
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006 1221

Resonant Transmission of Light Through
Subwavelength Holes in Thick Metal Films

Jorge Bravo-Abad, Luis Martı́n-Moreno, and Francisco J. Garcı́a-Vidal

(Invited Paper)

Abstract—In this paper, we study how extraordinary transmis-
sion through an array of holes in a metallic film appears as a
function of the number of holes and their distribution. We have
used a theoretical formalism able to analyze the optical properties
of finite collections of apertures placed at arbitrary positions in
a metallic film. First, we describe how the total transmission in a
hexagonal two-dimensional hole array evolves as the number of
holes in the array is increased. Second, we study the extraordi-
nary transmission appearing in a single one-dimensional chain of
holes. We find that the transmission through this structure is very
sensitive to the incident polarization. Third, we show that a single
hole flanked symmetrically by two finite chains of dimples can also
present extraordinary transmission properties.

Index Terms—Extraordinary transmission, finite arrays, surface
modes, surface plasmons.

I. INTRODUCTION

THE first complete solution of the diffraction of electro-
magnetic (EM) radiation by a single hole in a metallic

screen was published by Bethe in 1944 [1] and extended by
Bouwkamp in 1954 [2]. This theory stated that, for an infinites-
imally thin screen, if the radius of the hole a is much smaller
than the wavelength of the incident radiation λ, the normalized-
to-area transmittance is proportional to (a/λ)4. In other words,
in the extreme subwavelength limit (λ � a), only a negligible
fraction of the electromagnetic energy flux that impinges on the
hole is transmitted. More than 40 years later, Roberts showed
that the effect of considering the finite thickness of the screen
further decreases the transmission [3].

A real breakthrough in this field took place in 1998, when it
was experimentally found that the transmission of light through
an array of subwavelength holes in an optically thick metallic
screen could be orders of magnitude greater than that expected
from Bethe’s theory [4].

The first experimental works [4]–[6] already suggested that
the excitation of surface plasmon modes at the two interfaces
of the system was the main mechanism responsible for the
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so-called extraordinary optical transmission. In order to clar-
ify this point, different theoretical descriptions have been de-
veloped [7]–[11]. Currently, it is generally accepted that the
extraordinary transmission phenomena correspond to different
regimes of tunneling through surface electromagnetic modes
located at the interfaces of the film [8], [12], [13]. Thus, ex-
traordinary transmission through hole arrays is not restricted
to the optical wavelengths but can be found in other frequency
regimes [14]–[17] provided that the surface EM modes can be
formed at the interfaces of the arrays. Therefore, from now
on, we will refer to this phenomenon as extraordinary electro-
magnetic transmission (EET). Moreover, it has been recently
demonstrated that extraordinary transmission also appears in
photonic crystals in other structures [18]–[20] as well as in mat-
ter waves [21]. All these results suggest that the extraordinary
transmission of waves assisted by the excitation of the surface
modes is a very general phenomenon in wave physics.

Remarkably, in [8] it was found that EET is also obtained
for perforated perfect conductors. This point was, very recently,
theoretically explained in terms of the formation of surface EM
modes in the corrugated surfaces of perfect conductors [22],
[23].

In all these previous theoretical works, the hole arrays are
treated as infinite periodic structures. However, the finite size
of the sample must be taken into account in order to understand
some of the fundamental features observed in the experiments
[24]. A systematic study of the electromagnetic response of
finite arrays of apertures in a metallic screen could also be useful
to find new optical functionalities, as it was done before for the
two-dimensional (2-D) analog of this system, i.e., in structures
composed of 1-D apertures (slits and/or grooves) [25]–[31]. In
addition, from an application point of view, the study of the
EM near-fields corresponding to finite hole arrays seems to
be a key issue for the development of the so-called plasmonic
nanolithography [32].

On the other hand, very recently, the EET properties of fi-
nite arrays of holes have been studied experimentally in the
terahertz regime [33]. The resonant transmission peak shown in
these experiments is found at a frequency just above the cutoff
frequency of the hole, which is different from that of the usual
EET experiments, where the size of the holes are such that they
are within the subwavelength regime. Up to now, and to the best
of our knowledge, there has been no numerical confirmation of
this finding.

