum over k must be substituted by an integral

∑
k →

1/(2π )2
∫

dk.
Note that the imaginary part of the Green’s function Gi

controls the coupling with radiative modes, while the real part
Gr is related to the coupling of the aperture with evanescent
modes.

An important property of GI,III , which will be used later
on, is how it transforms under changes of the dielectric
constant:27

GI (
√

ε1 λ; ε1) = √
ε1G

I (λ; 1) (6)

and the same for GIII with ε3.
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Finally, transmission can be written in terms of the modal
amplitudes of the electric field as12,27,28

T = 1√
ε1

Im(GνE
∗E

′
) = 1√

ε1
GIII

i |E ′ |2. (7)

III. SYMMETRIC CONFIGURATIONS, ε1 = ε3

Since the LEOT phenomenon is found in both hole arrays
and single holes, for simplicity we will concentrate on the
study of isolated apertures, where the lattice resonances are
not present.

Let us first investigate the spectral location of maximum
transmission in symmetric configurations (ε1 = ε3 = ε). In
this case, GI (λ; ε1) = GIII (λ; ε3) = G(λ; ε) and G− = 0, so
after factoring E and E′ in Eq. (2) and substituting their
expression in Eq. (7), transmission becomes

T = |I0|2√
ε

Gi |Gν |2
[|G − �|2 − |Gν |2]2 + 4G2

i |Gν |2
. (8)

As we said in the Introduction, transmission maxima
associated with FP modes appear when the EM energy at
the entrance and exit sides of the apertures are equal,6–16

i.e., |E| = |E′|, which occurs for |G − �| = |Gν |. If we
now replace the condition |G − �| = |Gν | in Eq. (8), we
retrieve the known expression for the maximum transmittance
at maximum:12

TR = |I0|2
4
√

ε

1

Gi

. (9)

Interestingly, Gi controls the intensity of transmission reso-
nances, whereas the condition for the location of the resonance
is governed by Gr , and it can be written as12

2Gr = |G|2 − Y 2
T E

YT E

tan(βh), (10)

with YT E = β/g.
For Gr 
 |G|, Eq. (10) has a solution for tan(βh) ≈ 0.

Previous works12 analyzed the specific case h � λ and ε = 1,
and it was found that resonances occurred around β = 0, i.e.,
close to λc. These localized resonances are FP resonances
modified by the presence of openings, so βh ≈ 0 corresponds
to the zeroth-order FP.

Next, we will extend this previous work and will analyze the
whole dependance with the metal thickness and the dielectric
environment.

Although Eq. (2) can be solved exactly, in order to
get deeper physical insight it is convenient to define the
following change of variables, which allows us to describe
the transmission process into two well-defined transmission
channels:

ES = 1√
2

(E − E
′
),

(11)

EA = 1√
2

(E + E
′
).

Then, Eq. (1) can be written as an equivalent system of un-
coupled equations in terms of a symmetric (ES) transmission
channel, where the electric fields at the entrance and at the exit

of the apertures point in the same direction (E = −E
′
),29 and

an antisymmetric (EA) channel, where the electric fields point
in opposite directions (E = E

′
):

(G + YS)ES = Ĩ ,
(12)

(G + YA)EA = Ĩ .

Here YS ≡ −(� − Gν) and YA ≡ −(� + Gν) are effective
admittances, and Ĩ = I/

√
2.

Within the new formulation, the resonant condition (βh ≈
0) provides YA → ∞. This means that, except in “extraordi-
nary” cases (i.e., for PEC, close to the Rayleigh wavelength,
when G → ∞), EA is not excited. Therefore, in the limit
of very thin films (h → 0), only the symmetric transmis-
sion channel ES remains, whereas the asymmetric channel
EA → 0.

This is easy to understand because, since the asymmetric
channel is characterized by electric fields at the entrance and
exit sides of the apertures pointing in opposite directions,
in thin films, there is not enough optical path for the field
to flip the direction. As a result, for thin-metal films, only
the symmetric channel is excited, and transmission can be
written as

Tapprox = |I0|2
4
√

ε

Gi

|G + YS |2 , (13)

with YS = β2h

2g
.

Resonances in transmission will be given by minima in the
denominator of Eq. (13). Because Gr >> Gi and Im(YS) = 0
around the cutoff wavelength, zeros in the denominator occur
at Re(G + YS) = 0.

