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Abstract. We present a review of some of the recent developments on the use of
surface plasmons for subwavelength optics. As example of how surface plasmons
are helping us to play new tricks with light, we focus on the optical transmission
through shape periodically nano-structured metal films.

1 Introduction

In the last few years there has been a renewed interest in the optical properties
of metallic structures. This interest is driven by the desire to reduce the
dimensions of optical devices, which is becoming possible due to technological
advances in the micro- and nano- patterning of metals.

The dielectric optical response of a metal is mainly governed by its free
electron plasma. Below its plasma frequency, the real part of the dielectric
constant (εM ) of a metal is negative, so the wavevector of light propagating
inside a metal has an imaginary component and the metal behaves as a pho-
tonic insulator. A negative εM has another important consequence: a metal
surface may support localized electromagnetic (EM) resonances, called sur-
face plasmons (SPs) [1]. These resonances propagate along the surface of
a metal, and can be tailored to concentrate and guide light in very small
volumes. For optical frequencies, SPs appearing in good metals (like silver)
may propagate distances of the order of 10 − 100 µm before being absorbed,
going up to 1 mm in the near infrared. Therefore, if we are interested in highly
integrated planar optical devices smaller than these typical propagation dis-
tances, the inherent absorption present in conductive systems could be not
a too serious drawback, and SPs could be considered as a promising route to
sub-wavelength optics [2].

In the first part of this paper we overview some of the recent developments
on the use of SPs for subwavelength optics. As example of these new capa-
bilities, in the second part of the paper we focus on the optical transmission
through shape periodically nano-structured metal films.
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2 SPs as a Route to Sub-wavelength Optics

The dispersion relation of a SP propagating in a metal-vacuum interface is
given by the following equation

k(ω) =
w

c

√
εM (ω)

1 + εM (ω)
(1)

where ω is the frequency, c is the speed of light and εM (ω), the frequency-
dependent dielectric constant of the metal.

As its dispersion curve lies outside the light-cone, a SP on a metal surface
can not be excited by an incident plane wave. This is the main problem when
dealing with these type of surface EM resonances: the coupling of light into
SPs and the reversed process, coupling SPs to light. There are three main
different strategies to overcome this difficulty.

The most common technique to excite SPs consists in evaporating a thin
metal film onto an optically dense substrate. Illuminating through the sub-
strate at an angle of incidence slightly larger than the critical angle allows
the wave vector of the incident light to match that of the SP. This technique,
known as attenuated total reflection (ATR) [3], has been used recently to
analyze the propagation of SPs on thin metal stripes [4]. These metal stripes
could be used in optoelectronic devices as a common channel to propagation
of both electrical current and light via SPs.

The second approach consists in launching SPs by focusing a laser beam
onto a topological defect [5]. Combining this technique with fluorescence
imaging, it has been possible to test the first realizations of a SP-based
Bragg mirror and a SP-based beam-splitter [6]. These promising results could
open the possibility of using SPs in order to create devices able to do sub-
wavelength optics in two dimensions.

The third way for coupling light into SPs is by creating a periodic mod-
ulation of the metal surface. This modulation provokes the folding of the SP
bands inside the first Brillouin zone, i.e., inside the light cone. Already in
1902, Wood [7] reported anomalous behaviour in the diffraction of light by
metallic gratings that we now know were due to the excitation of SPs. Period-
icity can also lead to the opening of a full photonic band gap (PBG) in the SP
spectrum, in a way very much similar to the opening of a photonic band gap
in photonic crystals. By analyzing the reflectance spectrum of an hexagonal
array of photoresist dots on a glass substrate coated with a thin film of silver,
Kitson et al. [8] were able to report the appearance of a SP-PBG between
1.91 and 2.0eV, within the visible range of EM spectrum. The existence of
a band gap in which light propagation is forbidden can lead to many optical
applications. Among others, it is possible to guide light in two-dimensions by
just creating some line defects into the periodic array: light with the appro-
priate energy inside the gap can not couple to bulk crystal EM modes and
its propagation is confined inside the line defect. Experimental realization of
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these ideas has been recently reported [9], rendering the prospect of photonic
circuits based on SPs.