In this paper, we study the electromagnetic properties of fi-
nite distributions of holes. In order to do this, we have used
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Fig. 1. Schematic picture of the structure under study and the corresponding
reference system used. The physical meaning of each term of the system of
linear equations (13) has also been added to this figure (see text for details on
these magnitudes).

a formalism that is able to solve the electromagnetic response
of a finite distribution (periodic or nonperiodic) of indentations
in a metal film [34]. In this method, we apply perfect metal
boundary conditions (PMBC) in the metallic regions. This will
be a good approximation in both the microwave and terahertz
regimes; therefore, quantitative agreement with experimental
data is expected in these regimes. In the optical range, more re-
alistic calculations can be done using this approach by enlarging
the radii of the holes to take into account the increased cutoff
found in real metals with respect to perfect metals [35], [36].

With the previous assumptions in mind, we will study the
transmission properties of different finite distributions of holes.
First, we will begin by analyzing the electromagnetic trans-
mission properties of a hexagonal lattice of circular holes. We
will present how the EET appears as the number of holes is
increased. We will simulate, for the first time, the experiment
made very recently by Miyamaru and Hangyo [33], confirming
numerically the finite size effects found in that work.

Second, we will analyze the transmission properties of a sin-
gle chain of holes, showing that this structure is very sensitive
to the polarization of the incident radiation.

Finally, we show that it is possible to obtain extraordinary
transmission through a single hole by flanking it with two finite
chains of dimples located at the illuminated side of the film.
As we will see, the total transmission is not affected by the
corrugation in the nonilluminated side.

II. THEORETICAL FORMALISM

The type of structure analyzed in this paper and the reference
system used are schematically shown in Fig. 1. Our aim is to
study the electromagnetic response of a finite set of apertures
distributed in a metallic screen. These apertures can be placed
at arbitrary positions on the metallic film. A key point of our
formalism is that we can consider different properties for each
aperture, i.e., shape, dielectric constant and position of each
aperture is defined separately from the rest.

Following Robert’s work [3], through this paper, we will con-
sider only the components of the electric field and the magnetic
field that lie in the xy plane (Et and Ht, respectively). First of
all, we assume a supercell of length Lx and Ly in the x and y di-
rections, respectively, containing the structure we are interested
in [Fig. 2(a)]. This supercell can be real, being the unit cell of an
infinite periodic array [Fig. 2(b)], or fictitious, corresponding to
a structure with a finite number of indentations given by N . In
this last case, at the end of the procedure, the limit Lx, Ly → ∞
must be taken [Fig. 2(c)].

Fig. 2. Diagrams of the supercell used in the formalism described in the text.

Second, we divide the space within the supercell in three
regions (labeled as I to III in Fig. 1). The width of the film is
given by h. We assume an external plane wave impinging with
a wavevector k0 from the top and whose direction is defined by
a polar angle (θinc) and an azimuthal angle (φinc).

If we take the origin of the z-axis in the middle of the film,
the fields |Et〉 and |Ht〉 can be written as follows.

In Region I, the transversal fields admit the expansions

|Et〉 = δkσ,k0σ0 |�φI+
kσ〉 +

∑
kσ

ρkσ|�φI−
kσ〉 (1)

−uz × |Ht〉 = Y I
kσδkσ,k0σ0 |�φI+

kσ〉 −
∑
kσ

Y I
kσρkσ|�φI−

kσ〉 (2)

where wave vector k is defined as k ≡ (kx, ky) and the sub-
script σ defines the polarization, being σ = 1 for s-polarization
and σ = 2 for p-polarization. Function Y I

kσ corresponds to the
impedance of region I, i.e., Y I

k1 = kz/k0 and Y I
k2 = k0/kz ,

being kz =
√

k2
0 − k2 with k = |k|. Coefficients ρkσ are the

reflection amplitudes. In real space, the plane waves |�φI±
kσ〉 are

〈r|�φI±
kσ〉 = exp[±ikz(z + h/2)]�ψkσ(x, y) (3)

with

�ψkσ(x, y) =
exp[i(kxx + kyy)]√

LxLy




(
−ky/k
kx/k

)
, if σ = 1(

kx/k
ky/k

)
, if σ = 2

.