The propagation constant is β = √
ε2 g2 − g2

c . Replacing
this value in YS and using Eq. (6), we obtain a transcendental
equation for the resonant wavelength [λ(a)

R = 2π/g
(a)
R , where

the upper index (a) stands for approximation] that can be
solved graphically,

−Gr

(
λ

(a)
R ; ε

) = 2πh

λ2
c

(√
ε2λc − λ

(a)
R

)
. (14)

This is one of the most important results we present here,
and it describes the location of transmission resonances for
any film thickness in a symmetric configuration and for any
hole shape supporting large-cutoff wavelengths. Note that in
the above expression, λc is the cutoff wavelength of an empty
hole (ε2 = 1), and we have considered that, close to the cutoff,
β ≈ 2gc(

√
ε2gR − gc).

An essential ingredient entering the condition for res-
onances in Eq. (14) appears on the left-hand side of the
equation, i.e., Gr . This function can take either negative or
positive values, and the sign and values of Gr depend on
the relative contribution of p-polarized (which is negative
and dominates at λ → 0) and s-polarized (which is positive
and dominates at λ → ∞) waves. Therefore, there exists a
wavelength where the two contributions cancel each other,
and we define this wavelength as Gr (λ0; ε = 1) = 0. If we
add a dielectric constant different from unity in the cover
and substrate, using Eq. (6), we find that the real part of the
effective admittance cancels at Gr (

√
ελ0; ε) = 0. Note that

λ0(ε) = √
ελ0(ε = 1).
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FIG. 2. (Color online) (top) Transmission spectra (normalized
to πr2

out) of an isolated annular hole (rin = 90 μm, rout = 100 μm)
drilled in a PEC of different film thicknesses h (see labels) in a
symmetric configuration with ε = 9 and ε2 = 1. (bottom) For the
same system as that in the top panel, the dashed line depicts −Gr as a
function of the incident wavelength. Straight lines correspond to the
right-hand side of Eq. (14) for each h value. Vertical lines depict λ

(a)
R

in each case.

The right-hand side of Eq. (14) represents straight lines
whose slopes are given by the film thickness h. According to
these equations, the intersection of these straight lines with
−Gr gives the position of the resonant wavelengths λ

(a)
R for

each h value.
As an illustration of this graphical solution, in Fig. 2 we

consider a system with a single annular hole drilled in a PEC.
Since we are illuminating the system at normal incidence,
only the fundamental TE11 mode is considered inside the
hole (annular holes support a TEM mode deprived of cutoff
that is not excited at normal incidence30–32). The geometrical
parameters are the following: inner radius rin = 90 μm, outer
radius rout = 100 μm [which provides a cutoff wavelength31,32

λc ≈ π (rin + rout) = 596 μm], and we have taken ε = 9,
ε2 = 1. The bottom panel in Fig. 2 shows the graphical solution
of Eq. (14) for different h values, and the top panel shows the
corresponding transmission spectra normalized to πr2

out. The
top panel shows that in the regime h � λ/2 (in this case,
h = 250 μm) the resonances associated with the symmetric
channel ES and with the asymmetric one EA emerge. In the

graphical solution of Eq. (14) we observe that when the slope
of the straight line tends to infinity (h → ∞), the intersection
with −Gr occurs at λ

(a)
R = √

ε2 λc.
In contrast, in the limit of very thin films (h << λ), only

ES can be excited, and for each h value, there is just one
transmission peak strongly redshifted compared to

√
ε2 λc. In

this limit, the slope of the straight line tends to zero (h → 0)
and Gr (λ(a)

R ) = 0, then having λ
(a)
R = √

ε λ0.
Results in Fig. 2 show that Eq. (14) accurately provides

the resonant wavelength for any film thickness in a symmetric
dielectric environment, and the analytical expressions in the
limit of thin and thick films are

λ
(a)
R = √

ε λ0(h << λ),
(15)

λ
(a)
R = √

ε2 λc(h � λ/2).

Notice that Eqs. (15) reflect what could be intuitively expected:
for thick films the resonance is governed by the properties of
the waveguide (represented by λc), while for very thin films
it is governed by the coupling of the hole to radiative regions
(characterized by λ0).

According to Eqs. (15), the resonant wavelength is larger
than the cutoff wavelength for ε > ε2 (or smaller for ε < ε2).
This result will be shown in Sec. V.

