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By using a theoretical formalism able to work in both real and k spaces, the physical origin of the
phenomenon of extraordinary transmission of light through quasiperiodic arrays of holes is revealed.
Long-range order present in a quasiperiodic array selects the wave vector(s) of the surface electromagnetic
mode(s) that allows an efficient transmission of light through subwavelength holes.
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The phenomenon of extraordinary optical transmission
(EOT) through periodic two-dimensional (2D) arrays of
subwavelength holes milled in a metallic film [1] has
sparked a great deal of interest due to both its fundamental
implications and its broad range of potential applications.
Subsequent experimental and theoretical works have con-
centrated on analyzing periodic structures [2–10].
However, very recently, several experimental studies
showing EOT in quasiperiodic arrays of holes have been
reported [11–14]. These results suggest that the presence of
long-range order in a 2D hole array is the key ingredient to
observe EOT.

In this Letter we present a complete physical explana-
tion of the EOT properties found in quasiperiodic distribu-
tions of subwavelength holes. This analysis is based on the
comparison between the transmission properties of finite
Penrose lattices of holes with those associated with peri-
odic arrays. The picture that emerges from our theoretical
study is that the physical origin of EOT is common for both
periodic and quasiperiodic arrays. It relies on the excitation
of surface electromagnetic (EM) modes decorating the
metallic interfaces.

Our study is focused on analyzing the transmission
properties of Penrose lattices exhibiting tenfold rotational
symmetry, as those studied experimentally in Ref. [14]. As
in the experimental structure, the hole radius is chosen to
be a � 0:2 mm, the thickness of the metallic film is h �
0:075 mm and the length of the rhombus side defining the
Penrose tiling, d, is d � 1 mm. In our simulations, metal is
treated as a perfect conductor (i.e. with dielectric constant
� � �1), which is an excellent approximation in the THz
regime. Figure 1 shows the three different types of hole
arrangements considered in this work. Left, center, and
right panels correspond to a periodic square lattice, a
tenfold Penrose lattice and a random distribution of circu-
lar holes, respectively. In all three cases, the film thickness,
the number of holes (N � 1506), their diameter and the
size of the external radius are the same. In this way, the
density of holes and the area occupied by them are equal in
the three structures, allowing a direct comparison between

them. The coordinates in the Penrose lattice were gener-
ated by the dual generalized method [15,16]. The periodic
structure is a circular portion of a square lattice with lattice
parameter P � 0:89 mm. In the disordered case, N holes
are randomly distributed but without allowing any inter-

FIG. 1 (color). (a)–(c) Structures considered in this work.
Square (left), Penrose (center), and random lattices (right).
(d) Normalized-to-area transmittance (T) spectra for single
hole (green line), square array (red line), Penrose lattice (black
line), and a random configuration (blue dots). In all four cases,
a � 0:2 mm, h � 0:075 mm, and N � 1506. Gray arrows mark
the locations of the dips (thin lines) and peaks (thick lines) of the
experimental transmittance spectrum for the Penrose lattice as
reported in Ref. [14]. Inset in panel (d) shows the dependence
with N for T at resonant peaks for the quasiperiodic array, � �
0:83 mm (black dots) and � � 0:98 mm (cyan dots).
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hole distance to be smaller than the minimum one found in
the quasiperiodic case.

In order to calculate the scattering properties and EM
field distributions, we use a formalism based on a modal
expansion of the fields, which allows treating efficiently
large numbers of indentations, arbitrarily placed in a metal
film. Within this framework [7], EM fields in all space can
be expressed in terms of the modal amplitudes of the
waveguide modes right at the opening and the exit of the
different holes (En�R� and E0n�R�, respectively, with R
referring to the 2D array locations and n running over the
modes inside the holes). These quantities can be obtained
by solving a system of linear equations:
 

��nEn�R� �
X
m;R0

GR;R0
nm Em�R0� �GV

nE0n�R� � In�R�;

��nE
0
n�R� �

X
m;R0

GR;R0
nm E0m�R0� �GV

nEn�R� � 0;
(1)

where In represents the external illumination and the EM
interaction between holes is accounted for the propagator
GR;R0
nm , that couples mode n in a hole located at R with

mode m at R0. The term �n is related to the bouncing back
and forth of EM fields inside the hole and GV

n couples the
input and exit sides of the hole. Detailed expressions for all
the magnitudes appearing in Eqs. (1) can be found in
Ref. [7]. Once the set fEn�R�; E0n�R�g is numerically ob-
tained, the transmittance through the structure can be
calculated.