(4)
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Notice that the bivectors are normalized to obtain
〈�φI±

kσ|�φI±
kσ〉 = 1.

In Region II, for −h/2 < z < h/2 we can write

|Et〉 =
∑
α

[
Aα|�χII+

α 〉 + Bα|�χII−
α 〉

]
(5)

−uz × |Ht〉 =
∑
α

Y II
α

[
Aα|�χII+

α 〉 − Bα|�χII−
α 〉

]
(6)

where α is an index that labels each eigenmode considered in
this problem. In other words, each α defines a certain waveguide
mode inside a certain aperture. The propagation constant along
the z direction of eigenmode α is given by qαz . Notice that this
compact notation allows us to develop a very general formalism
valid for any shape and location of the apertures.

In (6), Y II
α defines the impedance of the corresponding mode

and is given by Y II
α = qαz/k0 in the case of TE modes, while

Y II
α = k0/qαz for TM modes.
The eigenmode is given by |�χII±

α 〉, which can be written in
real space as

〈r|�χII±
α 〉 = exp(±iqαz)�ϕα(x − xα, y − yα). (7)

Functions �ϕα(x, y) have analytical expressions for circular and
rectangular holes [37]. In order to consider shapes different
from these simple ones, the corresponding eigenmodes could
be calculated using numerical methods such as the transfer-
matrix [38] or the multiple multipole method [39].

Finally, in region III, the EM fields can be also expanded in
terms of plane waves as

|Et〉 =
∑
kσ

τkσ|�φIII+
kσ 〉 (8)

−uz × |Ht〉 =
∑
kσ

Y III
kσ τkσ|�φIII+

kσ 〉 (9)

where Y III
kσ is the impedance corresponding to region III and τkσ

are the transmission amplitudes. In region III we have defined
the plane waves as

〈r|�φIII±
kσ 〉 = exp[±ikz(z − h/2)]�ψkσ(x, y). (10)

In the next step, we apply the correspoding matching condi-
tions on |Et〉 and |Ht〉 at the interfaces of the system and we
project them over the plane waves and the eigenmodes of the
apertures, respectively. Once the set {Aα, Bα} is calculated, we
can compute all the electromagnetic magnitudes for this prob-
lem and, in particular, the transmission properties.

Now, we will see how to establish a connection between a so-
lution based on a modal expansion of the fields and a formalism
based on a 3-D Green’s tensor. First, we introduce a new set of
variables {Eα, E′

α} defined by

Eα = Aα + Bα (11)

E ′
α = −

(
Aαeα + Bαe−1

α

)
(12)

where eα = exp(ıqαzh).
Using these definitions in the projected matching equations

we obtain the following new set of linear equations for the

unknowns [Eα, E′
α]

(
GI

αα − εα

)
Eα +

∑
β �=α

GI
αβEβ − GV

αE ′
α = Iext

α

(
GIII

γγ − εγ

)
E ′

γ +
∑
ν �=γ

GIII
γνE ′

ν − GV
γ Eγ = 0 (13)

where we have defined

GI,III
αβ = ı

∑
kσ

Y I,III
kσ I∗kσ,αIkσ,β (14)

Iext
α = 2ıY I

k0σ0
I∗k0σ0,α (15)

εα = −ıY II
α (1 + Φα)/(1 − Φα) (16)

GV
α = −2ıY II

α

√
Φα/(1 − Φα) (17)

where Ikσ,α = exp[i(kxxα + kyyα)]〈�ψI
kσ|�ϕα〉 and Φα =

exp(2ıqαzh).
The physical picture that emerges from the linear system of

equations (13) is sketched in Fig. 1. The mode α is characterized
by two field amplitudes, Eα and E′

α, the former corresponding
to the illuminated side while the latter to the exit side.