The limit λR ≈ √
ελc for thin films has been advanced

in previous works when studying, both experimentally and
theoretically, systems containing empty circular, square,
and rectangular holes17,20,21 in asymmetric configurations.
However, when rectangular holes combined with high-index
dielectric substrates are considered,21 this prediction is not
accurate enough, as has also been stated in Ref. 21. The proper
description for λR in asymmetric systems will be presented in
Sec. IV.

To further illustrate the validity of both Eqs. (14) and (15),
Fig. 3(a) shows the resonant wavelength of the symmetric
mode obtained through the analytical approximation λ

(a)
R and

the exact position of the maximum transmission λR calculated
with the CMM, as a function of h, for an isolated rectangular
hole (ax = 10 μm, ay = 350 μm), with ε = 12 and ε2 = 1.
The agreement of the two curves along with the limits
predicted by Eqs. (15) for thin and thick films confirms our
analytical results. The corresponding transmission intensities
(normalized to the hole area) at λR appear in Fig. 3(b).

The redshift observed in the LEOT phenomenon strongly
influences transmission intensities at λR . It is not easy to
find a more compact and accurate expression for TR that is
valid for any hole shape than that given by Eq. (9) since the
illumination term depends on the overlapping between the
incident plane wave and the fundamental mode inside the hole
and therefore on the hole shape. However, it is possible to
find a general trend to know if the maximum intensity will
increase or decrease with ε and h. If we take into account (i)
the Green’s-function property given by Eq. (6), (ii) Gi(λ; 1) ∝
A/λ2 for subwavelength holes, and (iii) |I0(ε)| ∝ √

ε, we find

TR(λR; ε,ε2) ∝ λ2
R

ε
. (16)

Interestingly, for thin films TR ∝ λ2
c , while for thick films

TR ∝ (ε2/ε)λ2
c . This means that, for a given hole shape when

the metal film is thin (h << λ), the peak location depends
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FIG. 3. (Color online) (a) Spectral wavelength of the transmission
resonance as a function of the film thickness of an isolated rectangular
hole (ax = 10 μm, ay = 350 μm) with ε = 12 and ε2 = 1. Stars
depict λR , and circles depict λ

(a)
R obtained through the analytical

approximation given by Eq. (14). (b) Corresponding transmission
intensities (normalized to the hole area) at λR .

on the dielectric environment, but its intensity TR does not.
In contrast, for the same hole shape but when h � λ/2, the
resonant wavelength does not depend on ε, but the intensity
will be modulated by the factor ε2/ε. Only for ε2 > ε do holes
in thick films transmit better than in thin ones. In Fig. 3(b),
ε2 < ε, so in this case holey thin films transmit better than
thick ones.

Furthermore, taking advantage of the property given by
Eq. (6), it is easy to demonstrate that, in the limit of thin films,

T (λ; ε2,1) = T (
√

ελ; ε2,ε) (h → 0). (17)

So far, the analysis has dealt with structures that fulfill
the condition

√
ε2 λc >

√
A. Let us now discuss the validity

of the previous description for systems that do not fulfill
that condition, such as empty circles. As already mentioned,
resonant behavior in the subwavelength regime is related to
small values of Gi , where photons stay for a long time in the
system before coupling to radiative modes. This behavior is
found in rectangles or annular holes. In contrast, for empty
square or circular holes of the same area, radiation losses
are larger, which also provides larger Gi values, making
the condition Gr >> Gi less valid. Therefore, Gi affects
the spectral wavelength where the maximum appears, its
intensity, and also its spectral width. Concerning λR and the
corresponding intensities TR , Fig. 4 shows the transition from
circles to annular holes of high aspect ratio. The geometrical
parameters are chosen following the experimental ones for
circular holes in Ref. 18 (see caption). The top panel shows
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FIG. 4. (Color online) (top) Spectral wavelength of the transmis-
sion resonance as a function of r , where r accounts for either the
circular radius or rin in an annular hole with rout = 200 μm. Dashed
lines represent λc in each case (see labels). The rest of parameters are
ε = 11, ε2 = 1, and h = 0.2 μm. (bottom) Corresponding intensities
(normalized to πr2) at λR .