3 Optical Transmission
Through Nano-structured Metals

In 1998, Ebbesen et al. [10] found experimentally that the transmission of
light through subwavelength hole arrays made in a metal film may be, for
some particular resonant wavelengths, orders of magnitude larger than ex-
pected if the holes were acting shape independently. Standard aperture theory
stated that, for a single hole, the transmittance (T ), is roughly T ∼ a2 (a/λ)4

(a being the hole radius) [11], shape i.e. due to the wave character of the light
the normalized-to-area transmittance through a hole is very small whenever
a << λ. Furthermore, that theory was done for the case of a metal film
with infinitesimal thickness; for the realistic case of finite metal thickness the
transmittance should be even smaller as, in the subwavelength limit, all EM
modes inside the waveguide are evanescent. It is worth pointing out that,
before Ebbesen’s experiment, hole arrays had been extensively studied, due
mainly to their properties as selective filters. For this, the high-pass filtering
properties are provided by the hole EM cutoff, while the low-pass filter is
due to the redistribution of energy caused by the periodic array when a new
diffraction order becomes propagating. More precisely, denoting the hole cut-
off wavelength by λc, and the lattice parameter by d, hole arrays were known
to act as band-pass filters for d < λ < λc. This property has been stud-
ied in several frequency regimes. as microwave [12], far infrared [13], mid
infrared [14] and infrared [15]. However, the extraordinary optical transmis-
sion (EOT) discovered by Ebbesen et al. presented two main differences with
previous works. First, experiments were performed in the optical regime, and
second, the geometrical parameters defining the structure were such that
λc < d < λ; this parameter range had not, up to our knowledge, been stud-
ied before, perhaps because nothing remarkable was expected for wavelengths
beyond cut-off. Although already the first experiments [10] showed that EOT
was related to the excitation of SPs, the transmission mechanism was unclear.
The initial theoretical efforts concentrated on the simpler system of a periodic
array of 1D apertures (slits), with realistic calculations for the 2D Ebbesen’s
geometry appearing shortly afterwards. Here we review the basics of the en-
hanced transmission phenomena for both the 1D- and 2D-array of apertures
in an opaque metal film.

3.1 1D Slit Array

Consider the transmission grating (TG) depicted in Fig. 1 (find there also
the definition for the different geometrical parameters defining the array and
the choice of axis).
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Fig. 1. Scheme of a 1D ar-
ray of slits in a metal film.
Regions I and III are filled
by a dielectric materials, that
here we take to be air in both
cases

This system is reminiscent of reflection gratings, in which case region III
in Fig. 1 is filled with metal. Reflection gratings have been extensively studied
in the past. As commented in the introduction, Wood [7] found remarkable
absorption anomalies in the reflectance spectra of smooth metallic gratings
illuminated by p-polarized light (E-field perpendicular to the grating axis).
Fano [16] associated these anomalies to the excitation of SPs. Later on, Hessel
and Oliner found [17] another type of absorption anomaly, appearing in deep
gratings, associated to the formation of standing waves inside the grooves.
The small volume of these modes results in strong EM field enhancement,
so these systems are excellent substrates for surface-enhanced Raman stud-
ies [20].

Apart from some theoretical works [18,19], TGs had not received so much
attention, but after Ebbesen’s experiment they have been thoroughly studied.
TGs have proved interesting in their own right, and some of the basics of
the enhanced transmission phenomena are already present in these systems.
However it must be kept in mind that in a slit waveguide there is always
a propagating mode inside the waveguide, no matter how narrow it is, while
a hole waveguide present a cutoff frequency and all modes are evanescent
for hole diameters smaller than (roughly) half a wavelength. Therefore, wave
propagation is radically different for slits and holes.

3.1.1 Theoretical Formalism

Let us concentrate on the optical transmission properties of arrays of sub-
wavelength slits, for p-polarized light. For s-polarization (E-field along the slit
axis) the transmission does not present such a rich resonant behavior, and
will not be discussed here. There are different theoretical frameworks that
give virtually exact results for the transmittance of such a simple structure.
However, the physical mechanisms responsible for the transmittance spectra
are best captured by a simplified quasi-analytical model, where fields are rep-
resented in different regions by a modal expansion [21]. We have previously
demonstrated [22] the accuracy of this theoretical framework in comparison
with, for example, transfer matrix methods. Two main approximations are
considered within our modal expansion:
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• only the fundamental eigenmode in the modal expansion of the EM fields
inside each slit is considered, which is justified because in the subwave-
length regime the fundamental mode is the only propagating one, and
dominates the transmittance