The electromagnetic coupling between the objects α and β
through radiative modes is given by Gαβ , both in the input and
the ouput surface. This coupling gives the terms

∑
β GI

αβEβ

and
∑

ν GIII
γνE ′

ν in the system of equations (13).
The coupling between the top and the bottom interfaces is

controlled by GV
α , this quantity gives the terms GV

αEα and
GV

γ E ′
γ . In addition, we have to take into account the external

illumination over the holes. In our formalism this is described
by Iext

α , which, as it is expected, only appears in the matching
equation corresponding to the input side and is given basically
by the overlap between the incident beam and the eigenmode
α [see (15)]. Spatially localized incident beams can also be
treated within this technique. We could include them merely by
introducing their projections over the corresponding waveguide
eigenmodes. Finally, we can understand the magnitude εα as
coming from the back and forth motion of the photon inside the
aperture α.

Therefore, we have reduced our problem to solving the set of
modal amplitudes {Eα, E′

α} at the apertures of the metallic film.
In other words, in our formalism, we have to consider only the
EM fields at the two surfaces of the openings. This increases to a
great extent the efficiency of the proposed approach compared to
the numerical methods that have to treat the entire metal surface
numerically.

Importantly, the linear system of equations (13) hold for both
an infinite periodic and a finite array of holes; the difference be-
tween these two cases lies in the calculation of Gαβ . In the case
of infinite periodic structure, and using the corresponding over-
lapping integrals, the computation of Gαβ is straightforward us-
ing (14). However, for finite systems the limit Lx, Ly → ∞must
be taken. Then, instead of the previous discrete sum we have
an integral that can be written as Gαβ = 〈α|Ĝ|β〉, where the
dyadic Ĝ(�r‖, �r ′

‖ ) = 〈�r‖ |Ĝ|�r ′
‖ 〉 [with �r‖ = (x, y)] can obtained
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from

Ĝij(�r‖, �r ′
‖ ) = g(d)δij + (2δij − 1)

∂2g(d)
∂di∂dj

(18)

where i and j label either x or y, δij is Kronecker’s delta, �d ≡
k0(�r‖ − �r ′

‖ ) and g(d) = k0 exp(ıd)/(2πd).
Now, let us focus on the expression of the transmittance within

the present formalism. We can write the total transmitted power
across the holes as

W = �
{∫

drEt(r)[−uz × H∗(r)]
}

. (19)

Using the expansions for Et(r) and Ht(r) for the transmission
region given in (8) and (9) and taking into account the expression
for τkσ given in terms of the coefficients {Eα, E′

α}, we obtain

W = �




∑
α,β

GαβE ′
αE ′∗

β


 . (20)

Similarly, we could compute the total transmitted power using
the EM fields inside the holes, i.e., using the expansion in modal
coefficients given in (5) and (6)

W = �
{∑

α

GV
α EαE ′∗

α

}
. (21)

If we take into account that the total incident power incident on
the structure is W0 = Yk0σ0 , then the total transmittance t can
be computed as t = W/W0.

In all the calculations shown in this paper, we have assumed
that the metal is a perfect conductor. Therefore, all the results
presented here are scalable and we have chosen the period P of
the arrays as a length unit.

III. EVOLUTION OF EET AS THE NUMBER OF

HOLES IS INCREASED

In this section, we present how the transmission evolves from
the case of a single hole, where the transmittance decreases
monotonically with wavelength, to the case of an infinite peri-
odic array of holes, where resonant transmittance peak(s) appear
in the spectrum. We will begin by considering that the holes are
disposed forming a 2-D hexagonal lattice. We have chosen this
structure in order to simulate the experimental findings reported
very recently in the terahertz regime [33]. Normal incidence and
p-polarization for the incident plane wave is assumed in the fol-
lowing calculations. In addition, we consider that only the two
least evanescent modes are included in the calculation. We have
checked that this assumption gives accurate numerical results in
the wavelength interval considered through this paper.

