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We theoretically study channel plasmon-polaritons (CPPs) with a geometry similar to that in recent experi-
ments at telecommunication wavelengths [Bozhevolnyi et al., Nature 440, 508 (2006)]. The CPP modal
shape, dispersion relation, and losses are simulated by using the multiple multipole method and the finite
difference time domain technique. It is shown that, with an increase of the wavelength, the fundamental
CPP mode shifts progressively toward the groove opening, ceasing to be guided at the groove bottom and
becoming hybridized with wedge plasmon-polaritons running along the groove edges. © 2006 Optical Society

of America
OCIS codes: 240.6680, 130.2790, 260.3910.

The guiding of light within a subwavelength cross
section has recently been attracting a great deal of
attention because of ever increasing demands for
miniaturization of photonic circuits. Light may be
confined in the direction perpendicular to a flat me-
tallic surface for energies below the metal plasma fre-
quency. The mode guided along the metallic interface
is known as the surface plasmon-polariton (SPP).
Various geometries have been proposed to achieve
confinement of the plasmon-polariton in the plane
transverse to the propagation direction.'” Among
these proposals, the plasmon-polariton guided by a
V-shaped groove carved in metal (channel plasmon-
polariton, CPP) is particularly interesting. CPPs
were theoretically suggested by Maradudin and
co- Workers6 and subsequently studied in the visible
regime.>” Recently, CPPs have been experlmentally
investigated at telecommunication wavelengths,® dis-
playing strong confinement, low damping, and ro-
bustness against channel bending. Thank to these
properties, prototypes of basic devices could be
demonstrated.” The mentioned devices have been de-
veloped with the help of the effective index approxi-
mation, but, to our knowledge, no rigorous electrody-
namic computation of CPPs at telecom wavelengths
has been reported. The effective index approximation
can deliver information about the dispersion relation,
but it is expected to be inaccurate for frequencies
close to the mode cutoff and is unable to determine
modal shape and polarization. The functionality of
many devices relies on the overlapping of electromag-
netic fields at various sites inside the device. For this
reason knowledge of the modal shape is essential to
provide a solid foundation for the design of CPP-
based devices. Here we present rigorous simulations
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of guided CPPs intended to elucidate their character-
istics at telecom wavelengths, including full vectorial
modes, dispersion, and losses. We show that, con-
trary to what is commonly believed, CPPs at telecom
wavelengths are not guided at the groove bottom, at
least for the groove parameters used in the
experiments.®? Instead, the CPP field at the groove
entrance hybridizes W1th wedge plasmon-polaritons
(WPPs) running along the edges of the groove.

Our goal is to understand the fundamental CPP
mode guided by realistic grooves at telecom
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Fig. 1. (Color online) Dispersion relation for various
modes. Black thick curve, SPP mode on a flat surface;
green curves (squares), CPP() modes for an infinitely deep
groove; red curve (open circles), WPP() mode for an infi-
nitely deep wedge; right-hand insets, time averaged elec-
tric field of the two CPP() modes at 0.6 um; left-hand in-
set, same for the WPP(») mode. The lateral size of the
insets is 2 um.
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ferent wavelengths (~1.44 um for the first mode and
~0.82 um for the second one). This idea was ad-
vanced in Ref. 13, and it is a consequence of the
above mentioned behavior of the fields for increasing
wavelength. As the wavelength grows, the field is
pushed out of the groove and, after a certain thresh-
old, it can no longer be confined by the groove sides
and is radiated in the form of SPPs along the contigu-
ous horizontal metal surfaces. It is important to real-
ize that, before reaching the SPP dispersion line,
both modes approach and cross the WPP() line. This
means that close to cutoff the CPP modes must be hy-
bridized with the modes running on the edges at both
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Fig. 2. (Color online) Dispersion relation for various
modes. Black thick curve, SPP mode on a flat surface; blue
curves (filled circles), CPP modes for a groove of height
1.172 pym (computed with MMP method); triangles, the
same computed with the FDTD method; red curve (open
circles), WPP(«) mode for an infinitely deep wedge; insets,
time averaged electric field of the two CPP modes at
0.6 um. The lateral size of the insets is 2 um.

wavelengths.® Nevertheless, to comprehend the be-
havior in this regime, which is close to cutoff, we will
consider a broader spectrum, higher-order modes,
and a number of different geometries. The simula-
tions have been performed with two rigorous electro-
dynamic techniques: the multiple multipole method
(MMP)'® and, where mentioned, the finite difference
time domain (FDTD) method." Within the MMP the
corners are rounded (10 nm radius of curvature).
FDTD results were converged for a mesh of about
5 nm. Such fine meshes are essential, the more so for
wavelengths shorter than 0.8 um. The grooves are
carved in gold, and we employ experimentally mea-
sured values'® of the dielectric permittivity e.

Figure 1 shows the dispersion relation for a non-
truncated groove with a semiangle of /=12.5° and in-
finitely long sides. This structure sustains two
modes, being termed CPP(x) (see right-hand insets),
which are outside the dispersion line of the SPP at a
flat surface. The modal shape (time averaged electric
field) is shown in the right-hand insets for a wave-
length of A=0.6 um. In the figure the dispersion rela-
tion for a nontruncated metallic wedge of semiangle
a=51.25° and infinitely long sides is also plotted. The
corresponding wedge mode running along the edge is
termed WPP(«) (see left-hand inset). WPP(«) for this
a will be relevant when we later truncate the above
groove at a finite height: it corresponds to the edges
at both sides of the finite-height groove. The WPP()
modal field at 0.6 um is shown in the left inset. For
increasing wavelength all three modes approach the
SPP line (none of them has a cutoff). In this process
the modal shapes remain qualitatively the same, the
only difference being that the fields are expelled
away from the groove or wedge corners.

