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Abstract: In this paper we extend our theoretical treatment of the
extraordinary optical transmission through hole arrays to the case of circular
holes and beyond the subwavelength limit. Universal curves for the optical
transmission in different regimes of the geometrical parameters defining the
array are presented. Finally, we further develop the statement by showing
that extraordinary transmission phenomena should be expected for any
system where transmission is through two localized modes, weakly coupled
between them and coupled to a continuum.
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1. Introduction

Standard aperture theory states transmission of electromagnetic (EM) energy flux through a
single hole in an otherwise opaque screen is, when the wavelength is much larger than the
hole radius, much smaller than the energy flux impinging the hole area. Even when the screen
thickness is negligible, the normalised-to-area transmittance scales as (a/λ )4 [1], for a << λ
(a being the hole radius and λ the electromagnetic wavelength); considering the finite screen
thickness further reduces the transmission [2] as, in the extreme subwavelength regime, all
EM modes inside the hole are evanescent. This is why, six years ago, it come as a surprise
the experimental finding [3] that the optical transmission through an array of subwavelength
holes drilled in a metallic film could be orders of magnitude larger than what was expected
for independent holes. Remarkably, this unexpected result appeared in a system (hole arrays)
that had been extensively studied before for its interest as a selective filter. However, up to
our knowledge, before Ebbesen’s experiment all studies had concentrated on the transmission
band-pass appearing in the regime d < λ < λc, where d is the array lattice parameter and λc

is the cutoff wavelength for EM modes inside the hole. In this regime, the high-pass filtering
is due to the hole EM cutoff, while the low-pass one is due to the energy redistribution that
occurs when the first diffraction mode becomes propagating. A different mechanism must be
responsible for the enhanced optical transmission (EOT) found by Ebbesen et al., which occurs
for λc < d < λ . Already in [3] EOT was linked to the existence of surface plasmons in the
air-metal interface. This was corroborated by a posterior theoretical study [4], which analyzed
the way surface EM modes couple between themselves and to radiative modes, and how the
coupled modes give rise to EOT. This theory was done, for analytical convenience, for a square
array of square holes, within the surface impedance boundary condition approximation. In this
paper we consider the case of infinite square arrays of circular holes. We show how a perfect
metal approximation is able to capture the physics involved and, through a proper redefinition
of the geometrical parameters defining the structure (in order to take into account the metal skin
depth), even to provide a semi-quantitative estimation to the optical transmittance.

2. Theoretical formalism

The calculation of the optical properties of structured metal films is notoriously difficult from
the computational point of view. This is due to the presence in the problem of very differ-
ent length scales, as the lattice constant and the metal skin depth. Reliable calculations have
been performed for systems with higher symmetry, as slits arrays [5]. Calculations in the fully
three-dimensional case can be performed either by Fourier expansions [6] or through discrete
versions of Maxwell equations in real-space [7]. Both methods require the introduction of cut-
offs. At least in the real-space methodology, it is not trivial to asses whether convergency has
been reached for computationally accessible values of the mesh parameter [8]. Furthermore, al-
though exact solutions would be highly desirable (for instance for finding optimal geometrical
parameters), extracting from them the physical mechanism responsible for the EOT may not be
straightforward, something perhaps more easily achieved through approximate methods.
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The theoretical formalism we use was presented in [4] for the case of an infinite array of
square holes. In this section we briefly describe the approximations involved, and how to ex-
tended the formalism to the case of arrays of circular holes.

In our formalism, the dielectric constant of the metal (εM) is taken into account by con-
sidering surface impedance boundary conditions (SIBC) [9] on the metal-dielectric interfaces
defining the metal film. The SIBC approximation takes into account both the penetration of EM
field and absorption into the metal, being applicable when the skin depth in the metal is much
smaller than all other length scales in the system. This is the case in this work, as all other
length scales will be several hundreds of nanometers, while the skin depth for good metals in
the optical regime is of the order of a few tens of nanometers. However, SIBC is not be used
in the metal walls defining the hole, in this case the metal is considered as a perfect conductor
(εm = −∞). This approximation greatly simplifies the formalism, as the parallel components
of the electric and magnetic wavefields inside the hole are related in a very simple way. Addi-
tionally, it allows the expression of the EM wavefield in terms of the eigenmodes of the hole
which, for simple hole shapes (as rectangular or circular), are known analytically [10]. This ap-
proximation, therefore, neglects absorption by the metal walls surrounding the hole, something
that is expected not to be a bad approximation, as the area of ”horizontal” metal-dielectric
interfaces is much larger that the area of ”vertical” ones, for the typical geometries studied.
More importantly, surrounding the hole by perfect conductor neglects the penetration of the
EM fields in the metal ”vertical” walls. This is a serious deficiency, as the optical transmittance
is, in the subwavelength regime, very sensitive to the hole diameter. However, this deficiency
can be circumvented by defining an (wavelength dependent) effective hole radius by adding to
the geometrical radius a quantity proportional to the skin depth. The value of this quantity that
best fits the experiments is not known and may be geometry dependent. Furthermore, depend-
ing on the preparation method, the dielectric constant at the hole walls may be different from
the known bulk values. In this work we will not try to provide precise fits to experimental data
and just take this proportionality factor equal to unity.

