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Abstract The transmission properties of quasiperiodic arrays of subwavelength slits

arranged forming a Fibonacci sequence is analyzed. By developing a theoretical
framework in reciprocal space, the close link between the formation of surface electro-

magnetic (EM) modes, responsible for the transmission peaks, with resonant features
appearing in the structure factor, is shown. This finding demonstrates that long-range

order is the key ingredient to observe enhanced transmission through both periodic
and quasiperiodic arrays of subwavelength slits.

Keywords extraordinary transmission, surface EM mode, quasiperiodicity

1. Introduction

Since the discovery of the phenomenon of extraordinary optical transmission (EOT)
through periodic two-dimensional (2D) arrays of holes by Ebbesen and co-workers
(1998), many theoretical and experimental works have been devoted to the study of trans-
mission resonances in metallic films drilled with periodic arrangements of subwavelength
apertures. Apart from 2D hole arrays (Popov et al., 2000; Martín-Moreno et al, 2001;
Sarrazin et al., 2003; Barnes et al., 2004; Klein Koerkamp et al., 2004; Bravo-Abad et al.,
2006), resonant transmission has been reported and analyzed in several other structures,
such as single apertures (Takakura, 2001; Bravo-Abad et al., 2004; Schouten et al., 2003;
Lalanne et al., 2005; Gordon, 2006, 2007; Du & Luo, 2006), single apertures surrounded
by corrugations (Lezec et al., 2002; Hibbins et al., 2002; Martín-Moreno et al., 2003;
García-Vidal et al., 2003; Lockyear et al., 2004), one-dimensional (1D) arrays of slits
(Schröter & Heitmann, 1998; Porto et al., 1999; Treacy, 1999; Went et al., 2000; Yang
& Sambles, 2002; García-Vidal & Martín-Moreno, 2002; Skigin & Depine, 2005), and
1D chains of holes (Bravo-Abad et al., 2004).
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Transmission through a Fibonacci Array of Slits 187

Very recently, EOT in quasiperiodic hole arrays has been reported in several exper-
imental (Sun et al., 2006; Przybilla et al., 2006; Papasimakis et al., 2006; Matsui et al.,
2007) and theoretical (Bravo-Abad et al., 2007) studies. These works have demonstrated
that the presence of long-range order in 2D hole arrays is the key ingredient to observe
EOT phenomenon. However, to our knowledge, the appearance of transmission reso-
nances in the 1D analogous structure, a quasiperiodic array of subwavelength slits, has
not yet been explored.

In this work, we study the transmission properties of 1D quasiperiodic arrays of
subwavelength slits. A complete theoretical analysis of the appearance of the EOT
phenomenon is done by comparing transmission resonances in Fibonacci arrays of slits
with those present in periodic arrangements. The picture that emerges from our theoretical
study is that the same physical origin of the EOT phenomenon is common to both
structures. Apart from the Fabry-Perot resonances, transmittance can be enhanced by the
excitation of surface EM modes decorating the metallic interfaces. In our study, we have
focused on the analysis of this last transmission mechanism, whose efficiency depends
strongly on the degree of order present in the structure.

The article is organized as follows: in Section 2, we briefly describe the theoretical
real-space formalism. This approach is applied in Section 3 to the study of the trans-
mission properties of Fibonacci arrays of slits, where comparison with periodic arrays is
discussed. In Section 4, we introduce the reciprocal space formalism that is more suitable
for analyzing the transmissivity of structures in the absence of a well-defined regularity.
Finally, in Section 5, the general conclusions of the work are summarized.

2. Real-Space Formalism

Our theoretical formalism is based on the modal expansion of the EM fields (Martín-
Moreno et al., 2003; García-Vidal et al., 2003) in the different regions of the structure
schematically depicted in Figure 1, a perfect conducting freestanding film of thickness
h perforated by N slits. We will consider identical slits of width a which, in principle,
can be disposed in any arrangement with x˛ being the position of slit ˛ (with ˛ D
1; 2; : : : ; N ). For light impinging at normal incidence on the film, this system presents
translational symmetry along the direction parallel to the slits, and both light polarizations

Figure 1. Schematic cross section of the structure analyzed, a perfect conducting film of thickness
h drilled with an array of slits of width a. Slits are disposed following a Fibonacci sequence
generated from two basic distances d1 and d2 (see text for definition).
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188 A. I. Fernández-Domínguez et al.

(s and p) are decoupled. Taking advantage of this fact, we can restrict our analysis to
the case of p-polarized illumination (magnetic field parallel to symmetry axis), which
gives rise to transmission resonances in periodically perforated, freestanding films.

