AdResS-HybridMD

Coarse Grained dynamics

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Tools for multiscale simulations of liquid matter

Rafael Delgado-Buscalioni

Universidad Autónoma de Madrid

Banff, December 2009

Introduction	Open MD	Hybrid MD	AdResS-HybridMD	Coarse Grained dynamics	Conclusions

• Open MD, Hybrid particle-continuum

- Gianni De Fabritiis (U. Pompeu Fabra, Barcelona)
- P. Coveney (UCL, London)
- E. Flekkoy (Oslo Univ.)
- Adaptive resolution
 - Matej Praprotnik (National Inst. Chem. Ljubljana)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Kurt Kremer (Max-Plank, Mainz)
- Coarse grained dynamics
 - Pep Español (UNED, Madrid)
 - Eric vanden-Eijnden (Courant Institute, NY)

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Interfacing models with different degrees of freedom

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions

Some methods for soft matter simulation

Particle methods	Continuum methods	
$\mathbf{QM} = \mathbf{Q}$ uantum mechanics	CFD = Computational fluid dy-	
MD = Molecular dynamics	namics	
MC = Monte Carlo	FD = Finite Differences	
DPD = Dissipative Particle	SMFD = Spectral methods	
Dynamics	LB = Lattice Boltzmann	
DSMC = Direct simulation	FH = Fluctuating hydrodynamics	
Monte Carlo	SRD = Stochastic Rotation Dy-	
	namics	
	$\mathbf{MPM} = Mass$ point method	

Open MD Hybrid MD

AdRes

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

CONCLUSIONS

Multiscale modelling for different states of matter

SOLIDS	QM-MD MD-FD QM-MD-FD	PRL 93 , 175503 (2004) PRL 87 (8),086104 (2001) Abraham	
GASES	DSMC-CFD MC-CFD	AMAR [A. Garcia] PRB, 64 035401.(2001)	
MEMBRANES	MD-MPM	Ayton et al. J.Chem.Phys 122 , 244716 (2005)	
LIQUIDS			
Domain decomposition	MD-CFD, MD-FH	PRL 97 , 134501 (2006)	
Eulerian-Lagrangian	MD-LB, MD-FH	Ladd, Dunweg,	
Velocity-Stress coupling	MD-SMFD, MD-FD		
Stochastic Rotation Dynamics	MD-SRD	Malevanets-Kapral	
Adaptive Resolution	AdResS	JChemPhys, 123 224106 (2005)	

Domain

type A

decomposition

Eulerian-Lagrangian

Solute-solvent

hvdrodvnamic

coupling

AdResS-HybridMD

Coarse Grained dynamics

Multiscale/Hybrid aproaches for complex liquids

Vahear

R

shear flows sound, heat large molecules multispecies 💊 electrostatics

Faxen terms (finite size effects) Immersed boundaries

Continuum solver provides the local velocity gradient imposed at each MD node.

(日)

Point particle aproximation: Stokes drag (point particle), Basset memory effects... Force Coupling particles of finite size Direct simulation

MD nodes used to evaluate the local stress for the Continuum solver

Non-Newtonian fluids Unknown constituve relation

polymer mels...

Molecular detail.

interfases, surfaces.

macromolecule -fluid interaction

Suspensions

of colloids or polymers,

small particles in flow

Patch dynamics нмм Velocity-Stress coupling type B

Coarse-grained dynamics

How to reduce the degrees of freedom and keep the underlying dynamics

FIG. 3: Sketch of the simulation setup.

MD

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Imposition of a macroscopic state into a microscopic simulation box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

State coupling

• Schwartz iterative method

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

- Schwartz iterative method
- Constrained molecular dynamics (velocity coupling)

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

- Schwartz iterative method
- Constrained molecular dynamics (velocity coupling)
- DOLLS/SLLOD: Molecular dynamics in the inertial frame

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

State coupling

- Schwartz iterative method
- Constrained molecular dynamics (velocity coupling)
- DOLLS/SLLOD: Molecular dynamics in the inertial frame

Flux coupling

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

- Schwartz iterative method
- Constrained molecular dynamics (velocity coupling)
- DOLLS/SLLOD: Molecular dynamics in the inertial frame
- Flux coupling
- Control algorithms

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

- Schwartz iterative method
- Constrained molecular dynamics (velocity coupling)
- DOLLS/SLLOD: Molecular dynamics in the inertial frame
- Flux coupling
- Control algorithms
 - Density profile

Imposition of a macroscopic state into a microscopic simulation box

Related issues (Patch dynamics): How to "lift" the desired macroscopic state into the microscopic domain. Also related: Fast equilibration

- Schwartz iterative method
- Constrained molecular dynamics (velocity coupling)
- DOLLS/SLLOD: Molecular dynamics in the inertial frame
- Flux coupling
- Control algorithms
 - Density profile
 - Mass (particle insertion)

(日)

3

Open MD: flux boundary conditions for molecular dynamics

Coarse Grained dynamics

Open MD: flux boundary conditions for molecular dynamics

Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics CONCLUSIONS ODE MD Task to be solved at the buffer

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

• Mass control: particle insertion/deletion.

Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics CONCLUSIONS Open MD Task to be solved at the buffer

- Mass control: particle insertion/deletion.
- Density profile: controlled by external force distribution.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ の < @

- Mass control: particle insertion/deletion.
- Density profile: controlled by external force distribution.
- Imposition of momentum and energy flux Mass flux across H arises naturally a consequence of the imposed momentum flux.

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

Open MD Mass control at the buffer

• The average buffer mass is controlled to a fixed value $\langle M_B \rangle$ by a simple relaxation algorithm:

$$\frac{\Delta M_B}{\Delta t} = \frac{1}{\tau_B} \left(\langle M_B \rangle - M_B \right)$$

with $\tau_B \simeq [10 - 100] fs$ (faster than any hydrodynamic time).

- Particle deletion/insertion
 - Delete particle if : $\Delta M_B < 0$ or if it crosses the buffer-end.
 - Insert particle if : $\Delta M_B > 0$ USHER algorithm [J. Chem. Phys, **119**, 978 (2003)]

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

Open MD Mass control at the buffer Particle insertion by the USHER algorithm

J. Chem. Phys **119**, 978 (2003) for Lennard-Jones fluids J. Chem. Phys. **121**, 12139 (2004) for water

• Insert a new molecule at target potential energy E_T (usually $E_T = e(\rho, T)$ mean energy per particle)

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

Open MD Mass control at the buffer Particle insertion by the USHER algorithm

J. Chem. Phys **119**, 978 (2003) for Lennard-Jones fluids J. Chem. Phys. **121**, 12139 (2004) for water

- Insert a new molecule at target potential energy E_T (usually $E_T = e(\rho, T)$ mean energy per particle)
- Easy to implement Based on a modified Newton-Raphson method in the potential energy landscape.

Coarse Grained dynamics

< D > < 同 > < E > < E > < E > < 0 < 0</p>

CONCLUSIONS

Open MD Mass control at the buffer Particle insertion by the USHER algorithm

J. Chem. Phys **119**, 978 (2003) for Lennard-Jones fluids J. Chem. Phys. **121**, 12139 (2004) for water

- Insert a new molecule at target potential energy E_T (usually $E_T = e(\rho, T)$ mean energy per particle)
- Easy to implement Based on a modified Newton-Raphson method in the potential energy landscape.
- Thermodynamic control: local ENERGY, TEMPERATURE and PRESSURE are kept at the proper equation of state.