Within this approximations the calculation amounts to expanding the EM field in terms of
the Bloch EM modes in each spatial region, and obtaining the expansion coefficients from
matching the fields appropriately in all metal-dielectric interfaces. All that is needed therefore,
are the EM modes in the vacuum region [9] and the hole waveguide. For circular holes the EM
eigenmodes and their overlap with vacuum modes can be found for instance in [2].

3. Transmittance spectra

We consider an infinite square array of circular holes in a silver metal film, with lattice param-
eter L = 750nm, metal thickness h = 320nm and hole diameter d = 280nm. These are typical
experimental parameters in studies of EOT (the experimental transmission spectra, T(λ ), for a
finite array of 21× 21 holes can be found in Fig. 1 of [4]). The dielectric constant in all non-
metallic regions is unity and the dielectric constant of silver is taken from [11]. Figure 1 shows
the calculated T(λ ) (black curve). For each wavelength the effective hole diameter is taken as
the nominal value plus twice the skin depth. Notice that, within the considered model, there are
surface plasmons in the flat dielectric-metal interfaces (approximated by the SIBC) but there
are no surface plasmons running along the surface of the hole. The cutoff wavelength in this
case is λc = 620 nm, so the figure shows an EOT transmission peak at λ ≈ 780 nm. The peak
position is in reasonable agreement with the experimental data [4] (slightly enlarging the hole
area provides a good agreement for both peak spectral position and area under the peak). How-
ever, the experimental peak height is never as high as in the calculation and the experimental
peak is always wider, which could be indicative of the presence of disorder and/or finite size
effects. Also shown in Fig. 1 (red curve) is the calculation for the same geometrical parameters

(C) 2004 OSA 9 August 2004 / Vol. 12,  No. 16 / OPTICS EXPRESS  3621
#4614 - $15.00 US Received 14 June 2004; Revised 29 July 2004; accepted 29 July 2004



Fig. 1. Total transmittance spectra for a square array of circular holes of diameter 2r =
280nm perforated in a silver film of thickness h = 320nm. The period of the array is
d = 750nm. Black curve shows our result imposing SIBC and considering an effective hole
diameter (see text). Blue curve renders T(λ ) for the case in which silver is replaced by a
perfect conductor and the red curve is an intermediate case in which perfect metal bound-
ary conditions are assumed in the flat metallic interfaces but an effective hole diameter is
considered.

and effective hole diameter, but considering εM = −∞ in the flat metal-dielectric interfaces.
This last calculation shows that the effect of considering a realistic dielectric constant in the flat
metal surface is to slightly red-shift the transmission. The calculation also shows that holes in
a perfect conductor can also present EOT [4], although a flat interface between a dielectric and
a perfect conductor does not support surface modes. Figure 1 (blue curve) also shows T(λ ) for
the conditions of the red curve, but considering additionally that, in all the spectral range, the
hole diameter equals its nominal value. The hole cutoff occurs now at λc = 477nm, but still a
EOT peak appears. This time the peak position (much closer the condition λ = d, when the last
diffraction order becomes non-propagating) and the area under the peak is very different from
the experimental value.

Figure 2 shows the comparison between T(λ ) for arrays of circular holes (black curve here
as in Fig. 1, repeated for visual convenience) and square holes. In the blue curve the nominal
square side is 248nm, so that the squares have the same area as the circular holes (which also
gives a similar propagation constant for the fundamental EM eigenmode inside both objects)
whereas in the red curve the squares have a side equal to the diameter of the circular holes,
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Fig. 2. Comparison between the transmission spectra of a square array of circular holes of
diameter 2r = 280nm (black curve) with the corresponding ones of square array of square
holes with two different sides: a = 280nm (red curve) and a = 248nm (blue curve).

280nm. In the square hole calculations an effective square side is also considered, adding to its
nominal value twice the skin depth.