If the structure is illuminated by a plane wave of wavenumber k0 (k0 D !=c D 2�=�)
from the top (z D 0), the relevant EM fields in region I (see Figure 1) can be expanded
as a continuum of refraction modes of the form:

E I
x.x; z/ D eik0z C

Z 1

�1

dk r.k/eikxe�ikzz ;

H I
y .x; z/ D eik0z C

Z 1

�1

dk Y.k/r.k/eikx e�ikzz ; (1)

where kz D
q

k2
0 � k2 gives the normal component of the wavevector, Y.k/ D k0=kz ,

the mode admittance, and r.k/ is the reflection coefficient for the mode with parallel
wave vector k.

The use of perfect conducting boundary conditions yields nonzero EM fields in
region II (0 � z < h) only inside the slits. Since we are considering the case in which
the apertures’ size is much smaller than the wavelength of the incoming wave (� � a),
EM fields inside each slit can be approximated by only considering its fundamental
propagating waveguide mode:

E II
x .x; z/ D

X

˛

.A˛eik0z C B˛e�ik0z/�˛.x/;

H II
y .x; z/ D

X

˛

.A˛eik0z � B˛e�ik0z/�˛.x/; (2)

where �˛.x/ D �.a=2�jx�x˛j/=
p

a is the normalized wave function of the fundamental
waveguide mode at slit ˛, and �.x/ is the Heaviside function.

In region III (z � h), the transmitted EM fields can be also written in terms of
diffraction modes:

E III
x .x; z/ D

Z 1

�1

dk t.k/eikx eikzz ;

H III
y .x; z/ D

Z 1

�1

dk Y.k/t.k/eikx eikzz ; (3)

where t.k/ is the transmission coefficient associated with parallel wavevector compo-
nent k.

The modal expansion amplitudes in each region fr.k/; A˛; B˛; t.k/g are calculated
by imposing continuity conditions for the parallel components of the EM fields at the two
interfaces (z D 0 and z D h). The x-component of the electric field must be continuous
everywhere at both interfaces, whereas the y-component of the magnetic field must
be continuous only at the slits’ openings. We project the two resulting x-dependent
continuity equations over vacuum plane waves (for Ex) and slits waveguide modes (for
Hy). Defining a new set of variables, E˛ D A˛ C B˛, E 0

˛ D �.A˛eik0h C B˛e�ik0h/,
which correspond to the modal amplitudes of Ex field at the entrance and exit of slit ˛,
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Transmission through a Fibonacci Array of Slits 189

respectively, we end up with a system of 2N linear equations for the set of unknowns
ŒE˛; E 0

˛�:

.G˛˛ � "/E˛ C
X

ˇ¤˛

G˛ˇEˇ � GV E 0
˛ D I;

.G˛˛ � "/E 0
˛ C

X

ˇ¤˛

G˛ˇE 0
ˇ � GV E˛ D 0: (4)

All terms in Eqs. (4) have a simple physical interpretation. The inhomogeneous term
I D 2i

p
a gives the slits direct illumination, " D cot.k0h/ describes the bouncing of

light inside the slits, and GV D sec.k0h/ describes the coupling of EM fields through
them. Finally, the term G˛ˇ carries light from slit ˇ to slit ˛ through the continuum of
diffraction modes. It reads:

G˛ˇ D
Z 1

�1

dx

Z 1

�1

dx0�˛.x/G.x; x0/�ˇ.x0/; (5)

where �˛.x/ has been defined previously, and G.x; x0/ D .i�=�/H
.1/
0 .k0jx � x0j/ is

the Green’s function associated with Helmholtz’s equation in two dimensions (Arfken &
Weber, 2001), with H

.1/
0 .x/ being the zero-order Hankel function of the first kind.

By solving the set of equations in Eqs. (4), the modal amplitudes E˛ and E 0
˛ are

obtained; hence, the EM fields in all space can be constructed. Within our formalism,
the total transmittance of the structure can be written as a sum over slits contributions as

T D
X

˛

Im ..GV E 0
˛/�E˛/: (6)

3. Transmission Properties of a Fibonacci Array of Slits

We apply the formalism introduced in the previous section to the analysis of the trans-
mission properties of slits disposed following a Fibonacci sequence. This sequence is
probably the earliest and best known deterministic aperiodic system. In its simplest
version, it can be generated from two basic elements, fa; bg, by iteratively applying the
substitution rules,

a ! ab; b ! a: (7)

Thus, we can construct Fibonacci chains of increasing numbers of elements, having

a ) ab ) aba ) abaab ) abaababa ) abaababaabaab ) : : : : (8)

Each sequence Sj in Eq. (8) can be obtained from the two preceding ones by applying the
recursion relation Sj D Sj �1 [ Sj �2, where [ means composition. Sequences of a and
b elements obtained through this iterating process do not have a well-defined regularity,
but they present several interesting properties due to their quasiperiodic character.