Fig. 3 shows the total transmission as a function of the num-
ber of holes N for finite arrays whose size ranges from 10 to
105. The transmission is normalized to the area of the holes and
divided by the corresponding N . This will be the normaliza-
tion used in all the transmission spectra presented in this paper.
The thickness of the metal film in both the panels is h/P = 0.44
(corresponding to the metal thickness of the samples analyzed in
experiment [33]) and two different radii of the holes are studied:

Fig. 3. (a) Normalized-to-area total transmittance of a hexagonal array of
circular holes as a function of the wavelength for several values of the number of
holes N . The geometrical parameters defining the structure are a/P = 0.3 and
h/P = 0.44. Normal incidence and p-polarization is assumed for the incident
plane wave. (b) Same as (a) but in this case for a/P = 0.25. Inbox corresponds
to the dependence of the maximum transmittance (Tmax) as a function of N
for a/P = 0.3 (circles) and a/P = 0.25 (squares).

(a) a/P = 0.3 (as in [33]) and (b) a/P = 0.25. The resulting
transmission spectra for both a single hole and an infinite pe-
riodic array of holes are also shown in these panels (see solid
and dotted lines, respectively). For an infinite array, there are
two main features appearing in the spectra. First, a well-defined
minimum (known as Wood’s anomaly) located at a wavelength
(λW) in which a diffracted mode changes its character from
propagating to evanescent. In the case of a hexagonal lattice,
the largest λ that satisfies this condition is λW =

√
3/2P . Sec-

ond, two transmission peaks emerge at wavelengths slightly
larger than λW. These two peaks are the fingerprints of the EET
phenomenon and can be explained in terms of the formation
of surface EM modes at each metal–vacuum interface that are
electromagnetically coupled via the holes [8].

Now we discuss the effect that the finite size of the array has on
the transmittance spectrum. It is worth noting that we can define
a resonant interval (λ = 0.75 − 1.25P for the case a/P = 0.3
and λ = 0.75 − 1P for a/P = 0.25) in which a large number
of holes are necessary to reproduce the main features found in
the infinite periodic system. Outside this wavelength interval,
the transmittance spectrum is independent on the number of
holes. Importantly, as can be seen in the inbox of Fig. 3(b), the
maximum of transmittance found in this interval (Tmax) tends
asymptotically to the value corresponding to an infinite array. It
is possible to define a critical size Nc for which we can state that
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the main properties of an infinite hole array has been reached.
Fig. 3 clearly demonstrates that Nc is completely governed by
the ratio a/P , Nc increases dramatically as a/P decreases.

Finally, we will end this section with a comment on the exper-
iment of Miyamaru and Hangyo [33]. In this experiment, they
analyze hole arrays in which N ranges from 1 to 21. They found
a linear dependence of the transmittance at the peak frequency on
the number of holes. We also obtain the same linear dependence
for the same sizes of the array [see the circles in the inbox of
Fig. 3(b)]. However, we have found that this linear dependence
is only valid for small values of N as for N > 20 the depen-
dence of Tmax as a function of N takes the form T∞(1 − 1/N),
something that could not be experimentally observed in [33]
due to their maximum array size.

IV. SINGLE CHAIN OF HOLES: MINIMAL SYSTEM

SHOWING EET

In this section, we will present a chain of holes as the simplest
structure showing EET properties. We will use the same geomet-
rical parameters as those used in the last section (a/P = 0.25
and h/P = 0.44) in order to show that the numerical results
shown here could be straightforward measured in the terahertz
regime by using a similar experimental setup as that described
in [33]. Notice that, as we have mentioned in Section I, we
expect a quantitative agreement between the theory and the ex-
perimental data for that case.

Fig. 4(a) shows the evolution of the transmittance as a function
of the number of holes in the linear chain (N). We have assumed
that the chain is illuminated by a plane wave that impinges
normally with the electric field pointing along the direction of
the chain. As can be observed in this figure, as we increase N ,
a transmittance peak emerges at λ ≈ P . This shows that EET is
already present in this 1-D arrangement of holes.

In order to study how the resonant peak appears in this struc-
ture, we have plotted the dependence of the maximum value of
the transmission (Tmax) as a function of the number of holes.
The result is rendered in the inbox of Fig. 4(a). As can be seen,
for small N,Tmax increases linearly with N , while for enough
large N the transmittance peak approaches asymptotically (fol-
lowing again a 1/N dependence) the value corresponding to an
infinite chain of holes. In the same way as we did in the pre-
vious section, we can define a critical number of holes Nc that
determines the point at which the structure almost reaches the
transmission properties of its corresponding infinite counterpart.
For the geometrical parameters we are considering in this case,
Nc ≈ 200.