Coarse Grained dynamics

< D > < 同 > < E > < E > < E > < 0 < 0</p>

CONCLUSIONS

Open MD Mass control at the buffer Particle insertion by the USHER algorithm

J. Chem. Phys **119**, 978 (2003) for Lennard-Jones fluids J. Chem. Phys. **121**, 12139 (2004) for water

- Insert a new molecule at target potential energy E_T (usually $E_T = e(\rho, T)$ mean energy per particle)
- Easy to implement Based on a modified Newton-Raphson method in the potential energy landscape.
- Thermodynamic control: local ENERGY, TEMPERATURE and PRESSURE are kept at the proper equation of state.
- Negligible insertion cost < 1% total CPU (LJ), $\sim 3\%$ (water).

Coarse Grained dynamics

Conclusions

Open MD Mass control at the buffer Particle insertion by the USHER algorithm

J. Chem. Phys **119**, 978 (2003) for Lennard-Jones fluids J. Chem. Phys. **121**, 12139 (2004) for water

- Insert a new molecule at target potential energy E_T (usually $E_T = e(\rho, T)$ mean energy per particle)
- Easy to implement Based on a modified Newton-Raphson method in the potential energy landscape.
- Thermodynamic control: local ENERGY, TEMPERATURE and PRESSURE are kept at the proper equation of state.
- Negligible insertion cost < 1% total CPU (LJ), $\sim 3\%$ (water).
- Very fast: water into water at low energy $(E_T = e)$ requires 100 iterations (10⁵ fater than random insertion)

◆□◆ ◆□◆ ◆目◆ ◆目◆ ◆□◆

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions

Open MD Density profile at the buffer

• The external force on a molecule i in the buffer:

$$\mathbf{f}_{i}^{ext} = \frac{g(x_{i})}{\sum_{i \in B} g(x_{i})} \mathbf{F}^{ext} \quad (\text{with } \mathbf{F}^{ext} = A_{H} \mathbf{J}_{H} \cdot \mathbf{e}_{H})$$

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

Open MD Density profile at the buffer

• The external force on a molecule *i* in the buffer:

$$\mathbf{f}_{i}^{ext} = \frac{g(x_{i})}{\sum_{i \in B} g(x_{i})} \mathbf{F}^{ext} \quad (\text{with } \mathbf{F}^{ext} = A_{H} \mathbf{J}_{H} \cdot \mathbf{e}_{H})$$

• The buffer density profile is controlled by the force distribution g(x).

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

Open MD Density profile at the buffer

• The external force on a molecule *i* in the buffer:

$$\mathbf{f}_{i}^{ext} = \frac{g(x_{i})}{\sum_{i \in B} g(x_{i})} \mathbf{F}^{ext} \quad (\text{with } \mathbf{F}^{ext} = A_{H} \mathbf{J}_{H} \cdot \mathbf{e}_{H})$$

• The buffer density profile is controlled by the force distribution g(x).

Coarse Grained dynamics

CONCLUSIONS

Open MD Density profile at the buffer

• The external force on a molecule *i* in the buffer:

$$\mathbf{f}_{i}^{ext} = \frac{g(x_{i})}{\sum_{i \in B} g(x_{i})} \mathbf{F}^{ext} \quad (\text{with } \mathbf{F}^{ext} = A_{H} \mathbf{J}_{H} \cdot \mathbf{e}_{H})$$

• The buffer density profile is controlled by the force distribution g(x).

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CONCLUSIONS

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose:

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CONCLUSIONS

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux J_p

AdResS-HybridMD

Coarse Grained dynamics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Conclusions

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_e across H

AdResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_e across H Over Δt

Open MD

AdResS-HybridMD

Coarse Grained dynamics

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_{e} across H

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_e across H

External force: $\mathbf{F}_{i}^{ext} = \langle \mathbf{F}_{i}^{ext} \rangle + \tilde{\mathbf{F}}_{i}^{ext}$ (particle $i \in B$)

Coarse Grained dynamics

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_{e} across H

Particle insertion/removal

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

External force: $\mathbf{F}_{i}^{ext} = \langle \mathbf{F}_{i}^{ext} \rangle + \tilde{\mathbf{F}}_{i}^{ext}$ (particle $i \in B$) Momentum introduced by the mean external force $\langle \mathbf{F}_i \rangle$

$$\langle \mathbf{F}^{ext} \rangle = \frac{A}{N_B} \tilde{\mathbf{j}}_p \quad \text{where } \tilde{\mathbf{j}}_p \equiv \mathbf{J}_{\mathbf{p}} - \frac{\sum_{i'} \Delta(m \mathbf{v}_{i'})}{A \, dt}$$

Coarse Grained dynamics

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux J_p and energy flux J_e across H

Particle insertion/removal

External force: $\mathbf{F}_{i}^{ext} = \langle \mathbf{F}_{i}^{ext} \rangle + \tilde{\mathbf{F}}_{i}^{ext}$ (particle $i \in B$) Momentum introduced by the mean external force $\langle \mathbf{F}_i \rangle$

$$\langle \mathbf{F}^{ext} \rangle = \frac{A}{N_B} \tilde{\mathbf{j}}_p \quad \text{where } \tilde{\mathbf{j}}_p \equiv \mathbf{J}_{\mathbf{p}} - \frac{\sum_{i'} \Delta(m \mathbf{v}_{i'})}{A \, dt}$$

Energy introduced via dissipative work of the fluctuating forces $\tilde{\mathbf{F}}_{i}^{ext}$

$$\tilde{\mathbf{F}}_{i}^{ext} = \frac{A\mathbf{v}_{i}'}{\sum_{i=1}^{N_{B}}\mathbf{v}_{i}'^{2}} \begin{bmatrix} \tilde{j}_{e} - \tilde{\mathbf{j}}_{p} \cdot \langle \mathbf{v} \rangle \end{bmatrix} \quad \text{with } \tilde{j}_{e} \equiv J_{e} - \frac{\sum_{i'} \Delta \epsilon_{i'}}{Adt}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Coarse Grained dynamics

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_{e} across H

Particle insertion/removal

External force: $\mathbf{F}_{i}^{ext} = \langle \mathbf{F}_{i}^{ext} \rangle + \tilde{\mathbf{F}}_{i}^{ext}$ (particle $i \in B$) Momentum introduced by the mean external force $\langle \mathbf{F}_i \rangle$

$$\langle \mathbf{F}^{ext} \rangle = \frac{A}{N_B} \tilde{\mathbf{j}}_p \quad \text{where } \tilde{\mathbf{j}}_p \equiv \mathbf{J}_{\mathbf{p}} - \frac{\sum_{i'} \Delta(m \mathbf{v}_{i'})}{A \, dt}$$

Energy introduced via dissipative work of the fluctuating forces $\tilde{\mathbf{F}}_{i}^{ext}$

$$\tilde{\mathbf{F}}_{i}^{ext} = \frac{A\mathbf{v}_{i}'}{\sum_{i=1}^{N_{B}}\mathbf{v}_{i}'^{2}} \begin{bmatrix} \tilde{j}_{e} - \tilde{\mathbf{j}}_{p} \cdot \langle \mathbf{v} \rangle \end{bmatrix} \quad \text{ with } \tilde{j}_{e} \equiv J_{e} - \frac{\sum_{i'} \Delta \epsilon_{i'}}{Adt}$$

Mass flux across H arises naturally from momentum flux ▲日▼ ▲□▼ ▲□▼ ▲□▼ □ ● ● ●

Coarse Grained dynamics

Open MD

Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux $\mathbf{J}_{\mathbf{p}}$ and energy flux J_{e} across H