In a Fibonacci array of slits, the distance between consecutive slits follows a Fi-
bonacci sequence of two basic lengths, d1 and d2. The slits’ positions in such an array
are given by (Galdi et al., 2005)

x˛ D d1 int
�˛

�

�

C d2

h

˛ � 1 � int
�˛

�

�i

; (9)

where � D .1 C
p

5/=2 is the golden ratio, and int . / denotes the integer part function.
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190 A. I. Fernández-Domínguez et al.

The structure factor of an arrangement of slits is defined as the discrete Fourier
transform of the slits’ positions

S.k/ D
X

˛

eikx˛ : (10)

In Figure 2(a), the modulus of S.k/ for a Fibonacci array of 200 slits is depicted. The
two basic lengths defining the array are d1 D 0:68ƒ and d2 D 1:55ƒ, where ƒ is
the mean distance between slits. Taking advantage of the scalable character that perfect
conducting boundary conditions give to the system, in what follows, we will take ƒ as
unit length. In Figure 2(b), the structure factor for a periodic array of 200 slits of period
ƒ is plotted. It vanishes for all ks that are far from the multiples of 2�=ƒ and is narrowly
peaked at each multiple of 2�=ƒ. At these ks, all summands in Eq. (10) are in phase,
and jS jmax D N D 200. The structure factor for the Fibonacci array also presents several
peaked features. The formation of these maxima relies on the appearance of a certain
limited degree of coherence among summands in Eq. (10) that makes jS jmax < 200 (for
k ¤ 0). These peaks are fingerprints of the presence of long-range order in the structure.

In Figure 3, transmission spectra of a perfect conducting film of thickness h D 0:68ƒ

perforated with the Fibonacci (solid line) and periodic (dashed line) arrays of 200 slits of
width a D 0:17ƒ are shown. Transmittances are normalized to the transmissivity of 200
independent slits. Single slit transmittance (T0), taken as reference for normalization,
is plotted in the inset of the figure. Within the wavelength range considered in our
analysis, T0 shows two maxima corresponding to the two first-slit waveguide resonances
(� D 0:89ƒ and � D 1:87ƒ) (Porto et al., 1999; Takakura, 2001; Bravo-Abad et al.,
2004). The normalized Fibonacci and periodic array spectra display these maxima too,

Figure 2. Absolute value of the structure factor corresponding to: (a) a Fibonacci array of 200
slits with d1 D 0:68ƒ and d2 D 1:55ƒ (where ƒ is the mean distance between slits) and (b) a
periodic array of 200 slits of period ƒ.
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Transmission through a Fibonacci Array of Slits 191

Figure 3. Transmission spectra of the Fibonacci (solid line) and periodic (dashed line) arrays of
200 slits considered in the text. The slit width is a D 0:17ƒ and the film thickness is h D 0:68ƒ.
Transmittances are normalized to the transmissivity of 200 independent slits. Inset: Transmission
spectrum of a single slit of the same dimensions.

but shifted to shorter wavelengths. Although the localized character of slit waveguide
resonances makes the associated transmission maxima almost independent of the number
of slits, the shift in resonant wavelength leads to low maxima Tmax � 2 in both normalized
spectra (see Figure 3).

Periodic and Fibonacci array transmittances display higher and narrower peaks that
are not present in the single-slit spectrum. In the last few years, transmission properties
of periodic arrays of slits have been thoroughly studied (Schröter & Heitmann, 1998;
Porto et al., 1999; Treacy, 1999; Went et al., 2000; Yang & Sambles, 2002; García-Vidal
& Martín-Moreno, 2002; Skigin & Depine, 2005). It is well known that the physical
origin of the sharp dip in transmission—the Wood’s anomaly (Wood, 1902)—and the
associated narrow peak that periodic structures show at wavelengths close to the array
period (see Figure 3) rely on the excitation of surface EM modes at the system interfaces.
The aim of our work is to elucidate whether the origin of the very similar features found
in the Fibonacci spectrum is the same.

