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Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials
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We propose systems with structures defined by self-assembled triply periodic minimal surfaces
(STPMS) as candidates for photonic band gap materials. To support our proposal we have calculated
the photonic bands for different STPMS and we have found that, at least, the double diamond and
gyroid structures present full photonic band gaps. Given the great variety of systems which crystallize
in these structures, the diversity of possible materials that form them, and the range of lattice constants
they present, the construction of photonic band gap materials with gaps in the visible range may be
presently within reach.

PACS numbers: 42.70.Qs, 41.20.Jb, 81.05.Qk, 81.05.Ys
A three-dimensional (3D) photonic band gap material
(PBGM) is a periodic dielectric system with an absolute
frequency gap for electromagnetic (EM) waves [1]. The
opening of photonic gaps is a delicate balance between
both refraction index contrast and topology of the underly-
ing lattice. Since its proposal [2,3] and first construction
in the microwave range [4], PBGMs have attracted much
attention due to their many remarkable applications [5],
especially for gaps in the visible range. However, mate-
rial engineering of 3D periodic systems structured at the
relevant length scale for optical gaps (hundreds of nm)
is facing technological problems [6]. Another promising
strategy is mesoscopic self-assembly: in this way par-
tial band gaps have been reported in 3D periodic struc-
tures synthesized from submicron colloidal particles [7,8].
Within this route, an alternative idea has apparently been
overlooked: the use of self-assembled triply periodic mini-
mal surfaces (STPMS) as natural molds to construct op-
tical PBGMs. STPMS are present in different systems
such as the periodic phases found in diblock copolymers
[9] and lipid�water systems [10]. Recently, the predicted
[11] periodic phases in microemulsions have also been
observed [12].

All the binary and ternary systems mentioned above
have the common property of being self-organized at a
supramolecular level, with morphologies mainly dictated
by the shape of internal interfaces separating different do-
mains. In AB diblock copolymers these internal interfaces
are formed by the chemical bonds between the A and B
blocks, whereas in lipid�water systems or in microemul-
sions (of, for example, water and oil) the amphiphilic
molecules form a monolayer interface that fully separates
the polar compounds (water and amphiphilic heads) from
covalent ones (oil and amphiphilic tails). From the physi-
cal point of view, the dominant factor that controls the
shape of these internal interfaces is minimization of its sur-
face free energy. This last condition is essentially equiva-
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lent to area minimization with fixed volume fractions and
leads to the formation of constant mean curvature inter-
faces. When the different domains have approximately
equal volume fractions, the mean curvature is zero. This
basically explains why and when zero mean curvature in-
terfaces are present in these systems. These kinds of sur-
faces are known by mathematicians as minimal surfaces
and, already in the last century [13], it was found that some
minimal surfaces can be joined together forming periodic
structures in all three spatial directions. Subsequently, it
was discovered [10] that minimal surfaces appear in a va-
riety of real systems occurring in biology and materials
science.

Presently known systems with STPMS have three ap-
pealing characteristics for an optical PBGM: (i) Their lat-
tice constants can be tuned by varying their constituents:
real systems with STPMS have lattice constants ranging
from one to hundreds of nm. (ii) Their morphologies are
bicontinuous with cubic symmetry, which is known [1] to
be more appropriate to produce photonic band gaps than
the close-packed morphologies resulting in self-assembled
colloidal crystals. (iii) Flexibility in the composition, ei-
ther by the appropriate choice of the constituents, or by
modifications through selective chemical reactions, may
provide the adequate refraction index contrast.

However, although promising, these characteristics are
not enough to secure the opening of photonic band gaps: as
previously mentioned, topology also plays a crucial role.
So, in order to support our proposal of STPMS as possible
PBGM, we have studied theoretically which architectures,
if any, among the most commonly observed STPMS,
develop band gaps. We have performed calculations for
the structures defined by three different minimal surfaces:
simple cubic (P), gyroid (G) and double diamond (D).
Our computational scheme has two steps: (i) generation of
the different structures and (ii) calculation of the photonic
bands for each one of them. We have restricted ourselves
© 1999 The American Physical Society 73
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to systems with two different components of equal volum
fraction domains, characterized by their refraction index
n1 andn2 (for definiteness we taken1 , n2), separated by
a minimal surface.

There are several mathematical techniques (Weierstr
parametrization,finite element methods, etc.) [14] for the
generation of triply periodic minimal surfaces. Based o
physical grounds, it is expected that these periodic surfa
could be generated via minimization of a Landau-Ginzbu
free energy functional [15], a result that has been prov
rigorously [16]. We have chosen this last approach,find-
ing extremal configurations of the functional by solving nu-
merically the Cahn-Hilliard equation [17]. This equatio
resembles the time evolution of the local concentrati
c��r� in the dynamical process of phase separation in bina
mixtures of polymers and alloys. The local concentratio
is forced to verify a continuity equation, which guarantee
fixed volume fractions during the full dynamical proces
As the final result we obtain the stable (or metastabl
time-evolvedc��r� evaluated at a 3D regular grid ofN3

points covering the unit cell. Different triply periodic
minimal surfaces, defined as the interface between bot
constituents, are obtained for different initial configura-
tions ofc��r�; known solutions are recovered by initializing
c��r� near to the expected result. In Figs. 1a–1c we show,
respectively, theP, G, andD structures obtained via this
method.