Particle insertion/removal

External force: $\mathbf{F}_{i}^{ext} = \langle \mathbf{F}_{i}^{ext} \rangle + \tilde{\mathbf{F}}_{i}^{ext}$ (particle $i \in B$) Momentum introduced by the mean external force $\langle \mathbf{F}_i \rangle$

$$\langle \mathbf{F}^{ext} \rangle = \frac{A}{N_B} \tilde{\mathbf{j}}_p \quad \text{where } \tilde{\mathbf{j}}_p \equiv \mathbf{J}_{\mathbf{p}} - \frac{\sum_{i'} \Delta(m \mathbf{v}_{i'})}{A \, dt}$$

Energy introduced via dissipative work of the fluctuating forces $\tilde{\mathbf{F}}_{i}^{ext}$

$$\tilde{\mathbf{F}}_{i}^{ext} = \frac{A\mathbf{v}_{i}'}{\sum_{i=1}^{N_{B}}\mathbf{v}_{i}'^{2}} \begin{bmatrix} \tilde{j}_{e} - \tilde{\mathbf{j}}_{p} \cdot \langle \mathbf{v} \rangle \end{bmatrix} \quad \text{ with } \tilde{j}_{e} \equiv J_{e} - \frac{\sum_{i'} \Delta \epsilon_{i'}}{Adt}$$

Mass flux across H arises naturally from momentum flux

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Open MD: Molecular dynamics at different ensembles

• The amount of HEAT and WORK done into the MD system is exactly controlled

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.

Possible MD-ensembles

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.
- Possible MD-ensembles
 - Grand canonical

 $\mu_B VT$

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.
- Possible MD-ensembles
 - Grand canonical

Isobaric ensemble

 $\mu_B VT$

 $\mathbf{J}_{\mathbf{p}} = P\mathbf{\hat{n}}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.
- Possible MD-ensembles
Grand canonical $\mu_B V T$ Isobaric ensemble $\mathbf{J}_{\mathbf{p}} = P \hat{\mathbf{n}}.$ Constant enthalpy $\mathbf{J}_e = M \langle \mathbf{v} \rangle \cdot F = -p \Delta V$
 $\Delta N = 0$
 $\Delta E + p \Delta V = \Delta H = 0$

Open MD: Molecular dynamics at different ensembles

- The amount of HEAT and WORK done into the MD system is exactly controlled
- The system comunicates with the exterior at its boundaries, like a real system.

Possible MD-ensembles	
Grand canonical	μ_B v i
Isobaric ensemble	$\mathbf{J}_{\mathbf{p}}=P\mathbf{\hat{n}}.$
Constant enthalpy	$\begin{aligned} \mathbf{J}_e &= M \langle \mathbf{v} \rangle \cdot F = -p \Delta V \\ \Delta N &= 0 \\ \Delta E + p \Delta V &= \Delta H = 0 \end{aligned}$
Constant heat flux, Q	$\mathbf{J}_e=Q$

Open MD: Mass fluctuations at grand canonical ensemble

$$extsf{Var}[
ho] = k_B T
ho / (V c_T^2)$$
 with $c_T^2 = (\partial p / \partial
ho)_T$

Flux particle BC's are thermodynamically consistent with the Grand Canonical ensemble

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

n MD 🛛 🖁

Hybrid MD AdF

AdResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Hybrid particle-continuum dynamics

Coupling molecular dynamics (MD) and fluctuating hydrodynamics (FH) General issues concerning particle-continuum coupling

Coarse Grained dynamics

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

CONCLUSIONS

Continuum fluid dynamics

• Conservation law $\partial \Phi / \partial t = - \nabla \cdot \mathbf{J}^{\phi}$

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

CONCLUSIONS

Continuum fluid dynamics

• Conservation law $\partial \Phi / \partial t = - \nabla \cdot \mathbf{J}^{\phi}$

mass	$\Phi = \rho$	$\mathbf{J}^{ ho} = ho \mathbf{u}$
momentum	$\Phi = \boldsymbol{g} \equiv \rho \mathbf{u}(\mathbf{r}, \mathbf{t})$	$\mathbf{J}^{m{g}} = ho \mathbf{u} \mathbf{u} + m{P}$
energy	ho e	$\mathbf{J}^e = \rho \mathbf{u} e + \boldsymbol{P} : \mathbf{u} + \boldsymbol{Q}$

MD Hybrid MD

AdResS

dResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Continuum fluid dynamics

• Conservation law
$$\partial \Phi / \partial t = - oldsymbol{
abla} \cdot {f J}^{\phi}$$

mass	$\Phi = \rho$	$\mathbf{J}^{ ho} = ho \mathbf{u}$
momentum	$\Phi = \boldsymbol{g} \equiv \rho \mathbf{u}(\mathbf{r}, \mathbf{t})$	$\mathbf{J}^{oldsymbol{g}}= ho\mathbf{u}\mathbf{u}+oldsymbol{P}$
energy	ho e	$\mathbf{J}^e = \rho \mathbf{u} e + \boldsymbol{P} : \mathbf{u} + \boldsymbol{Q}$

• Closure relations Equation of state

> Pressure tensor Viscous tensor Conduction heat flux

Stress fluctuations

Heat flux fluctuations

$$\begin{split} p &= p(\rho) \\ \textbf{Constitutive relations} \\ P &= p\mathbf{1} + \mathbf{\Pi} + \mathbf{\Pi} \\ \mathbf{\Pi} &= -\eta \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \right) + (2\eta/3 - \xi) \, \nabla \cdot \boldsymbol{u} \\ \boldsymbol{Q} &= -\kappa \nabla T + \tilde{\boldsymbol{Q}} \\ \textbf{Fluctuating heat and stress a la Landau} \\ \langle \mathbf{\widetilde{\Pi}}(\boldsymbol{r}_1, t) \mathbf{\widetilde{\Pi}}(\boldsymbol{r}_2, 0) \rangle &= 2k_B T C_{\alpha\beta\gamma\delta} \delta(\boldsymbol{r}_2 - \boldsymbol{r}_1) \delta(t) \\ C_{\alpha\beta\gamma\delta} &= \left[\eta (\delta_{\alpha\delta} \delta_{\beta\gamma} + \delta_{\alpha\gamma} \delta_{\beta\delta} + (\zeta - \frac{2}{3}\eta) \delta_{\alpha\beta} \delta_{\delta\gamma} \right] \\ \boldsymbol{\widetilde{Q}} \end{split}$$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q @

CFD: The finite volume scheme

Finite volume schemes for fluctuating hydrodynamics

- Alejandro Garcia et al. Phys. Rev. E, **76**, 016708, (2007) energy,chemical species
- Pep Español. Phys. Rev. E, **64**, 046115, (2001) Lagrangian on Voronoi cells
- G. De Fabritiis et al Phys Rev E, **75** 026307 (2007) FH for argon and water
- RDB and A. Dejoan, Phys Rev E ,**78** 046708 (2008) Open BC for FH

$$\int_{V_c} \partial \Phi / \partial t = -\oint_{S_{\alpha}} \mathbf{J}^{\phi} \cdot \mathbf{d}s$$
$$V_c \frac{\Delta \Phi_c}{\Delta t} = -\sum_{f=\text{faces}} A_f \mathbf{J}_f^{\phi} \cdot \mathbf{e}_f \quad \text{(explicit Euler scheme)}$$

AdResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Hybrid MD

CFD: Finite volume

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへ⊙

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

4

CONCLUSIONS

Hybrid MD

Flux at interface H

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

4

Conclusions

Hybrid MD

Local P variables

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

4

CONCLUSIONS

Hybrid MD

Local P fluxes

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

3

CONCLUSIONS

Hybrid MD

Send fluxes to MD

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

4

Conclusions

Hybrid MD

Flux balance

AdResS-HybridMD

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

4

Conclusions

Hybrid MD

Coarse Grained dynamics

CONCLUSIONS

Hybrid MD Coupling time and stress fluctuations

Green-Kubo relations

• Molecular dynamics: decorrelation time $\tau_c \sim 100$ fs (simple liquids)

$$\langle J_{MD}^2 \rangle = \frac{\eta k_B T}{V \tau_c}$$
 with, $\tau_c \equiv \frac{\int_0^\infty \langle J(t) J(0) \rangle dt}{\langle J(0)^2 \rangle}$

• Fluctuating hydrodynamics, decorrelation time $\Delta t_{FH}/2$

$$\langle J_{FH}^2 \rangle = \frac{2\eta k_B T}{V \Delta t_{FH}}$$

• Balance the stress fluctuations $\langle J^2_{MD} \rangle = \langle J^2_{FH} \rangle$:

 $\Delta t_{FH} = 2\tau_c = \delta t_S$ Sampling time = twice MD decorrelation time

• Coupling time (in general) $\Delta t_c = n_{FH} \Delta t_{FH} = N_s \delta t_s$

●●● ● ▲田▼ ▲田▼ ▲国▼ ▲日▼

AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

Hybrid MD : Simulations

- Shear flow (steady/unsteady) PR E, 67, 046704 (2003)
- Sound waves across MD box. PRL, 97, 134501 (2006)
- Heat
- Open systems with proper mass fluctuations: PRE 76, 036709 (2007)
- Flow-soft matter interaction Water sound wave colliding against a lipid layer [PRL, 97 (2006)].

Coarse Grained dynamics

Conclusions

Hybrid MD

Embedding TIP3P water with a fluctuating hydrodynamics solver

Open MD

Hybrid MD Adl

AdResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Hybrid MD @ equilibrium state: velocity and stress fluctuations

996

Open MD H

Hybrid MD Ac

AdResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Hybrid MD @ non-equilibrium: shear flow

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 母 ト ◇ ○ ○

Open MD H

Hybrid MD A

AdResS-HybridMD

Coarse Grained dynamics

Conclusions

Hybrid MD @ non-equilibrium: sound waves

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Hybrid MD @ non-equilibrium: sound waves

Coarse Grained dynamics

Conclusions

Sound - (soft) matter interaction

RDB et al, J. Mech. Engineering Sci. (2008)

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆注▶ ◆注▶ ●注◎

CONCLUSIONS

Adaptive Resolution one motivation
MD Hybr

AdResS-HybridMD

Coarse Grained dynamics

CONCLUSIONS

Adaptive Resolution one motivation

USHER cannot insert large molecules

open MD for complex molecules

Coarse Grained dynamics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Adaptive Resolution Scheme

Praprotnik, Delle Site, Kremer, J. Chem. Phys **123** 224106 (2005) Ann. Rev. Phys. Chem. **59** 545 (2008)

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

(日)

- 10

Adaptive Resolution Scheme

Praprotnik, Delle Site, Kremer, J. Chem. Phys 123 224106 (2005) Ann. Rev. Phys. Chem. 59 545 (2008)

Coarse Grained dynamics

・ロト ・聞ト ・ヨト ・ヨト

æ

Conclusions

Adaptive Resolution Scheme

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

pros

• Reduction of degrees of freedom for the liquid outside the region of interest.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

AdResS

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)

AdResS

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)
- Fluid structure and pressure can be recovered in the coarse-grained domain.

AdResS

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)
- Fluid structure and pressure can be recovered in the coarse-grained domain.
- Self-diffusion of atomistic and coarse-grained domains can be *somehow* matched (a first-principles theory is lacking in the literature).

AdResS

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)
- Fluid structure and pressure can be recovered in the coarse-grained domain.
- Self-diffusion of atomistic and coarse-grained domains can be *somehow* matched (a first-principles theory is lacking in the literature).

AdResS

pros

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)
- Fluid structure and pressure can be recovered in the coarse-grained domain.
- Self-diffusion of atomistic and coarse-grained domains can be *somehow* matched (a first-principles theory is lacking in the literature).

cons

● It does not conserves energy ⇒ cannot describe heat transfer

AdResS

pros

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)
- Fluid structure and pressure can be recovered in the coarse-grained domain.
- Self-diffusion of atomistic and coarse-grained domains can be *somehow* matched (a first-principles theory is lacking in the literature).

cons

- It does not conserves energy \implies cannot describe heat transfer
- Substantial work for fine-tunning both cg and hyb models (effective potentials, pressure, viscosities)

AdResS

pros

- Reduction of degrees of freedom for the liquid outside the region of interest.
- Conserves momentum (3rd Newton Law by construction)
- Fluid structure and pressure can be recovered in the coarse-grained domain.
- Self-diffusion of atomistic and coarse-grained domains can be *somehow* matched (a first-principles theory is lacking in the literature).

cons

- It does not conserves energy \implies cannot describe heat transfer
- Substantial work for fine-tunning both cg and hyb models (effective potentials, pressure, viscosities)
- Restricted to a single thermodynamic state

AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

AdResS combined with open MD or Hybrid MD A triple-scale hybrid

RDB, K. Kremer, M. Praprotnik J. Chem. Phys, 128 114110, (2008); J. Chem. Phys -in press- (2009) AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

AdResS combined with open MD or Hybrid MD A triple-scale hybrid

RDB, K. Kremer, M. Praprotnik

J. Chem. Phys, 128 114110, (2008); J. Chem. Phys -in press- (2009)

• Enables hybrid description of large molecules with large scale hydrodynamics

AdResS combined with open MD or Hybrid MD A triple-scale hybrid

RDB, K. Kremer, M. Praprotnik

J. Chem. Phys, 128 114110, (2008); J. Chem. Phys -in press- (2009)

- Enables hybrid description of large molecules with large scale hydrodynamics
- Eliminates the need for fine-tunning both cg and hyb models (effective potentials, pressure, viscosities)

AdResS combined with open MD or Hybrid MD A triple-scale hybrid

RDB, K. Kremer, M. Praprotnik

J. Chem. Phys, 128 114110, (2008); J. Chem. Phys -in press- (2009)

- Enables hybrid description of large molecules with large scale hydrodynamics
- Eliminates the need for fine-tunning both cg and hyb models (effective potentials, pressure, viscosities)
- Can be extended to work along a thermodynamic process (at constant temperature)

AdResS combined with open MD or Hybrid MD A triple-scale hybrid

RDB, K. Kremer, M. Praprotnik

J. Chem. Phys, 128 114110, (2008); J. Chem. Phys -in press- (2009)

- Enables hybrid description of large molecules with large scale hydrodynamics
- Eliminates the need for fine-tunning both cg and hyb models (effective potentials, pressure, viscosities)
- Can be extended to work along a thermodynamic process (at constant temperature)
- Opens a route to describe heat transfer (still to be solved)

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

Conclusions

HybridMD-AdResS triple scale

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへの

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

Conclusions

HybridMD-AdResS triple scale

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

<ロ> (日) (日) (日) (日) (日)

э

Conclusions

HybridMD-AdResS triple scale

Simulation of TIP3P water under oscillatory shear

Coarse Grained dynamics

Conclusions

Coarse graining dynamics

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

The state of the art

• The current idea is to obtain effective potentials from the distribution probability of distances between CoM.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- The current idea is to obtain effective potentials from the distribution probability of distances between CoM.
- The hope is that this effective potential allows for realistic simulations.

 The current idea is to obtain effective potentials from the distribution probability of distances between CoM.