In the coupling process between incident light and surface EM modes supported by
an infinite periodic array of slits, Bragg momentum matching conditions must be satisfied.
This fact relates the position of the resonant transmission peak with the corresponding
structure factor for the infinite array, which has the form

S1.k/ D
1

X

˛D1

eik˛ƒ: (11)

This function defines a set of resonant parallel wavevectors that turn to be equal to the
reciprocal lattice vectors (bj D 2�j=ƒ). Wavevectors b˙1 D ˙2�=ƒ give the lowest
incident energy and momentum needed for the coupling, opening a very efficient trans-
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192 A. I. Fernández-Domínguez et al.

mission channel and leading to a peak in the transmission spectrum close to periodicity.
For a finite periodic array, discrete resonant components of k parallel to surface are not
well defined, but the close correspondence between locations of the first structure factor
peak at � D ƒ (see Figure 2(b)) and the surface EM resonance transmission peak at
� D 1:02ƒ (see Figure 3) remains.

The connection between the spectral location of transmission peaks with resonant
features of the structure factor seems to hold also for the Fibonacci array. Its structure
factor (see Figure 2(a)) has a first maximum at kƒ=2� D 0:375, which corresponds
to � D 2:66ƒ. The highest peak in its transmission spectrum occurs at � D 2:68ƒ

(see Figure 3), whereas Wood’s anomaly also has its own quasiperiodic counterpart in
a narrow drop in transmittance just at structure factor maximum location (� D 2:66ƒ).
All these similarities seem to point out that surface EM modes also play a crucial role
in the transmission properties of the Fibonacci structure. The fact that both transmission
features (dip and peak) are less pronounced for the Fibonacci structure can be interpreted
as a consequence of the less efficient coupling process between the incident light and the
surface EM mode due to the absence of a well-defined regularity in the system.

It is worth studying the evolution of the transmission peaks with the number of slits
present in the quasiperiodic arrangement; this is done in Figure 4. The gradual increase
of the transmission peak height is compatible with our hypothesis that the origin of
the transmission resonance stems from the excitation of a surface EM mode. As the
number of slits is increased, the structure factor becomes more and more peaked around
the resonant wavevectors, resulting in a more efficient excitation of surface EM modes
and, consequently, in a higher transmittance. A similar behavior is found for periodic
arrays. In the inset of Figure 4, peak heights for Fibonacci (squares) and periodic (dots)
arrangements with the same mean distances between slits are plotted. We can observe

Figure 4. Evolution of the Fibonacci array transmission peak as the number of slits is increased.
The transmittance is normalized to the EM flux impinging on the array area. The geometrical
parameters considered are the same as in Figure 3. Inset: Evolution of the transmission peak height
as a function of the number of slits in the Fibonacci (squares) and periodic (dots) arrays.
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Transmission through a Fibonacci Array of Slits 193

that transmittance increase is very similar in both cases, but with transmittance always
lower for the Fibonacci structure than for the periodic array.

4. Reciprocal Space Formalism

From the analysis performed in the previous section, it seems clear that the structure
factor plays a fundamental role in the transmission properties of slit arrangements that
present long-range order (periodic and quasiperiodic arrays). In order to include this
magnitude explicitly in our theoretical framework, we transform our real-space formalism
into a reciprocal space one. As a result, we obtain a set of k-space, integral equations
equivalent to Eqs. (4), governing the EM field’s behavior. The unknowns of the new
system of equations are the Fourier amplitudes of the electric field at film surfaces with
parallel wavevector component k (E.k/ D

P

˛ E˛eikx˛ and E 0.k/ D
P

˛ E 0
˛eikx˛ ). The

set of linear equations in reciprocal space can be written as

�"E.q/ C
Z 1

�1

dkG.k/S.q � k/E.k/ � GV E 0.q/ D IS.q/;

�"E 0.q/ C
Z 1

�1

dkG.k/S.q � k/E 0.k/ � GV E.q/ D 0: (12)

It is important to notice that, like their real-space counterparts, these equations only
hold in the subwavelength regime (� � a) and for normal illumination. All terms in
Eqs. (12) can be understood in a very similar way to those of Eqs. (4). As " and GV

describe EM fields traveling inside the slits, they remain the same as in the real-space
equations. The illumination term now contains the direct coupling I , but weighted by
the structure factor S.q/. Finally, the integral term

R 1

�1
dkG.k/S.q � k/E.k/ describes

all the scattering processes which couple E.q/ to the continuum E.k/, being the crystal
momentum needed for the coupling provided by the structure through S.q � k/. The
amplitude of each scattering process is measured by

G.k/ D i

2�
Y.k/j�.k/j2 ; (13)

where Y.k/ D k0=

q

k2
0 � k2 is the admittance of a plane wave with parallel wavevector

k, and �.k/ D .2=k
p

a/ sin.ka=2/ is the overlap between this plane wave and the
waveguide mode �.x/ D �.a=2 � x/=

p
a.