To summarize these results, EOT is present in the models considered, even appearing when
the metal is considered to be a perfect conductor. This implies that EOT is also expected to
appear in other frequency regimes where the perfect conductor approximation is even more
justified (as for infrared, microwave and millimeter regimes), something that has been experi-
mentally proven recently in a number of papers [12, 13, 14, 15]. If we consider the conductors
as perfect, we can take advantage that Maxwell equations are scale-invariant. So, choosing
the lattice parameter as the unit length, the transmittance spectra only depends on λ /d, a/d,
and universal T(λ ) curves can be presented. Even in the optical regime, these curves serve
as a guide to the different transmission regimes, if the skin depth is taken into account in the
definition of an effective hole radius. Figure 3 renders T(λ ) within the perfect conductor ap-
proximation for a square array of circular holes, for r/d = 0.1,0.2,0.3 and 0.4 (panels 3(a),
3(b), 3(c) and 3(d), respectively) and for different values of a/h within each panel.

4. EOT and surface modes

In Ref. [4] we showed how EOT is related to the resonant excitation of surface EM modes
appearing in the corrugated metal surface. However, some debate on this point can be found
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Fig. 3. Total transmittance spectra for different square arrays of circular holes perforated in
perfect conductors. Panel (a) shows the case r/d = 0.1 for different values of the thickness
h/d (note that the transmittance in this panel is shown in logarithmic scale). Panels (b), (c)
and (d) analyze the cases r/d = 0.2, r/d = 0.3 and r/d = 0.4, respectively. In all cases the
wavelength is expressed in units of the period of the array, d

in the literature. Another group explained EOT in terms of the existence of an (essentially)
propagating mode inside the hole that appears in their calculations [6]. Surface states have even
been considered as detrimental for the trasmittance [16], due to their enhanced absorption; this
has been proven wrong by recent experiments, which found that enhanced transmission and
strong absorption occur at the same wavelength [17].

In this section we essentially repeat the line of reasoning presented in Ref. [4], this time for
arrays of circular holes, and with slightly different approximations. We also present an analogy
to a simpler (and perhaps better known system) that, in our opinion, makes our argument even
more compelling.

The physical mechanism responsible for EOT can be more easily unveiled if the transmit-
tance is calculated within the multiple scattering formalism. In this case, transmission ampli-
tudes for crossing the whole system are obtained from the scattering amplitudes for crossing
the different individual interfaces and the propagation constants of each EM eigenmode. In
principle, these scattering amplitudes are matrices, involving the different eigenmodes inside
the hole. However, only the fundamental (TE11) eigenmode needs be considered given that it
dominates the transmittance in the subwavelength regime. For normal incidence and λ > d ,
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T(λ ) = |t0|2, where the zero-order transmission amplitude t0 has the form:

t0 =
τ 12 φP τ 23

1 − ρL ρRφ2
P

(1)

here τ 12,τ 23 are the transmission amplitudes for crossing the I-II and II-III interfaces, respec-
tively. φP = exp(ıkzh), kz =

√
k2 − (1.84/a)2, k is the EM wavevector in vacuum, and ρL, ρR

are the amplitudes for the TE11 mode to be reflected back into the hole at the II-I, II-III inter-
faces, respectively. In the system we are considering, where dielectric constants in reflection
and transmission regions are equal, ρL = ρR ≡ ρ.

In Ref. [4] it was found that EOT peaks are associated to zeros in the denominator defining t0
(actually, the spectral position is determined by |ρLρRφ2

P| = 1), corresponding to constructive
interference in the forward direction of all partial multiple scattered waves. In the subwave-
length regime modes inside the hole are evanescent, so |φ2

P| < 1. If the reflection coefficient
absolute value were restricted to values smaller than one, resonant denominators would not
be possible. However, restriction on the values of reflection coefficients come from arguments
based on current conservation which, for propagating modes imply |ρ| < 1, but for evanescent
modes only forces Im(ρ) > 0, without posing any restriction on |ρ|. Figure 4 shows Re(ρ) and
Im(ρ) as a function of wavelength, for an array of circular holes with d = 750nm, h = 320nm
and three different nominal hole radius. The calculation is done within the SIBC approxima-
tion, considering enough diffraction orders for achieving convergency. An even more simplified
model was presented in Ref. [4], but we present here this version in order to show later the con-
tribution of different effects. The real and imaginary parts of ρ clearly resembles the the form
expected (from Kramers-Kroning relations) for a causal function in the vicinity of a localized
mode. The finite width in the Im(ρ) peak indicates that this localized mode is a resonance, i.e.
it is coupled to a continuum into which EM energy is lost from the mode. This energy can be
lost due both to absorption and radiative losses. In order to show the relative importance of this
two mechanisms, we represent in the inset of Fig. 4 (green curve) the calculation for r = 140nm
within the SIBC but considering a hypothetical lossless silver. The comparison with the full cal-
culation (inset of Fig. 4, red curve) shows that the resonant peak width, and therefore the typical
time that the radiation stays at the surface, does not change much and is, within this range of
geometrical parameters, limited by radiation losses. Up to this point, it could be thought that
the surface modes are the bona fide surface plasmon polaritons of the flat silver surface which,
due to the folding of their dispersion curve induced by the hole lattice can now couple to radia-
tive modes. However, surface modes appear even in hole arrays within the perfect conductor
approximation (inset of Fig.4, purple curve), although flat perfect conductor interfaces do not
present surface plasmons polaritons. In Ref. [4] we termed these modes ”surface plasmons of
the corrugated metal surface”, because they appear in metals, involve surface currents and, if the
coupling to radiative modes is neglected, the EM wavefield is bound to the surface. However,
this label may have created some confusion given that these modes appear even at corrugated
perfectconductors. In order to further clarify the situation in this paper we have tried to avoid
this (in our opinion minor) point, sticking to the terminology ”surface EM modes”. Recently,
we have shown that the origin of these modes in corrugated perfect conductors come from the
ability of these systems to spoof the response of a real electron plasma [18], which may have
interesting applications for controlling light propagation in metal surfaces through geometry.