• The hope is that this effective potential allows for realistic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• For static equilibrium properties the method works, but dynamic properties like diffusion are badly represented.

simulations.

The state of the art

- The current idea is to obtain effective potentials from the distribution probability of distances between CoM.
- The hope is that this effective potential allows for realistic simulations.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- For static equilibrium properties the method works, but dynamic properties like diffusion are badly represented.
- The eliminated degrees of freedom should appear as dissipation and noise.

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Faraday Discuss., 144, 301, (2010)

• A well-defined method for coarse-graining exists: Zwanzig projection

Faraday Discuss., 144, 301, (2010)

- A well-defined method for coarse-graining exists: Zwanzig projection
- Deemed as a "formal" procedure (and therefore useless...).

Faraday Discuss., 144, 301, (2010)

- A well-defined method for coarse-graining exists: Zwanzig projection
- Deemed as a "formal" procedure (and therefore useless...).
- How to make Zwanzig Projection Operator a practical useful tool.

Faraday Discuss., 144, 301, (2010)

- A well-defined method for coarse-graining exists: Zwanzig projection
- Deemed as a "formal" procedure (and therefore useless...).
- How to make Zwanzig Projection Operator a practical useful tool.
- Demonstrate the procedure for the case of star polymer melts.

Outline of Zwanzig theory

The microscopic state is $z = (\cdots, \mathbf{q}_i, \mathbf{p}_i, \cdots)$. Its dynamics is

$$\partial_t z_t = L z_t$$
 $z_t = \exp\{tL\}z_0$

where z_t is the microscopic state at time t and L is the Liouville operator.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Outline of Zwanzig theory

The microscopic state is $z = (\cdots, \mathbf{q}_i, \mathbf{p}_i, \cdots)$. Its dynamics is

$$\partial_t z_t = L z_t$$
 $z_t = \exp\{tL\}z_0$

where z_t is the microscopic state at time t and L is the Liouville operator.

The macroscopic state of the system is represented by a set of functions ${\cal A}(z).$

Outline of Zwanzig theory

The microscopic state is $z = (\cdots, \mathbf{q}_i, \mathbf{p}_i, \cdots)$. Its dynamics is

$$\partial_t z_t = L z_t$$
 $z_t = \exp\{tL\}z_0$

where z_t is the microscopic state at time t and L is the Liouville operator.

The macroscopic state of the system is represented by a set of functions ${\cal A}(z).$ Its dynamics is

$$\partial_t A(z_t) = LA(z_t) = \exp\{tL\}LA(z_0)$$

Outline of Zwanzig theory

The microscopic state is $z = (\cdots, \mathbf{q}_i, \mathbf{p}_i, \cdots)$. Its dynamics is

$$\partial_t z_t = L z_t$$
 $z_t = \exp\{tL\}z_0$

where z_t is the microscopic state at time t and L is the Liouville operator.

The macroscopic state of the system is represented by a set of functions ${\cal A}(z).$ Its dynamics is

$$\partial_t A(z_t) = LA(z_t) = \exp\{tL\}LA(z_0)$$
 Not closed!

AdResS-HybridMD

Coarse Grained dynamics

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Conclusions

The projector

The essence of Zwanzig theory is the projection operator P

1

$$PF(z) = \langle F \rangle^{A(z)}$$

where

$$\langle \cdots \rangle^{\alpha} = \frac{1}{\Omega(\alpha)} \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha) \cdots$$

 $\Omega(\alpha) = \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha)$

and $\rho^{\rm eq}(z)$ is the equilibrium ensemble.

Introduction	Open MD	Hybrid MD	AdResS-HybridMD	Coarse Grained dynamics	Conclusions
			The tricks		

From

$\partial_t A(z_t) = LA(z_t) = \exp\{tL\}LA(z_0)$
AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions

The tricks

From

$$\partial_t A(z_t) = LA(z_t) = \exp\{tL\}LA(z_0)$$

insert 1 = P + Q

 $\partial_t A(z_t) = \exp\{tL\}PLA(z_0) + \exp\{tL\}QLA(z_0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The tricks

From

$$\partial_t A(z_t) = LA(z_t) = \exp\{tL\}LA(z_0)$$

insert 1 = P + Q

$$\partial_t A(z_t) = \exp\{tL\}PLA(z_0) + \exp\{tL\}QLA(z_0)$$

and use Duhamel-Dyson identity

$$\exp\{tL\} = \exp\{tQL\} + \int_0^t ds \exp\{(t-s)L\}PL \exp\{sQL\}$$

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The macro dynamics

By using the form of the projector we obtain the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

The macro dynamics

By using the form of the projector we obtain the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

where

$$S(\alpha) = k_B \ln \Omega(\alpha) = k_B \ln \int \rho^{\text{eq}}(z) \delta(A(z) - \alpha) dz$$

$$M(lpha,t') = rac{1}{k_B} \langle ilde{R}_0 ilde{R}_{t'}
angle^lpha$$

 $\tilde{R}_t(z) = \exp\{tQL\}QLA(z)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Coarse Grained dynamics

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

The macro dynamics

By using the form of the projector we obtain the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

where

$$S(\alpha) = k_B \ln \Omega(\alpha) = k_B \ln \int \rho^{\text{eq}}(z) \delta(A(z) - \alpha) dz$$

$$egin{array}{rcl} M(lpha,t')&=&rac{1}{k_B}\langle ilde{R}_0 ilde{R}_{t'}
angle^lpha \ ilde{R}_t(z)&=&\exp\{tQL\}QLA(z) & ext{Not closed!} \end{array}$$

Open MD Hy

Hybrid MD AdRes

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

CONCLUSIONS

Markovian approximation

$$M(\alpha, t') = \frac{1}{k_B} \langle \tilde{R}_0 \tilde{R}_{t'} \rangle^{\alpha} \approx M(\alpha) \delta(t')$$

$$M(\alpha) = \frac{1}{k_B} \int_0^\infty \langle \tilde{R}_0 \tilde{R}_s \rangle^\alpha ds \qquad \text{Green-Kubo}$$

Then

$$\partial_t \alpha_t = \langle LA \rangle^{\alpha_t} + M(\alpha_t) \frac{\partial S}{\partial \alpha}(\alpha_t) + \tilde{R}_t(z)$$

Closed equation! (R_t is a known white noise).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

How to compute the objects from MD?

The three basic objects to compute in Zwanzig's theory are $\langle LA\rangle^{\alpha},$ $S(\alpha),$ and $M(\alpha).$

How to compute the objects from MD?

The three basic objects to compute in Zwanzig's theory are $(LA)^{\alpha}$, $S(\alpha)$, and $M(\alpha)$.

We need to compute constrained averages.

$$\langle \cdots \rangle^{\alpha} = \frac{1}{\Omega(\alpha)} \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha) \cdots$$

 $\Omega(\alpha) = \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha)$

To compute the friction matrix through Green-Kubo, we need

$$\tilde{R}_t = \exp\{tQL\}QLA(z_0)$$

How to compute the objects from MD?

The three basic objects to compute in Zwanzig's theory are $\langle LA \rangle^{\alpha}$. $S(\alpha)$, and $M(\alpha)$.

We need to compute constrained averages.

$$\langle \cdots \rangle^{\alpha} = \frac{1}{\Omega(\alpha)} \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha) \cdots$$

 $\Omega(\alpha) = \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha)$

To compute the friction matrix through Green-Kubo, we need

$$\tilde{R}_t = \exp\{tQL\}QLA(z_0)$$

Zwanzig theory is formal...

How to compute the objects from MD?