• surface impedance boundary conditions (SIBC) [23] are imposed on the
metal dielectric interfaces. The approximation of SIBC is applicable when
the skin depth in the metal (of the order of 20 nm, for good metals in the
optical regime) is much smaller than all other length scales in the system.
Strictly, this is not the case, as we are going to consider slit widths of
a few tens of nanometers. However, as the propagation constant of the
fundamental mode of the slit does not depend on slit width, it turns out
that the SIBC is a good approximation for this kind of systems even in
the optical regime. Moreover, given that in the considered structures the
”horizontal” metal-dielectric interfaces are much larger that the ”vertical”
ones, we further simplify the model (just for computational convenience)
by assuming that the vertical walls of the slits are perfect metal surfaces.

For p-polarization, the modal expansion for the magnetic field is

Hy(x, z) = Ψ+
0 (x, z) +

∑
n

rn Ψ−
n (x, z), for z in region I

Hy(x, z) =
∑
m

{
AmΦ+

m(x, z) + BmΦ−
m(x, z)

}
, for z in region II

Hy(x, z) =
∑

n

tn Ψ+
n (x, z), for z in region III. (2)

where, for an incident wave impinging at angle α with the normal, k = ω/c,
kxn = k cos(α) + (2π/d)n, kzn =

√
k2 − k2

xn, Φ±
m(x, z) = exp(±ıkz)/

√
d

if xε [md − a/2, md + a/2] and zero otherwise, and Ψ±
n (x, z) = exp(ıkxnx ±

ıkznz)/
√

d. In Eq. 2, all summations go from −∞ to +∞. The electric field
components Ex and Ez, can be readily calculated via the Maxwell equation
∇× E = ikH.

Calculating the transmission and reflection coefficients tn and rn into the
different diffraction orders, and the slit amplitudes Am and Bm is a simple
exercise of matching fields at both I-II and II-III interfaces. However, it is
convenient to extract the scattering coefficients in the three-region system
from the scattering coefficients of two independent two-region systems: the I-
II and the II-III systems, in which all regions are taken as semi-infinite (even
region II). Let us concentrate on the zero-order transmission amplitude, t0;
expressions for all other scattering amplitudes can be calculated trivially in
a similar manner. We define (see Fig. 2) the scattering coefficients in the two-
region systems as follows: in the I-II system, an incident plane wave coming
from region I reflects, when reaching I-II interface, with probability amplitude
ρ11 or transmits through the interface with amplitude τ12. When approach-
ing the II-I interface coming from region II, the slit fundamental eigenmode
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Fig. 2. Definitions of the different scattering coefficients of the two different two-
region systems appearing in transmission gratings

either reflects with amplitude ρL, or transmits to region I with amplitude
τ21. Actually, ρ11 and τ21 would be matrices, given that the final state could
be any of the diffraction orders. In the II-III system, the propagating mode
coming from region II bounces back at the II-III interface with amplitude ρR

or transmits to region III with amplitude τ23.
Knowing all these coefficients, the scattering coefficients for the real three-

region system can be easily calculated summing up all multiple scattering
processes, the only additional ingredient needed is the phase accumulated by
the EM field when propagating inside the waveguide, φP = exp(ıθP ), with
θP = kh. The final result is

t0 =
τ12 φP τ23

1 − ρL ρR φ2
P

(3)

The expressions for the different two-region coefficients can be found in [22].
Let us just recall that

ρL = ρR = − 1 − (1 + Zs) f

1 + (1 − Zs) f
(4)

where Zs = [ε(ω)]−1/2 is the metal surface impedance and

f =
n=+∞∑
n=−∞

[sinc(kxna/2)]2

kzn/k + Zs
(5)

where sinc(x) = sin(x)/x, and f is a quantity that plays a central role in all
scattering coefficients. A crucial point, which strongly influences the trans-
mission (and reflection) properties is that f is singular whenever any of the
diffraction orders satisfy kzn = −kZs, which is the condition for existence of
a SP on a shape flat metal surface (within the SIBC approximation).

3.1.2 Results

Let us consider a slit array made in silver film [24] with d = 1.75 µm, a =
0.30 µm and W = 0.4 µm, which are typical experimental parameters [25],
illuminated by an normal-incident p-polarized EM field. We concentrate in
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Fig. 3. Comparison between
T (λ) calculated with our
simplified modal expansion
for surface impedance (full
curve) and perfect metal
(dashed curve) boundary con-
ditions. The geometrical pa-
rameters are: d = 1.75 µm,
a = 0.3 µm and W =
0.4 µm for normal-incident p-
polarized light

the spectral region λ > d, where only the zero-order transmission coefficient
t0 contributes to the total current.