In order to illustrate the strength of this reciprocal space approach, we first apply it
to the case of an infinite periodic array of slits. In this case, S1.k/, given by Eq. (11),
selects parallel wavevectors equal to the reciprocal lattice vectors bj in the integral term
of Eqs. (12), removing the rest. Moreover, Bloch’s theorem implies E.k/ D E.k C bj /

for all j , and Eqs. (12) transform into two simple equations for each k. For k D 0 these
equations have the form

.†0 � "/E.0/ � GV E 0.0/ D IS.0/;

.†0 � "/E 0.0/ � GV E.0/ D 0; (14)

where †0 D .2�=ƒ/
P

j G.bj /, and G.bj / is evaluated from Eq. (13).
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194 A. I. Fernández-Domínguez et al.

As zero-order diffracted beam (k D 0) governs infinite array transmittance for � � ƒ,
Eqs. (14) describe the mathematical foundation of the transmission resonances shown by
the structure. In Figure 5, j†0 �"j for an infinite periodic array with the same geometrical
parameters as considered before is plotted (dotted line). As G.b˙1/ has a singularity
when k0 D b˙1, †0 diverges when � D ƒ. Therefore, E.0/ and E 0.0/ vanish at this
wavelength, leading to a zero in transmittance—the so-called Wood’s anomaly in infinite
periodic slit arrays. However, due to the rapid oscillations of †0 close to this divergence, at
a wavelength slightly longer than the period j†0 �"j D GV . It can be easily demonstrated
that this condition leads to an enhancement of E.0/ and E 0.0/ obtained from Eqs. (14),
which finally produces a narrow peak in the transmission spectrum. This resonance can
be interpreted as the excitation of surface EM modes at the two film interfaces, as it
is associated with an enhancement of the E-field amplitudes. As we are considering
perfect conducting films, which do not support surface plasmon polaritons, these modes
correspond to the so-called spoof surface plasmons supported by periodically corrugated
perfect conductors (Pendry et al., 2004; García-Vidal et al., 2005).

The arguments introduced for the infinite structure can be extended to the finite
periodic and Fibonacci arrays. Now, Bloch’s theorem cannot be applied to electric-
field amplitudes, and Eqs. (12) must be solved for a continuum of parallel wavevectors
q. However, considering only the k D 0 Fourier amplitude results in a very good
approximation for large enough arrays. Under this approximation, equations governing
the electric field at film interfaces can be written in the form of Eqs. (14), where †0 is
now numerically evaluated with the expression

†0 D 1

E.0/.0/

Z 1

�1

dkG.k/S.�k/E.0/.0/; (15)

Figure 5. Relevant terms in Eqs. (14) for the infinitely periodic (dotted line), finitely periodic
(dashed line), and Fibonacci (solid line) structures considered in the text. G

V (dashed dotted line)
is the same for the three slit arrangements. Dotted arrows indicate the peak and solid arrows
indicate the dip position in the periodic and Fibonacci transmission spectra (see Figure 3).
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Transmission through a Fibonacci Array of Slits 195

where E.k/ and E 0.k/ are numerically obtained after solving the system of linear
equations in real space. It is important to notice that we have checked that this function
acquires the same values calculated from the modal amplitudes at input and output film
surfaces.

In Figure 5, j†0 � "j associated with the periodic (dashed line) and Fibonacci (solid
line) arrays considered previously is represented. We have focused on the wavelength
ranges in which the structures show surface EM resonance peaks. Although †0 does not
diverge for any of them, both arrangements develop a Wood’s anomaly (solid arrows in
Figure 5) at wavelengths for which j†0�"j has a maximum. Moreover, for both structures,
the resonant condition j†0 � "j D GV still exactly gives the locations of the transmission
peaks (dotted arrows in Figure 5), which now coincide with an electric-field enhancement
close to the system interfaces. As for the infinite array, this field enhancement can be
assigned to the excitation of spoof plasmon surface modes at the perfect conducting film
sides.

5. Conclusions

In this article, we have presented a complete theoretical analysis of the transmission
resonances appearing in quasiperiodic 1D arrays of subwavelength slits. By applying
a formalism able to deal with structures that do not have a well-defined periodicity,
we have identified the two mechanisms that yield enhanced transmission in the system:
slit waveguide and surface EM resonances. By comparing the transmission properties
of Fibonacci and periodic arrays, we have linked the formation of surface EM modes
with the structure factor of the slit arrangement. The location of the resonant features in
the structure factor marks the spectral locations of the transmission peaks, whereas the
efficiency of the transmission resonance is controlled basically by the height of the peaks
in the structure factor.
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