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

At "short times", we may approximate the projected current by

$$\tilde{R}_t \approx LA(z_t) - \langle LA \rangle^{A(z_t)}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

How to compute the objects from MD?

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

At "short times", we may approximate the projected current by

$$\tilde{R}_t \approx LA(z_t) - \langle LA \rangle^{A(z_t)}$$

 $\exp\{tQL\}QLA(z_0) \approx \exp\{tL\}QLA(z_0)$

How to compute the objects from MD?

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

At "short times", we may approximate the projected current by

$$\tilde{R}_t \approx LA(z_t) - \langle LA \rangle^{A(z_t)}$$

$$\exp\{tQL\}QLA(z_0) \approx \exp\{tL\}QLA(z_0)$$

This is not very systematic.

How to compute the objects from MD?

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t ds M(A(z_{t-s}), s) \frac{\partial S}{\partial \alpha}(A(z_{t-s})) + \tilde{R}_t(z)$$

At "short times", we may approximate the projected current by

$$\tilde{R}_t \approx LA(z_t) - \langle LA \rangle^{A(z_t)}$$

$$\exp\{tQL\}QLA(z_0) \approx \exp\{tL\}QLA(z_0)$$

This is not very systematic. Worst: the friction matrix vanish!! (Plateau problem).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A more systematic approach

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t dt' M(A(z_{t-t'}), t') \frac{\partial S}{\partial \alpha}(A(z_{t-t'})) + \tilde{R}_t(z)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A more systematic approach

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t dt' M(A(z_{t-t'}), t') \frac{\partial S}{\partial \alpha}(A(z_{t-t'})) + \tilde{R}_t(z)$$

Perform the change of variables $t'=\epsilon^2\tau$,

$$\partial_t \alpha_t = \langle LA \rangle^{\alpha_t} + \int_0^{t/\epsilon^2} d\tau \epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2\tau) \frac{\partial S}{\partial \alpha}(\alpha_{t-\epsilon^2\tau}) + \tilde{R}_t(z)$$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

A more systematic approach

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t dt' M(A(z_{t-t'}), t') \frac{\partial S}{\partial \alpha}(A(z_{t-t'})) + \tilde{R}_t(z)$$

Perform the change of variables $t'=\epsilon^2\tau$,

$$\partial_t \alpha_t = \langle LA \rangle^{\alpha_t} + \int_0^{t/\epsilon^2} d\tau \epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2\tau) \frac{\partial S}{\partial \alpha}(\alpha_{t-\epsilon^2\tau}) + \tilde{R}_t(z)$$

Assume

$$\lim_{\epsilon \to 0} \epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2 \tau) \equiv m(\alpha_t, \tau)$$

A more systematic approach

From the exact equation

$$\partial_t A(z_t) = \langle LA \rangle^{A(z_t)} + \int_0^t dt' M(A(z_{t-t'}), t') \frac{\partial S}{\partial \alpha}(A(z_{t-t'})) + \tilde{R}_t(z)$$

Perform the change of variables $t'=\epsilon^2\tau$,

$$\partial_t \alpha_t = \langle LA \rangle^{\alpha_t} + \int_0^{t/\epsilon^2} d\tau \epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2 \tau) \frac{\partial S}{\partial \alpha}(\alpha_{t-\epsilon^2\tau}) + \tilde{R}_t(z)$$

Assume

$$\lim_{\epsilon \to 0} \epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2 \tau) \equiv m(\alpha_t, \tau)$$

Then

$$\partial_t \alpha_t = \langle LA \rangle^{\alpha_t} + \int_0^\infty m(\alpha_t, \tau) d\tau \frac{\partial S}{\partial \alpha}(\alpha_t) + \tilde{R}_t(z)$$

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CONCLUSIONS

A more systematic approach

When the limit exists?

$$\epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2\tau) = \frac{1}{k_B} \langle (\epsilon QLA) \exp\{\tau \epsilon^2 QLQ\} \langle \epsilon QLA \rangle \rangle^{\alpha_{t-\epsilon^2\tau}}$$

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CONCLUSIONS

A more systematic approach

When the limit exists?

$$\epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2\tau) = \frac{1}{k_B} \langle (\epsilon QLA) \exp\{\tau \epsilon^2 QLQ\} \langle \epsilon QLA \rangle \rangle^{\alpha_{t-\epsilon^2\tau}}$$

Assume

$$L = L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$$

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CONCLUSIONS

A more systematic approach

When the limit exists?

$$\epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2 \tau) = \frac{1}{k_B} \langle (\epsilon Q L A) \exp\{\tau \epsilon^2 Q L Q\} \langle \epsilon Q L A \rangle \rangle^{\alpha_{t-\epsilon^2\tau}}$$

Assume

$$L = L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$$

with

$$L_2 A = 0$$
$$PL_1 A = 0$$

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CONCLUSIONS

A more systematic approach

When the limit exists?

$$\epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2 \tau) = \frac{1}{k_B} \langle (\epsilon Q L A) \exp\{\tau \epsilon^2 Q L Q\} \langle \epsilon Q L A \rangle \rangle^{\alpha_{t-\epsilon^2\tau}}$$

Assume

$$L = L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$$

with

$$L_2 A = 0$$
$$PL_1 A = 0$$

Then the limit exists

$$\epsilon^2 M(\alpha_{t-\epsilon^2\tau}, \epsilon^2 \tau) = \frac{1}{k_B} \langle L_1 A \exp\{\tau L_2\} L_1 A \rangle^\alpha + \mathcal{O}(\epsilon)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

A more systematic approach

Therefore, if $L = L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$, with $L_2A = 0$ and $PL_1A = 0$ then for $\epsilon \to 0$, we have a Markovian SDE

$$\partial_t \alpha_t = \langle L_0 A \rangle^{\alpha_t} + \overline{M}(\alpha_t) \frac{\partial S}{\partial \alpha}(\alpha_t) + \tilde{R}_t(z)$$

where the Green-Kubo friction matrix is given by

$$\overline{M}(\alpha_t) = \frac{1}{k_B} \int_0^\infty \langle L_1 A \exp\{\tau L_2\} L_1 A \rangle^\alpha d\tau$$

A more systematic approach

However, $L \neq L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$ in general...

A more systematic approach

However, $L \neq L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$ in general... Introduce an evolution operator \mathcal{R} "similar" to L and such that

$$\mathcal{R}A(z) = 0 \mathcal{R}H(z) = 0$$

A more systematic approach

However, $L \neq L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$ in general... Introduce an evolution operator \mathcal{R} "similar" to L and such that

$$\begin{aligned} \mathcal{R}A(z) &= 0\\ \mathcal{R}H(z) &= 0 \end{aligned}$$

It is always possible to decompose the Liouville operator as

$$L = L_0 + L_1 + L_2$$

$$L_0 = P(L - \mathcal{R})$$
$$L_1 = Q(L - \mathcal{R})$$
$$L_2 = \mathcal{R}$$

A more systematic approach

However, $L \neq L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$ in general... Introduce an evolution operator \mathcal{R} "similar" to L and such that

$$\begin{aligned} \mathcal{R}A(z) &= 0\\ \mathcal{R}H(z) &= 0 \end{aligned}$$

It is always possible to decompose the Liouville operator as

$$L = L_0 + L_1 + L_2$$

$$L_0 = P(L - \mathcal{R})$$
$$L_1 = Q(L - \mathcal{R})$$
$$L_2 = \mathcal{R}$$

By construction, $L_2A = 0$ and $PL_1A = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

A more systematic approach

Now, instead of $L = L_0 + L_1 + L_2$, *model* the system with L^{ϵ}

$$L^{\epsilon} \equiv L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$$

This is not the real dynamics except when $\epsilon = 1$. Hopefully, it is very similar, even in the $\epsilon \to 0$ limit.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

A more systematic approach

Now, instead of $L = L_0 + L_1 + L_2$, *model* the system with L^{ϵ}

$$L^{\epsilon} \equiv L_0 + \frac{1}{\epsilon}L_1 + \frac{1}{\epsilon^2}L_2$$

This is not the real dynamics except when $\epsilon = 1$. Hopefully, it is very similar, even in the $\epsilon \to 0$ limit.