As regards to the photonic band calculation, we ha
used afinite difference time domain (FDTD) method [18]
This method requires a computational time which scal
linearly with the number of mesh points inside the un
cell and, therefore, is specially suitable for systems with
dielectric constant that changes rapidly in space, such
the ones we are studying. Basically, in the FDTD metho
an arbitrary initial EM wave with a wave number�k is
ic
, for
FIG. 1(color). Three unit cells for the different triply periodic minimal surfaces analyzed in this paper: (a) simple cubP,
(b) gyroid G, and (c) double diamondD. To the right of each structure, the corresponding photonic band structure is shown
the representative case in which the two materials separated by the minimal surface have a refraction index contrastn �

p
13. The

wave vector varies across the simple cubic Brillouin zone defined by the high-symmetry points:G�0, 0, 0�, X�0, 0, p

a �, M�0, p

a , p

a �,
andR� p

a , p

a , p

a �, with a being the lattice constant of the system. EM frequency is in units of2pc
n1a where c

n1
is the speed of light in

the lowest refraction index material. Note the appearance of a complete photonic band gap, highlighted in yellow, in theG andD
band structures.
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allowed to evolve both in time and space governed by
discrete version of Maxwell equations. After a certain ru
time, long enough to have good spectral resolution, t
frequenciesv� �k� of EM eigenmodes in the structure ar
obtained by Fourier transforming the time-propagated E
fields. For each structure we have performed calculatio
for values ofN ranging fromN � 14 to N � 40. We
have checked that the results obtained converge rapi
with N , which gives us confidence on the quality and
consistency of both structural and photonic calculations

It is worth pointing out that, although we are thinking
on applications in the optical regime, our results are va
for any lattice constant due to the scaling properties
the macroscopic Maxwell equations [1]. Gaps can
characterized by two quantities: the wavelength at t
midgap frequency (l0) in units of the lattice constant (a),
times the smallest refraction index (n1), l0�n1a, and the
“figure of merit,” f, defined as the quotient between th
frequency width of the gap and the midgap frequenc
f is, at the same time, a measure of the gap, of t
reduction of transmission of EM waves through afinite
number of layers, and of the robustness of the gap
small deviations from uniformity of the lattice constan
throughout the crystal.

We have calculated the photonic bands as a function
the index of refraction contrastn � n2�n1, for each one
of the cited 3D periodic structures. For theP structure we
have not found a photonic gap for anyn. This result is in
keeping with photonic band calculations for the, differe
but related, system of dielectric spheres assembled
a simple cubic lattice. The inset of Fig. 1a shows th
low-frequency photonic bands for theP structure for a
representativen �

p
13, showing the lack of gap in the

spectrum due to some degeneracies in points of h
symmetry. However, and this is the main outcome of o
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calculations, we dofind gaps for theG andD structures,
provided there is a minimum refraction index contras
between the two materials. This can be clearly seen
the insets of Figs. 1b and 1c where the low-frequen
photonic bands for theG and D structures are shown,
for the same representative refraction index contrastn �p

13. Figure 2a summarizes our results for theG structure,
showing the dependence of bothl0�n1a and f with n.
Figure 2b shows the same quantities as Fig. 2a, this tim
for theD structure. Notice that, due to the fact that midga
wavelengths are approximately twice as large as latti
constants (and even larger for largen or largen1), photonic
band gaps in the optical regime are expected for latti
constants of�200 350 nm or even smaller.

It is noteworthy that not only there is a minimum value
of n for the appearance of photonic gaps, but also t
quality factorf increases withn both for theG and D
structures, thus making large refraction index contrast a d
sirable feature. The greatflexibility in the manipulation of
known systems with STPMS may provide routes to obta
the desired refraction index contrast. For example, inAB
diblock copolymers, the optical properties can be tailore
modifying theA andB monomers, with triblock copoly-
mers providing even moreflexibility. In lyotropic systems
and microemulsions their liquid nature turns into an ad
vantage. One of the liquids may be solidified (through
freezing or polymerization) and the other one extracte
Moreover, the domains of one of the constituents may

FIG. 2. Quality factorf (solid line) and midgap wavelength
l0 (dashed line) as functions of the refraction index contra
for the (a) gyroid and (b) double diamond structures.f is the
quotient between the gap width and the midgap frequency.l0
is in units of the lattice constanta times the lowest refraction
index n1. For both structures there is a minimum refractio
index contrast to open a band gap, this value beingn � 2.5 for
the G case andn � 2 for the D one.
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used as a template for many different chemical reactio
For instance, in this way cubic structures of silica with re
markable periodicity have been already obtained [19]. T
reported lattice constant was about 10 nm but it might
possible to increase this value, as pore sizes larger t
100 nm have been found in disordered silica mesostru
tures [20]. Extraction of the surfactant and substitution b
another material with a large dielectric constant may le
to a PBGM in the ultraviolet regime. Even more interes
ingly, materials presenting STPMS have been used as h
for synthesizing semiconductors with a very large refra
tion index [21]. Based on all these, we believe that th
construction of 3D PBGMs in the ultraviolet and optica
ranges based on STPMS could be built using present d
chemistry.
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