λR , λ(a)
R , and λc as a function of r (which accounts for either the

circular radius or rin in an annular hole with rout = 200 μm).
Although in all cases there is a redshift of λR compared to λc,
our theoretical prediction is only valid for annular holes. Note
also that our approximation applies for very small apertures,
which fulfill the condition12 Gi ≈ 0. The bottom panel shows
the corresponding intensities at λR , where we can observe that
the larger λR is, the larger TR normalized to the hole area is.

IV. ASYMMETRIC CONFIGURATIONS, ε1 �= ε3

Next, we will consider asymmetric configurations, where
ε1 �= ε3. We will follow the same reasoning as in Sec. III.

Within this new dielectric configuration, we can solve again
Eq. (1) in order to find analytical expressions for λR . In all
cases analyzed, we have found that G− << G+ even when the
dielectric constants of each region are very dissimilar. After
some algebra, we obtain an analogous expression to that given
by Eq. (8) for the transmission of light:

T ≈ |I0|2√
ε1

GIII
i |Gν |2

[|G+ − �|2 − |Gν |2]2 + 4(G+
i )2|Gν |2

. (18)
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FIG. 5. (Color online) Same calculations as those in Fig. 3 with
ε1 = ε2 = 1 and ε3 = 12, considering Eq. (20).

In the limit of thin films, this expression simplifies to

Tapprox ≈ |I0|2
4
√

ε1

GIII
i

|G+ + YS |2 , (19)

and the location of the resonant wavelength is given by

−G+
r

(
λ

(a)
R ; ε1; ε3

) = 2πh

λ2
c

(√
ε2λc − λ

(a)
R .

)
(20)

The last equation can also be solved graphically to get the peak
location as a function of the film thickness. Figure 5 shows
the same calculations as those in Fig. 3, but with ε1 = ε2 = 1
and ε3 = 12. Again, the resonant wavelength obtained through
Eq. (20) and the exact result provided by the CMM agree very
well.

Nevertheless, it is interesting to get analytical expressions
for λR in the limits of thin and thick films, as we got for
symmetric configurations. Clearly, for thick enough films, the
resonant wavelength is also given by λR = √

ε2λc because
when h → ∞, the intersection of G+ and the straight line of
infinite slope occurs at

√
ε2λc.

For thin films, the resonant wavelength is given by the
condition G+

r (λ(a)
R ; ε1; ε3) = 0. The derivation presented here

justifies mathematically the numerical results reported in
Ref. 21. Figure 6 shows λR , together with λ

(a)
R [defined through

G+
r (λ(a)

R ) = 0] in a rectangular hole, with ε1 = ε2 = 1, drilled
in a thin film of h = 1 μm, as a function of the dielectric
constant of the substrate ε3. Clearly, λ(a)

R marks the wavelength
for maximum transmission.

However, getting an analytical expression of λ
(a)
R is not that

easy. The main problem arises because G+
r does not transform

FIG. 6. (Color online) Position of transmission maximum as a
function of ε3 in an isolated rectangular hole (ax = 10 μm, ay = 350
μm) with h = 1 μm and ε1 = ε2 = 1. Triangles correspond to λR ,
circles correspond to λ

(a)
R obtained through G+

r (λ(a)
R ) = 0, squares

depict λ
(1)
R obtained through Eq. (23), stars correspond to λ

(2)
R given

by Eq. (24), and diamonds depict λ
(∗)
R obtained through Eq. (25).

with ε as Gr does in symmetric configurations, and instead, it
transforms as follows:

G+(λ; ε1; ε3)

= 1

2

[√
ε1 GI

(
λ√
ε1

; 1

)
+ √

ε3 GIII

(
λ√
ε3

; 1

)]
. (21)

In general, when G+(λ(a)
R ; ε1; ε3) = 0, neither GI nor GIII

are zero, so in order to solve Eq. (21) we need the whole
dependance of GI and GIII with λ.

Fortunately, from the above property we can still obtain
approximate explicit expressions for λ

(a)
R . To do that, we

first approximate linearly both GI and GIII around λ0 as
Gr (λ; 1) ≈ A(λ − λ0); that is,

G+(λ; ε1; ε3)

= A

2

[√
ε1

(
λ√
ε1

− λ0

)
+ √

ε3

(
λ√
ε3

− λ0

)]
. (22)

Applying G+(λ(a)
R ; ε1; ε3) = 0 provides a simple analytical

expression for the spectral location of transmission maximum
as a function of ε1, ε3, and λ0:

λ
(1)
R = (

√
ε1 + √

ε3)

2
λ0 (h << λ). (23)

Interestingly, λ
(1)
R does not depend on the slope of Gr .