Instead of perpetrating unsystematic approximation errors, we prefer to perpetrate systematic modelling errors.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A more systematic approach

In terms of the new operator $\ensuremath{\mathcal{R}}$

A more systematic approach

In terms of the new operator $\ensuremath{\mathcal{R}}$

The basic difference with the "usual" aproximation (plateau-problematic) is that instead of

$$\exp\{QLt\}\approx\exp\{Lt\}$$

we now approximate

 $\exp\{QLt\}\approx\exp\{\mathcal{R}t\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

A more systematic approach

Note that because $\mathcal{R}A = 0$, $\mathcal{R}H = 0$, the dynamics $\exp\{\tau \mathcal{R}\}$ samples $\rho^{eq}(z)\delta(A(z) - \alpha)$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

A more systematic approach

Note that because $\mathcal{R}A = 0$, $\mathcal{R}H = 0$, the dynamics $\exp\{\tau \mathcal{R}\}$ samples $\rho^{eq}(z)\delta(A(z) - \alpha)$.

By ergodicity, we have now a *practical* method for computing constrained averages and correlations with time averages

$$\langle F \rangle^{\alpha} = \lim_{T \to \infty} \frac{1}{T} \int_0^T d\tau \exp\{\tau \mathcal{R}\} F(z)$$

$$\langle \delta J \exp\{\tau \mathcal{R}\} \delta J \rangle^{\alpha} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} d\tau_{0} \exp\{\tau_{0} \mathcal{R}\} \delta J(z)$$

$$\times \exp\{(\tau_{0} + \tau) \mathcal{R}\} \delta J(z)$$

where the initial condition z satisfies $A(z) = \alpha$.

A more systematic approach

Yet, we need to define \mathcal{R} .

A more systematic approach

Yet, we need to define \mathcal{R} .

Take the Hamiltonian dynamics constrained with Lagrange multipliers to give $\dot{A} = 0$:

$$\dot{q}_i = \frac{\partial H}{\partial p_i} - \lambda_\mu \frac{\partial A^\mu}{\partial p_i}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q_i} + \lambda_\mu \frac{\partial A^\mu}{\partial q_i}$$

The Lagrange multipliers can be obtained explicitly from $\dot{A}=0$

$$\lambda_{\nu} = \{A_{\mu}, A_{\nu}\}^{-1} L A^{\mu}$$

・ロト・「聞・ 《聞・ 《聞・ 《日・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Summary

The equivalent Fokker-Planck equation

$$\partial_t \rho(\alpha, t) = \frac{\partial}{\partial \alpha} \mathbf{v}(\alpha) \rho(\alpha, t) + k_B \frac{\partial}{\partial \alpha} \Omega(\alpha) \mathbf{M}(\alpha) \cdot \frac{\partial}{\partial \alpha} \frac{\rho(\alpha, t)}{\Omega(\alpha)}$$

where

$$\begin{aligned} \Omega(\alpha) &= \int dz \rho^{\text{eq}}(z) \delta(A(z) - \alpha) \\ \mathbf{v}(\alpha) &= \langle LA \rangle^{\alpha} \\ \mathbf{M}(\alpha) &= \frac{1}{k_B} \int_0^\infty \langle (LA - \langle LA \rangle^{\alpha}) \exp\{\tau \mathcal{R}\} (LA - \langle LA \rangle^{\alpha}) \rangle^{\alpha} d\tau \end{aligned}$$

All these objects may be computed from simulating the constrained dynamics

Open MD Hybrid MD

AdResS-HybridMD

Coarse Grained dynamics

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

CONCLUSIONS

Coarsening star polymers

MD

CoM

160 star molecules: 12 arms, 6 monomers each. L-J non-bonded interaction, FENE bonded interaction
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Coarsening star polymers

Level	Variables	Dynamics
Micro	$z \hspace{0.1 cm} = \hspace{0.1 cm} \{ {f r}_{i_{\mu}}, {f p}_{i_{\mu}} \}$	$\dot{z} = Lz$
Macro	$A(z) = \begin{cases} \mathbf{R}_{\mu}(z) = \frac{1}{m_{\mu}} \sum_{i_{\mu}} m_{i_{\mu}} \mathbf{r}_{i_{\mu}} \\ \mathbf{P}_{\mu}(z) = \sum_{i_{\mu}} \mathbf{p}_{i_{\mu}} \end{cases}$	SDE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Coarsening star polymers

Level	Variables	Dynamics
Micro	$z \hspace{0.1 cm} = \hspace{0.1 cm} \{ {f r}_{i_{\mu}}, {f p}_{i_{\mu}} \}$	$\dot{z} = Lz$
Macro	$A(z) = \begin{cases} \mathbf{R}_{\mu}(z) = \frac{1}{m_{\mu}} \sum_{i_{\mu}} m_{i_{\mu}} \mathbf{r}_{i_{\mu}} \\ \mathbf{P}_{\mu}(z) = \sum_{i_{\mu}} \mathbf{p}_{i_{\mu}} \end{cases}$	SDE

So we need to find out $\Omega(\alpha)$, $v(\alpha)$ and $M(\alpha)$ of the SDE.

Coarsening star polymers

The equilibrium distribution $\Omega(\alpha)$ is

$$\Omega(R,P) = \int dz \rho^{\rm eq}(z) \delta(R - \hat{R}(z)) \delta(P - \hat{P}(z))$$

Integrating out momenta

$$\Omega(R,P) = \Omega(R) \frac{1}{\sqrt{2\pi T \prod_{\mu} M_{\mu}}} \exp\left\{-\beta \sum_{\mu} \frac{P_{\mu}^2}{2M_{\mu}}\right\}$$

The effective potential is defined through

$$\Omega(R) = \frac{1}{Q} \exp\left\{-\frac{V^{\text{eff}}(R)}{k_B T}\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Coarsening star polymers

The drift term $v(\alpha) = \langle LA \rangle^{\alpha}$ is now

$$\left\langle L\hat{\mathbf{R}}_{\mu}\right\rangle^{RP} = \frac{\mathbf{P}_{\mu}}{M_{\mu}} \rightarrow L\mathbf{R} - \left\langle L\hat{\mathbf{R}}_{\mu}\right\rangle^{RP} = 0$$

$$\left\langle L\hat{\mathbf{P}}_{\mu}\right\rangle^{RP} = \left\langle \mathbf{F}_{\mu}\right\rangle^{RP} \rightarrow \left\langle \mathbf{F}_{\mu}\right\rangle^{R} = -\frac{\partial V^{\text{eff}}}{\partial \mathbf{R}_{\mu}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Coarsening star polymers

The friction matrix $M(\alpha) \frac{1}{k_B} \int_0^\infty \langle \delta LA \exp\{\tau \mathcal{R}\} \delta LA \rangle^\alpha d\tau$ is now

$$\mathbf{M}_{\mu\nu}(R,P) = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \\ \mathbf{0} & \boldsymbol{\gamma}_{\mu\nu}(R,P) \end{pmatrix}$$

The mutual friction coefficients between molecules μ,ν are

$$oldsymbol{\gamma}_{\mu
u}(R,P) = \int_0^\infty dt \langle \delta \mathbf{F}_
u \exp\{\mathcal{R}t\} \delta \mathbf{F}_\mu
angle^{RP}$$

 $\delta \mathbf{F}_\mu = \hat{\mathbf{F}}_\mu - \left\langle \hat{\mathbf{F}}_\mu \right
angle^{RP}$

AdResS-HybridMD

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

CONCLUSIONS

Coarsening star polymers

The SDE for the CoM provided by Zwanzig theory are

$$egin{array}{rcl} \partial_t \mathbf{R}_\mu &=& \mathbf{V}_\mu \ \partial_t \mathbf{P}_\mu &=& \sum_
u \langle \mathbf{F}_{\mu
u}
angle^R - \sum_
u \gamma_{\mu
u}(R) \mathbf{V}_{\mu
u} + ilde{\mathbf{F}}_\mu \end{array}$$

where $\mathbf{V}_{\mu\nu} = \mathbf{V}_{\mu} - \mathbf{V}_{\nu}$.