Figure 3 renders the comparison between the transmittance spectra cal-
culated with the simplified modal expansion previously described, and the
calculation in which SIBC are substituted by perfect metal (PM) boundary
conditions.

As Fig. 3 shows, the transmittance spectrum presents a peak, where light
is almost 100% transmitted for the PM case. This is reduced by around 40%
when the absorption in the metal is included.

In order to gain physical insight into the origin of this transmission peak,
it is convenient to rewrite ρL = R exp(ıθS). Then, defining θT = 2 (θP +θS),
t0 can be written as

t0 =
τ12 φP τ23

1 − R2 exp(ıθT )
(6)

For narrow slits, due to the large impedance mismatch, R ≈ 1 (as the slit
waveguide mode is propagating, current conservation forces R to range from
0 to 1), so the transmittance is dominated by the total phase θT . There-
fore, the system behaves as a Fabry-Perot interferometer: whenever θT in
an integer times 2π, all partial waves in the multiple scattering series inter-
fere constructively in the forward direction, leading to a maximum in T (λ).
However, as a difference with a standard Fabry-Perot interferometer, added
to the wavelength dependence of the optical-path phase θP , the scattering
phase (θS) varies strongly close to the SPs spectral locations. This is illus-
trated in Fig. 4, showing θT and T as a function of wavelength, for different
metal thicknesses.

Figure 4 shows a series of transmittance peaks, reaching 100% transmis-
sion if absorption is neglected. Notice that the slit only occupies a small
fraction of the device unit cell, so the structured metal surface is acting as
a funnel, collecting all light impinging on the surface into a very narrow
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Fig. 4. Total phase θT (panel
(a)) and zero-order transmit-
tance (panel (b)) as a func-
tion of λ, for a normal-
incident p-polarized plane-
wave impinging on a slit array
with d = 1.75 µm, a = 0.3 µm
for different thicknesses: W =
0.2, 0.4, 0.6 and 0.8 µm. Each
transmittance curve has been
shifted by +1 with respect to
the previous one for better vi-
sualization

aperture. These resonances present large differences in peak linewidths (and,
correspondingly, the sensitivity to absorption). It can be shown that the reso-
nance linewidth is inversely proportional to the derivative of θT with respect
to λ, which is large (due to the behavior of θS whenever there is a surface
resonance in the system). Also the EM field distribution changes from being
mostly the one corresponding to two coupled SPs, to having a cavity mode
character (reminiscent of the open-organ pipe modes), depending on whether
the peak spectral position is close to the kzn = kZs condition or away from
it, respectively [22].

3.2 2D Hole Array

As previously stated, the studies of slit arrays are of limited value for un-
derstanding the transmission through subwavelength hole arrays, given that
a subwavelength hole does not support a propagating TEM mode, while
a subwavelength slit does. Computation of the transmittance for hole arrays is
much more computationally demanding than for slit arrays, due to the lower
symmetry in the former system. Popov et al. [26] presented a calculation
based on a modal expansion taking into account the spectral dependence of
the dielectric constant in the metal, εM (ω). Their calculations showed trans-
mission peaks, which were associated to an EM mode propagating along the
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holes, that appeared in the hole array when a realistic εM (ω) was taken into
account, and was not present when the metal was treated as perfectly con-
ducting. On the contrary, a calculation performed with a modal expansion
plus the approximations previously described for the slit array calculation,
reported EOT, shape even in the metal were perfectly conducting [27]. Here
we adhere to this last view, and present what we believe are the basics of
the EOT phenomena in 2D hole arrays, by studying for a highly simplified
model. This model treats the metal as a perfect conductor, showing that EOT
is possible even when there is no propagating mode inside the holes.