Equation (23) is in agreement with the values reported in
frequency-selective surfaces (FSSs),22,33,34 which are designed
for operating close to the cutoff wavelength taking strictly h =
0. However, in Fig. 6 we observe that the linear approximation
given by Eq. (23) is valid for ε3 � 2 but strongly deviates from
the exact result at larger values of ε3.

We can improve this linear approximation and get some
information from fitting both GI and GIII to a quadratic
function close to λ0 with the form Gr (λ; 1) ≈ A(λ − λ0) +
B(λ − λ0)2. This fitting results in a quadratic equation with
the following solution:

λ
(2)
R =

−p + 2Cpλ0 +
√

(p − 2Cpλ0)2 − 4Cn̄2p
(
Cλ2

0 − λ0
)

2Cn̄
,

(24)
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where n̄ ≡ (
√

ε1 + √
ε3)/2, p ≡ √

ε1ε3, and C ≡ B/A =
Gr

′′(λ0;1)
2Gr

′(λ0;1) .

As shown in Fig. 6, λ
(2)
R improves the prediction for the

spectral position of the maximum transmittance for ε3 � 6.
Notice, however, that the range of validity of Eq. (24) is
restricted by the requirement that λR must be real, i.e., for
ε3 � 8. A simpler expression for λR , based on the parabolic
dependance of Gr (λ; 1), can be obtained by Taylor expanding
λ

(2)
R for C → 0. We get

λ
(∗)
R = (

√
ε1 + √

ε3)

2
λ0

[
1 − (

√
ε1 − √

ε3)2

4
√

ε1ε3
(Cλ0)

]
. (25)

Note that, since C < 0, Eq. (25) predicts larger shifts than
Eq. (23). Additionally, C does not depend on either ε1 or ε3

but only on the geometry of the hole.
λ

(∗)
R provides a good approximation even for very large

values of ε3 (see Fig. 6). This is particularly surprising, as
λ

(∗)
R is derived from an expression that is not valid for ε3 � 8.

So, although the expression for λ
(∗)
R is mathematically found

for moderate ε3, for larger values of ε3 it must be considered
a functional form that happens to fit the numerical results
(although without fitting parameters as λ0 and C can be
calculated numerically or extracted from experiments with
two different substrates).

To summarize, the whole dependance with h, ε1, ε2, and ε3

for transmission resonances can be obtained through Eq. (20),
whereas Eq. (25) provides the peak position in the limit of thin
films.

Regarding intensity, we find that the general expression of
transmission at maximum is

TR(λR; ε1,ε2,ε3) = |Io(ε1)|2
4
√

ε1

GIII
i (λR; ε1)

[G+
i (λR; ε1,ε3)]2

, (26)

and following the same steps as those explained for symmetric
configurations, we find

TR(λR; ε1,ε2,ε3) ∝ ε
1/2
1 ε

3/2
3(

ε
3/2
1 + ε

3/2
3

)2 λ2
R. (27)

Several regimes can be found for different combinations of
substrates and covers in Eq. (27). For instance, in the case of
thin films, if ε1 is fixed, this equation predicts a reduction
of transmission as the dielectric constant of the substrate
increases.

V. EXTENSION TO HOLE ARRAYS AND OPTICAL
REGIME

In this section we will show how the previous results found
for isolated holes can also be applied to hole arrays, and we
will also reveal their semiquantitative validity in the optical
regime.

Concerning hole arrays in the THz regime, this theory will
be accurate provided that the localized resonance does not
interfere with the excitation of surface modes, i.e., λR >>√

εp. When Bragg resonances emerge close to localized
resonances, a hybridization of the two resonances occurs, as
has been considered in Refs. 11 and 15.
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FIG. 7. (Color online) (top) Transmission of light using Eqs. (7)
and (13) (see labels) through a hole array (p = 400 μm) with
rectangles (ax = 10 μm, ay = 350 μm) drilled in a thin PEC screen
of h = 25 μm and filled with ε2 = 4. Symmetric configurations are
considered (see labels). (bottom) For the same system as in the top
panel, the graphical solution of Eq. (14).