Figure 1(d) depicts the normal incidence transmission
spectra computed for the three structures, along with the
transmittance associated with a single hole (green line). In
all cases, the transmittance is normalized to the flux of light
impinging on the area occupied by the holes. In the spectral
range considered, the single hole transmittance is a smooth
decreasing function of the wavelength. In the ordered case
(red line), the transmittance spectrum is also smooth, ex-
cept close to the resonant peak appearing at � � 0:92 mm,
where the normalized-to-area transmittance (T) is about 5
for the geometrical parameters we are considering. This is
the canonical EOT peak, appearing at a resonant wave-
length slightly larger than the lattice parameter. As in the
experiments, resonant transmission also appears when
holes are arranged in a Penrose lattice (black curve in
Fig. 1). In this case, maximum transmission values of about
1.5 are obtained at two resonant wavelengths, � �
0:83 mm and � � 0:98 mm. The agreement between the-
ory and experiment in the spectral locations of these trans-
mission peaks is excellent [see Fig. 1(d)]. On the other
hand, blue dots in Fig. 1(d) demonstrate that EOT does not
appear for any distribution of holes: the transmission spec-
trum for the random array does not show any resonant
feature. This is just a representative example of disordered
arrays; we have generated several random configurations
finding always a nonresonant behavior.

The dependence of EOT on lattice structure can be made
more apparent by working with the Fourier components of

the modal amplitudes, En�q� �
P

R exp��{qR�En�R�. By
applying a Fourier-transform to the set of linear Eqs. (1),
the structure factor of a given set of holes [S�q� �P

R exp��iqR�] appears explicitly in the set of equations
governing fEn�q�; E0n�q�g:

 ��n�q� � �n�En�q� �GV
nE
0
n�q� � InS�q� k0�;

��0n�q� � �n�E0n�q� �GV
nEn�q� � 0;

(2)

where

 ��0�n �q�E
�0�
n �q� �

X
m

Z
dkGmn;kS�q� k�E�0�m �k� (3)

and k0 is the in-plane component of the incident wave
vector. It is worth noticing that the system of Eqs. (2) is
also linear and could be solved by discretization of the
continuum variable q. The terms ��0�n �q�E

�0�
n �q� now repre-

sent the scattering process that couples E�0�n �q� to the con-
tinuum E�0�m �k�, the momentum difference being provided
by the lattice through S�q� k�. The amplitude of the
process depends on Gmn;k:

 Gmn;k �
i

�2��2
X
�

Yk�hnjk�ihk�jmi; (4)

where the admittance of the plane wave k�, Yk�, is
g=kz�k� for a p-polarized wave and kz�k�=g for a
s-polarized one, with g � 2�=�. An important property
that can be extracted from Eq. (4) is that Gmn;k diverges
whenever a p-polarized diffraction wave goes glancing
(kz � 0). When dealing with a finite collection of holes,
from a numerical point of view, it is more convenient to
work with the system of linear equations in real space
[Eqs. (1)]. However, physical insight is gained by analyz-
ing its k-space counterpart [Eqs. (2)], as follows. Let us
treat first the simpler system of an infinite periodic array of
holes and normal incidence radiation. We have checked
that for subwavelength holes it is a very good approxima-
tion to only consider the least evanescent mode inside the
holes (from now on this mode is labeled as n � 0). By
taking advantage of Bloch’s theorem [E0�k�Gi� �
E0�k� and S�k� �

P
Gi
��k�Gi�, Gi being a reciprocal

lattice vector], Eqs. (2) for k � k0 � 0 transform into two
simple equations for E0�0� and E00�0�:

 ��0 � �0�E0�0� �GV
0E
0
0�0� � I0;

��0 � �0�E00�0� �G
V
0E0�0� � 0;

(5)

where �0 � �0�0� � �00�0� �
P

Gi
G00;Gi

. In Fig. 2, T
(panel a) and j�0 � �0j (panel b) versus wavelength are
depicted for an infinite periodic array (magenta line). The
geometrical parameters of this array are the same as the
periodic one analyzed in Fig. 1. As �0 diverges at � �
P � 0:89 mm [as a consequence of the divergence of
G00;�G1

at this �, see Eq. (4)], both E0�0� and E00�0� are
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zero leading to null transmission. This is the so-called
Wood’s anomaly [1] or antiresonance as quoted in
Ref. [14]. The crucial point to realize is that, due to its
rapid variation close to the divergence, at a wavelength
slightly larger than the one corresponding to the glancing
angle, j�0 � �0j � GV

0 . This leads to a resonant enhance-
ment of the electric field amplitudes at the interfaces of the
system [see Eqs. (5)], which can be assigned to the exci-
tation of a leaky surface EM mode [2,17] and, conse-
quently, T presents a maximum at the corresponding
wavelength (see Fig. 2).