It is also interesting to compare the maximum value of trans-
mittance obtained for an infinite chain of holes (T 1−D

max = 3.35)
with that corresponding to the case of an infinite periodic 2-D
square array T 2−D

max = 5.09) for the same geometrical parame-
ters. Notice that the transmittance at the resonant peak is in-
creased by about 34%.

It is worth commenting that in the case of a incident electric
field pointing in the direction perpendicular to the line of holes,
the transmission is almost the same as the one obtained for a
single hole [see thin solid line in Fig. 4(a)]. We can visualize this

Fig. 4. (a) Normalized-to-area total transmittance of a linear chain as a func-
tion of the wavelength for a/P = 0.25 and h/P = 0.44. Different values of
the number of holes in the chain N are considered. We assume normal incident
and p-polarization. Inbox shows the dependence of the total transmittance Tmax

as a function of the number of holes. (b) Transmission per hole of a structure
composed of two perpendicular lines of holes. The direction of the incident
electric field is parallel to the x-axis.

property by computing the transmission per hole in a structure
composed of two perpendicular chains of holes. Fig. 4(b) shows
the corresponding result assuming that the incident electric field
is parallel to the x-direction. As can be seen in this figure,
the transmittance through the holes in the y-direction is almost
negligible.

V. SINGLE HOLE FLANKED BY A PERIODIC CHAIN OF DIMPLES

As previously said, within our flexible formalism we can
also simulate dimples as well as holes and arbitrary collections
formed by dimples and holes. An interesting structure to an-
alyze is a single hole flanked by two finite linear chains of
dimples located symmetrically with respect to the central hole
(see schematic picture in the top panel of Fig. 5). These linear
chains may be placed at the input surface or at the output sur-
face or at both interfaces. In Fig. 5 we show the transmittance
(normalized to the incident flux that is impinging at the cen-
tral hole) through a single hole with a/P = 0.25, surrounded
symmetrically by 80 dimples with the same radii and different
depths, h1, in a metallic film of thickness h/P = 0.44. The
corrugation is placed at the input surface. As can be seen in
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Fig. 5. Schematic picture of the structure under analysis (top panel).
Normalized-to-area transmittance through a hole with a/P = 0.25 and h/P =
0.44 as a function of λ/P (main panel). The hole is flanked symmetrically at
its input surface by 80 dimples with the same radius and several h1 ranging
from 0 (no corrugation) to 0.8h, h being the metal thickness. Inbox shows the
effect of adding dimples in the output side for h1/h = 0.4. IC labels the case
with dimples only at the input (illuminated) surface of the film while IC+OC
corresponds to the case with dimples in both input and output sides.

Fig. 5, again a transmission peak located at around P evolves as
h1 is increased. The peak value grows almost linearly with h1.
Interestingly, the total transmission does not increase when two
equal additional chains are placed in the output corrugation (see
inset of Fig. 5). The transmission spectra for these two cases
(corrugation only at the input surface and corrugations at both
input and output surfaces) are practically the same for dimples
with h1/h = 0.4.

VI. SUMMARY

In this paper, we have presented an analysis of the EET ap-
pearing in finite size hole arrays. An efficient and accurate the-
oretical framework that allows us to consider a large number of
holes has been presented.

Within this formalism we have studied the total transmission
properties of both finite hexagonal hole arrays and linear chains
of holes. We have presented circular apertures although we have
also worked with squared holes obtaining the same main features
in the transmission spectrum. We have shown that we can define
a critical size of the structure that determines the number of holes
necessary to reproduce the main features corresponding to an
infinite hole array. This is interesting from the basic point of
view and for possible future applications based on EET effects.

Finally, we have found that a structure formed by a single hole
surrounded by two finite linear chains of dimples also presents
EET properties and that this result is almost independent of the
corrugation in the nonilluminated side.
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