In this section, until now, we have discussed the existence of surface EM modes for a single
interface. Even in an optically thick metal film, modes on both surfaces couple through the
evanescent fields inside the holes, forming coupled surface modes that are now able to transfer
energy efficiently through the system. The formation of the coupled surface EM modes is sim-
ilar to, for instance, the formation of molecular levels from atomic levels. It was found in [4]
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Fig. 4. Imaginary (full lines) and Real (dashed lines) parts of ρ (see text) for three different
values of the hole radius: r = 120nm (black curves), r = 140nm (red curves) and r = 160nm
(blue curves). In the three cases, the period of the array d is 750nm. In the inset we compare
the results for Im(ρ) for the case r = 140nm with different approximations to the dielectric
constant of silver: real silver (red line), lossless silver (green line) and perfect conductor
(purple line).

that, even if absorption is small, there are two transmission regimes depending on whether the
time that the radiation stays at the surface before it is radiated (radiation time) is either larger
or smaller than the time needed to form the ”molecular” level (resonant time). In the former
case calculations predict two large EOT peaks, whereas in the latter case, only one EOT peak
appears, with height that decays exponentially as a function of h/a.

There is an analogy to a much simpler system, which can be easily worked out from begin-
ning to end, that makes the previous argument even more compelling: consider the quantum
mechanical (QM) transmission of a particle moving in one-dimension (1D) in the presence
of the three-barrier potential depicted in Fig. 5. For simplicity consider all barriers of height
V = 30 (in units of h̄= 1, particle mass, m= 1), L1 = L2 = 5 and W1 =W3 = 1. Figure 5. shows
the transmission probability as a function of the incident kinetic energy of the particle, for three
different widths of the central barrier, W2. The transmission spectra for this system present the
well known resonant tunnelling behavior (notice that E < V) through localized states in the
wells formed between each two consecutive barriers. This system also shows the same transi-
tion, from a two transmission peaks to a one peak situation, as the transparency of the barrier
separating both localized states in decreased. This 1D QM analog also serves to illustrate the
properties of the reflection coefficient. Consider now that W2 → ∞. For a particle coming from
x = −∞, with E > V, the total reflection coefficient, r , must satisfy |r| = 1, due to current con-
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Fig. 5. Transmission versus energy spectra for the 1D QM analog depicted in the upper
panel: a three-barrier potential of strengths V = 30 with geometrical parameters L1 = L2 = 5
and W1 =W3 = 1. Three cases with different intermediate barrier lengths W2 are considered:
W2 = 1.5 (black curve), W2 = 2.5 (red curve) and W2 = 3.5 (blue curve).

servation. But, for E < V, the reflection amplitude for a wave at x = L−
1 to be reflected back at

x = L−
1 , ρ, is defined between evanescent modes and, as stated previously, current conservation

only forces Imρ > 0. Inset to Figure 5. shows that this is indeed the case, with the peak in Imρ
marking the position of ”leaky” (due to radiation) localized modes in the system.

5. Conclusions

In conclusion, we have analyzed theoretically the extraordinary optical transmission phe-
nomenon observed in square arrays of circular holes perforated in optically thick silver films.
We have also studied the appearance of this phenomenon in perforated perfect conductors and
we have shown universal curves for the optical transmission as a function of the ratio between
radii of the holes and period of the array for different metal thicknesses. We have ended by
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establishing an analogy with a 1D quantum mechanical system: a particle crossing three con-
secutive barriers. We believe that this analogy further reinforces our statement that the physics
of EOT is the physics of transmission through two localized states, weakly coupled between
them and also coupled to a continuum.
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