The arguments presented above can be extended to the
case of finite arrays (both periodic and quasiperiodic). Now
Bloch’s theorem cannot be applied and, in principle, the
system of Eqs. (2) must be solved for a continuum of states
q. However, we have found that for a finite array with a
large number of holes, q � k0 � 0 is the dominant trans-
mission channel. Therefore, a good approximation can be
obtained by only considering E0�0� and E00�0�. The equa-
tions for these magnitudes are written like Eqs. (5), where
�0 � ��0�0 �0� can be calculated numerically from E�0�0 �k�
[see Eq. (3)]. Note that these last quantities can be easily
obtained by a Fourier transform of the set of modal ampli-
tudes in real space, fE0�R�; E00�R�g. Then, within this
approach we are able to relate transmission features with

properties of just two equations, as in the case of an infinite
periodic array. The results of this approach applied to
square periodic arrays (going from 5	 5 to 41	 41) are
shown in Fig. 2. Although in finite systems �0 presents no
divergences, there is still a resonant feature appearing close
to � � P. The first consequence is that Wood’s anomalies
do not reach zero transmittance in finite arrays. As for the
infinite case, the cut between j�0 � �0j and GV

0 marks the
location of the transmission peak for large arrays (41	 41
and 31	 31). For smaller arrays, there is no cut and the
transmission peak appears at the wavelength in which the
difference between j�0 � �0j and GV

0 is minimal. We have
checked that the approach described above is also valid for
quasiperiodic arrays. In panel (b) of Fig. 3, the evolution of
j�0 � �0j versus wavelength is studied for Penrose lattices
with increasing number of holes (ranging from N � 106 to
N � 1506, the case analyzed in Fig. 1). j�0 � �0j present
maxima at wavelengths corresponding to the glancing
condition for the two main wave vectors of the structure
factor [see inset of Fig. 3(a)]: ~b1 (�1 � 0:8 mm) and ~b2

(�2 � 0:94 mm). Consequently, T shows two minima at
these two wavelengths. At slightly larger wavelengths, the
difference between j�0 � �0j and GV

0 is minimal and,

FIG. 3 (color). (a) Normalized-to-area transmittance versus
wavelength for several quasiperiodic arrays with different num-
ber of holes, N. The geometrical parameters are: a � 0:2 mm,
h � 0:075 mm and d � 1 mm. Inset shows the structure factor
for the N � 1506 case. (b) Both j�0 � �0j and GV

0 (gray line)
versus wavelength for the cases depicted in (a).

FIG. 2 (color). (a) Normalized-to-area transmittance versus
wavelength for an infinite periodic array (magenta line) and
several finite square arrays. The geometrical parameters are: a �
0:2 mm, h � 0:075 mm and P � 0:89 mm. Inset shows the
structure factor for the 41	 41 case. (b) j�0 � �0j and GV

0

(gray line) versus wavelength for the cases depicted in (a).
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correspondingly, two transmission peaks appear in the
spectrum. Therefore, these resonant transmission peaks
stem from the excitation of surface EM modes at the
metallic surfaces, much in the same way as in periodic
arrays. Notice that, however, in the quasiperiodic case,
there is no minimum wave vector for diffraction [i.e., the
structure factor is nonzero for wave vectors with modula
smaller than j ~b1j, see inset of Fig. 3(a)]. This results in
diffraction onto additional propagating modes in vacuum
(other than the zero-order mode), which leads to both
smaller resonant peaks and less pronounced Wood’s
anomalies than those emerging in the periodic case.

It is worth analyzing the spatial distribution of light
emerging from the quasiperiodic array. Figure 4 renders
the transmission per hole in a Penrose lattice of N � 1506
holes at the two resonant wavelengths [� � 0:83 mm and
� � 0:98 mm in panels (b) and (c) of Fig. 4, respectively].
For comparison, panel (a) of Fig. 4 shows the correspond-
ing distribution for the ordered array at the resonant wave-
length 0.92 mm. In all three cases, incident E-field is
pointing along the x direction. In the ordered case, due to
finite size effects, the maximum transmission is located at
the center of the structure [18]. In quasiperiodic arrange-
ments, the transmission-per-hole distribution presents a
completely different pattern: it is far from being uniform,
showing the appearance of some holes with high trans-
mission (hot spots), which are highlighted in the insets of
panels (b) and (c). Interestingly, in the Penrose lattice, for a
given resonant wavelength, hot spots show similar local
environment. However, the existence of hot spots does not
imply that EOT in quasiperiodic systems is dominated by
very localized resonant configurations of holes.
Calculations (not shown here) on finite clusters of holes
centered at the hot spots show an increase of transmittance
as a function of the number of neighbors included in the
cluster. This point is reinforced by the fact that the resonant
peaks observed in the transmission spectra of finite Penrose
lattices do not saturate for small N values [see inset of
Fig. 1(d)]. Both these results are consistent with the inter-
pretation based on extended leaky surface EM modes
described above.

In conclusion, by developing a k-space theoretical for-
malism, we have been able to demonstrate that the resonant
features observed in the transmission spectra of 2D
Penrose lattices of holes can be explained in terms of the
formation of surface EM modes at the interfaces of the
metal film. Furthermore, we have linked the formation of
these modes to the structure factor of the hole arrays,
enabling the understanding of the appearance of extraor-
dinary optical transmission in more general conditions.
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FIG. 4 (color). Transmission per hole
(normalized to the single hole transmis-
sion) displayed in a color scale for
(a) ordered case evaluated at � �
0:92 mm, (b) Penrose lattice at � �
0:83 mm, and (c) Penrose lattice at � �
0:98 mm. Geometrical parameters are
the same as in Fig. 1.
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