In particular, in Fig. 7 we consider an array (p = 400 μm) of
rectangular holes (ax = 10 μm, ay = 350 μm) in a symmetric
configuration, drilled in a PEC film of thickness h = 25
μm. In this case we take ε2 = 4, so the cutoff wavelength
is 2ay

√
ε2 = 1400 μm. The bottom panel of Fig. 7 shows

the graphical solution of Eq. (14) for these hole arrays
with ε = 2,4,6. Note the presence of divergencies in Gr ,
which account for the excitation of surface modes, and that
λR  √

εp.
The top panel in Fig. 7 shows three different pairs of

transmission spectra using either Eq. (7) or Eq. (13). The
excellent agreement between pairs of curves confirms the
validity of the approximations done to obtain Eq. (13).

Moreover, here it can be seen that the resonant wavelength
can be blueshifted or redshifted a factor

√
ε/ε2 compared

to
√

ε2λc as a result of the combination of ε2 and ε. For ε < ε2,
λR < 1400 μm, and for ε > ε2, λR > 1400 μm.

Regarding the transference of the previous description in
the THz regime to the optical one, we remark that taking into
account the finite dielectric constant of metals in the optical
regime makes the analytical study with the CMM too complex
to find compact expressions for λR .
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FIG. 8. (Color online) Calculations performed with the FDTD
method for the position of transmission maximum as a function of
the film thickness in an isolated rectangular hole (ax = 50 nm and
ay = 400 nm) drilled in a gold film with ε1 = ε3 = 2.25 and ε2 = 1.
In the inset the vertical blue line depicts h = 2δ ∼ 60 nm, and the
horizontal grey line corresponds to λc.

Therefore, as an example and using the FDTD35 method,
Fig. 8 shows the position of the maximum transmission of a
single rectangular hole (ax = 50 nm, ay = 400 nm) drilled in
a real metal film (in this case, a gold film) as a function of the
film thickness. The dielectric constant of the metal is taken
from experimental values tabulated in Refs. 36 and 37 and is
conveniently fitted into a Drude-Lorentz model.38,39

We observe that, as in the case of PECs, for thick
enough films, transmission resonances appear close to the
cutoff wavelength, whereas for thin films the peak posi-
tion appears strongly redshifted compared to λc. Similar
results have been found in the optical regime also with
rectangles in gold21 and annular hole arrays in silver,22

and this phenomenon is also expected to be found in
triangles with acute angles.40 Interestingly, in Fig. 8, once
h ≈ 2 skin depths (∼60 nm), the resonant wavelength
eventually blueshifts as a result of the typical decaying
behavior due to the direct transmission through the metal
films.5,41

VI. CONCLUSIONS

We have developed a theory for transmission resonances
aided by localized modes in the THz regime for both
hole arrays and single holes and for any hole shape of a
large-cutoff wavelength. We have shown that the maximum
transmission presents large shifts as a function of both the
metal thickness and the dielectric constants of the cover and the
substrate. This shift becomes also very clear when observing
transmission intensities and near-field amplitudes, which are
strongly enhanced regarding the free-standing system. We
provide analytical expressions for the peak position, which
is controlled by the effective admittance of the cover and
the substrate as seen by the holes, GI and GIII . We have
demonstrated that there are two different length scales related
to thick and thin films that control the spectral wavelength of
maximum transmission, λc and λ0, respectively. The first one
represents the properties of the waveguides, and it governs
transmission resonances in thick films, while the second one
characterizes the coupling of the hole to radiative regions, and
it rules in thin films.

For symmetric systems (ε1 = ε3 = ε), we find that reso-
nances in transmission approximately occur at

λ
(a)
R = √

ε λ0 (h 
 λ),

λ
(a)
R = √

ε2 λc (h � λ/2),

and for asymmetric systems (ε1 �= ε3) they occur at

λ
(a)
R = (

√
ε1 + √

ε3)

2
λ0

[
1 − (

√
ε1 − √

ε3)2

4
√

ε1ε3
(Cλ0)

]
(h 
 λ),

λ
(a)
R = √

ε2 λc (h � λ/2),

with C being a fitting constant that depends on the hole shape.
Transmission intensities have been also discussed in both
symmetric and asymmetric configurations. Finally, we have
shown that our predictions are quantitatively valid for hole
arrays (provided λR >>

√
εp) and qualitatively valid in the

optical regime.
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