3.2.1 Minimal Model

The calculation for the transmittance through an square array of square holes,
within the approximations described in the subsection 3.1.1, was presented
in [27]. In this case, all diffraction orders (resulting from a change in the
incident parallel momentum by a reciprocal lattice vector), as well as both
polarizations must, in principle, be taken into account. However, a minimal
model, which considers just the incoming wave plus two diffraction orders (for
a normal-incident linearly-polarized incoming wave, with the E-field point-
ing along the x-direction, we consider the p-polarized diffraction order with
kx = 0, ±1 times 2π/d) provides an excellent approximation to the transmit-
tance spectra. In this paper, we also treat the metal as perfectly conducting
(Zs = 0). This approximation further simplifies the calculation; considering
absorption in the metal would reduce the transmission peaks [27] but would
not alter the physical picture [29]. Figure 5 shows the comparison between
the T (λ), for a square array of square holes [30] calculated with this minimal
model.

Clearly, the minimal model captures the physics of the EOT, with the
advantage that it can be analytically worked out. It this case, the multiple
scattering series (3) gives

t00 =
τ12 e−|q|W τ23

1 − ρ2 e−2|q|W (7)

where, denoting q =
√

k2 − (π/a)2, kz1 =
√

k2 − k2
x1, S0 = 2

√
2a/(πd),

S1 = S0 sinc [kx1d/2] , G1 = S2
0 + 2S2

1k/kz1 and G2 = q/k, it is found that
τ12 = 2S0/(G2 + G1), τ23 = 2G2/(G2 + G1), and ρ = (G2 −G1)/(G2 + G1).

The appearance of EOT is related to resonant denominators in Eq. (7),
which are possible because, for evanescent modes, current conservation only
forces Im(ρ) > 0, but says noting about the modulus of ρ. This point is il-
lustrated in Fig. 5, showing both real and imaginary parts of ρ(λ). As ρ is
a causal function, its real and imaginary part must satisfy Kramers-Kronig
relations; furthermore, the peak in Im(ρ) signals the presence of a localized
surface EM mode in the system (the peak in |ρ| in Fig. 5 is due to a peak
in Im(ρ)). The finite spectral width of this peak is inversely proportional to
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Fig. 5. Upper panel: T (λ),
for a square array of holes in
a perfect metal, calculated
within the minimal model, for
normal-incident p-polarized
light. Lower panel: |ρ(λ)|
(black curve) and e|q|W .
When this two magnitudes
are equal, there is a peak in
T (λ). We consider d=750 nm,
W=200 nm and square holes
with side length a=284 nm
(in order to mimic circular
holes with a diameter of
320 nm)

the time that the EM takes to leave the system due to radiation losses (trad),
so more precisely speaking, what the system develops is a leaky surface EM
mode. There are two such modes (one for each metal-dielectric interface),
which are coupled through the evanescent fields inside the holes. This results
in symmetric and antisymmetric combinations, in much the same way elec-
tronic states of isolated atoms combine to form molecular levels [27]. The case
of transmission through holes in a metal film resting on a dielectric substrate
was described in [28] and, in this picture, it would correspond to the forma-
tion of surface plasmon ”molecular levels” (SPML) from non-equal surface
plasmon ”atoms”. This ”surface plasmon molecular states” are coupled to ra-
diation modes, and EOT occurs via them. In this sense it can be stated that
EOT is the physics of two localized levels coupled to a continuum. Additional
insight can be gained if we calculate the SPML spectral position neglecting
the coupling to the radiative modes. In this case, from the frequency differ-
ence between the position of this modes is related to the time the photon
has to stay in the system in order to ”see” the resonant levels, tres. Notice
that tres depends on the coupling between SPs, i.e., on metal thickness, while
trad does not, as it is a characteristic of a single surface. Different regimes
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of tunnelling (sequential for trad < tres and resonant) in the opposite case
were predicted [27] (see also Ref. [31] for a description of similar physics in
resonant tunnelling in quantum mechanics) and measured subsequently [32].

3.3 Single Apertures Flanked by Corrugations

We would like to end with a short note on non-periodic systems. As was dis-
cussed, surface EM waves were at the heart of the EOT phenomena. However,
it was reasonable to think that perfect periodicity was not strictly necessary
for the existence of surface waves, This opens the possibility of using SPs in
order to obtain EOT through a shape single aperture, effect that has now been
studied both experimentally [33] and theoretically [34], if the metal surface is
corrugated in the side the light is impinging on. Moreover, it has been found
that very strong directional emission is possible through single apertures if
the corrugation is on the exit side [35,36,37]. Recently, light demultiplex-
ing [38] and focusing effects [39] have been reported in single apertures in
corrugated metals. It might well be that, although based on guiding ideas
found when studying periodic systems, many surprises and applications are
still to be found in finite non-periodic systems.
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