Figure 2 represents a similar plot, but now a
groove of finite height is considered, the height being
1.172 um. The CPP modes exhibit cutoff now at dif-

sides of the groove. This idea is visualized in the in-
sets that render the modal shapes (time averaged
electric field) at 0.6 um. At this wavelength the first
mode is not close to WPP(«), and the hybridization
does not take place, but it is already happening for
the second mode. The described phenomenon is even
more distinct in Fig. 3, displaying the fundamental
mode for increasing wavelengths. It is observed that
the CPP mode becomes more and more mixed with
the WPP(«). Close to cutoff (at about 1.44 um) the
mode is guided not at the groove bottom anymore but
rather at the groove edges. A hint of this possibility
was mentioned in Ref. 14. In the experiments, the
edges at both sides of the groove have a larger radius
of curvature than in the previously presented simu-
lations. We have verified that this does not alter our
conclusion by repeating the same computation with a
radius of curvature of 100 nm at the groove edges
(and keeping 10 nm at the bottom). Figure 3(d) shows
the instantaneous transverse electric field for this

Fig. 3. (Color online) Modal shape of the CPP fundamen-
tal mode for increasing wavelength \. (a) A=0.6 um, (b) A
=1 um, (¢) A\=1.4 um (close to cutoff). These panels display
the time averaged electric field. (d) Instantaneous trans-
verse electric field at A\=1.4 um for a structure with groove
edges rounded with a 100 nm radius of curvature. All pan-
els have a lateral size of 2 yum.
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Fig. 4. (Color online) Propagation length versus wave-

length for various modes. Black thick curve, SPP mode on a
flat surface; blue curve (filled circles), CPP fundamental
mode for a groove of height 1.172 um; green curve
(squares), CPP(«) fundamental mode for an infinitely deep
groove; red curve (open circles), WPP() mode for an infi-
nitely deep wedge.

case, and it is clear that hybridization with edge
modes still occurs. The transverse electric field is ap-
proximately horizontal inside the channel (an as-
sumption used by the effective index approximation),
but it is not horizontal near the edges where the field
is maximum. Let us note in passing the excellent
agreement of the two techniques employed here (the
residual discrepancy in Fig. 2 for the fundamental
mode at 0.6 um is due to different rounding schemes
of the groove bottom in the two methods). From the
point of view of fabrication it is useful to mention
that, for A € (0.6 um,0.8 um), the dispersion relation
is extremely sensitive to the fine details of the groove
bottom (e.g., rounding), as concluded after a large
number of simulations where the details of the bot-
tom were subjected to small perturbations. On the
other hand, this does not happen for telecom wave-
lengths (as expected from the modal shape), a cir-
cumstance that has also been observed
experimentally.” Note that the calculated cutoff
wavelength of the fundamental mode is somewhat
lower than the wavelengths used in the experiments.
This discrepancy can be ascribed to (small) differ-
ences in the groove geometry, both in the groove
shape (angle, side flatness) and in the groove depth,
and/or different dielectric permittivities of gold. We
have verified (not shown here for brevity) that
slightly less negative € or/and smaller groove semi-
angle 6 leads to a higher cutoff wavelength. Finally,
the experiments were conducted at ambient condi-
tions; thus water condensation could not be excluded
(a very thin water layer can significantly increase the
cutoff wavelength).

The effect of absorption is summarized in Fig. 4,
which renders the propagation length /=[2 Im(k,)]™}
versus wavelength for the various considered struc-
tures (%, is the modal wave vector). The propagation
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lengths are in all cases smaller than that of SPPs at a
flat surface. This is a consequence of the field en-
hancement at the corners and the field confinement
that decreases the portion of the field propagating in
air. When comparing the CPP modes, it is observed
that the effect of truncation at a finite height is only
important for wavelengths larger than 1 um, which
is reasonable because the field is very much confined
at the groove bottom for smaller . For longer wave-
lengths the CPP propagation length is decreased
compared with that of CPP(x). At A=1.4 um we find
that [opp=53 um. The values reported in Ref. 8 at
1.55 um are twice as large. The discrepancy can be
again ascribed to slight differences in geometry
and/or dielectric permittivity that raise the cutoff
wavelength. If the trend of the line corresponding to
the CPP is extrapolated, we find good agreement
with the reported data. It is to be observed that the
propagation length of WPP(c) is significantly higher,
a fact that could find obvious applications.

In conclusion, we have presented rigorous com-
puter simulations of CPPs at telecom wavelengths,
CPPs have been fully characterized in terms of modal
shape, dispersion, and losses. We have shown that,
for relatively shallow grooves, the field is guided at
the groove opening and is hybridized with modes
running along the groove edges (WPPs). We expect
that our findings will be of help for the design of im-
proved CPP devices.

We acknowledge financial support by the EU (con-
tract FP6-2002-IST-1-507879).
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