AdResS-HybridMD

Coarse Grained dynamics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

CONCLUSIONS

Coarsening star polymers

The SDE for the CoM provided by Zwanzig theory are

$$egin{aligned} \partial_t \mathbf{R}_\mu &= \mathbf{V}_\mu \ \partial_t \mathbf{P}_\mu &= \sum_
u \langle \mathbf{F}_{\mu
u}
angle^R - \sum_
u \gamma_{\mu
u}(R) \mathbf{V}_{\mu
u} + ilde{\mathbf{F}}_\mu \end{aligned}$$
where $\mathbf{V}_{\mu
u} = \mathbf{V}_\mu - \mathbf{V}_
u$.

These are the equations of **Dissipative Particle Dynamics**.

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

Coarsening star polymers

The constrained dynamics ${\mathcal R}$ is now simply

$$egin{array}{rcl} \dot{\mathbf{r}}_{i_{\mu}} &=& \mathbf{v}_{i_{\mu}} - \mathbf{V}_{\mu} \ \dot{\mathbf{p}}_{i_{\mu}} &=& \mathbf{F}_{i_{\mu}} - rac{m_{i_{\mu}}}{M_{\mu}} \mathbf{F}_{\mu} \end{array}$$

That, obviously, satisfy $\dot{\mathbf{R}}_{\mu} = 0$ and $\dot{\mathbf{P}}_{\mu} = 0$.

Coarsening star polymers

The constrained dynamics ${\mathcal R}$ is now simply

$$egin{array}{rcl} \dot{\mathbf{r}}_{i_{\mu}} &=& \mathbf{v}_{i_{\mu}} - \mathbf{V}_{\mu} \ \dot{\mathbf{p}}_{i_{\mu}} &=& \mathbf{F}_{i_{\mu}} - rac{m_{i_{\mu}}}{M_{\mu}} \mathbf{F}_{\mu} \end{array}$$

That, obviously, satisfy $\dot{\mathbf{R}}_{\mu} = 0$ and $\dot{\mathbf{P}}_{\mu} = 0$.

By running this dynamic equations and performing time averages we may compute

$$\langle \mathbf{F}_{\mu\nu} \rangle^{R}$$

$$\gamma_{\mu\nu}(R) = \frac{1}{k_{B}T} \int_{0}^{\infty} dt \langle \delta \mathbf{F}_{\mu} \exp{\{t\mathcal{R}\}} \delta \mathbf{F}_{\nu} \rangle^{R}$$

Coarse Grained dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Coarsening star polymers

We assume pair-wise additivity

$$\begin{aligned} \langle \mathbf{F}_{\mu\nu} \rangle^{R} &= \langle \mathbf{F}_{\mu\nu} \rangle^{R_{\mu\nu}} \\ \gamma_{\mu\nu}(R) &= \frac{1}{k_{B}T} \int_{0}^{\infty} dt \langle \delta \mathbf{F}_{\mu} \exp{\{t\mathcal{R}\}} \delta \mathbf{F}_{\nu} \rangle^{R_{\mu\nu}} \end{aligned}$$

Coarsening star polymers

We assume pair-wise additivity

$$\begin{aligned} \langle \mathbf{F}_{\mu\nu} \rangle^{R} &= \langle \mathbf{F}_{\mu\nu} \rangle^{R_{\mu\nu}} \\ \gamma_{\mu\nu}(R) &= \frac{1}{k_{B}T} \int_{0}^{\infty} dt \langle \delta \mathbf{F}_{\mu} \exp{\{t\mathcal{R}\}} \delta \mathbf{F}_{\nu} \rangle^{R_{\mu\nu}} \end{aligned}$$

$$\langle \mathbf{F}_{\mu\nu} \rangle^{R_{\mu\nu}} = \langle \mathbf{F}_{\mu\nu} \cdot \mathbf{e}_{\mu\nu} \rangle^{R_{\mu\nu}} \mathbf{e}_{\mu\nu}$$

 $\gamma_{\mu\nu}(R_{\mu\nu}) = A(R_{\mu\nu})\mathbf{1} + B(R_{\mu\nu})\mathbf{e}_{\mu\nu}\mathbf{e}_{\mu\nu}$

Coarsening star polymers

Markovian behaviour expected?

Coarsening star polymers

The plateau problem

◆□> ◆□> ◆三> ◆三> ・三 のへで

・ロト ・聞ト ・ヨト ・ヨト

4

Coarsening star polymers

The average force $\langle \mathbf{F}_{\mu\nu} \rangle^{R_{\mu\nu}}$

< ロ > < 同 > < 回 > < 回 >

3

Coarsening star polymers

The friction coefficient $\gamma(R_{\mu\nu}) = A(R_{\mu\nu})\mathbf{1} + B(R_{\mu\nu})\mathbf{e}_{\mu\nu}\mathbf{e}_{\mu\nu}$

Result of the comparison

The radial distribution function of the CoM

Result of the comparison

The radial distribution function of the CoM

The pressure and the temperature of the DPD and MD differ in less than 1%.

Result of the comparison

The velocity autocorrelation function of the CoM

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Result of the comparison

The velocity autocorrelation function of the CoM

Friction is crucial.

• HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer

• Can be equipped with adaptive resolution (ADRESS-HYBRIDMD) to treat large molecules.

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer
 - Can be equipped with adaptive resolution (ADRESS-HYBRIDMD) to treat large molecules.
 - Remains to be solved: multispecies and electrostatics across the hybrid interface, energy-conserving adaptive resolution

MD Hybrid

AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer
 - Can be equipped with **adaptive resolution** (ADRESS-HYBRIDMD) to treat large molecules.
 - Remains to be solved: multispecies and electrostatics across the hybrid interface, energy-conserving adaptive resolution
 - Efficient deployment will require: high performance computing, parallelization.

MD Hybrid

AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer
 - Can be equipped with **adaptive resolution** (ADRESS-HYBRIDMD) to treat large molecules.
 - Remains to be solved: multispecies and electrostatics across the hybrid interface, energy-conserving adaptive resolution
 - Efficient deployment will require: high performance computing, parallelization.
- Coarse graining with proper dynamics

MD Hybrid

AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer
 - Can be equipped with adaptive resolution (ADRESS-HYBRIDMD) to treat large molecules.
 - Remains to be solved: multispecies and electrostatics across the hybrid interface, energy-conserving adaptive resolution
 - Efficient deployment will require: high performance computing, parallelization.
- Coarse graining with proper dynamics
 - A well-defined method for coarse-graining exists: Zwanzig projection

MD Hybrid

AdResS-HybridMD

Coarse Grained dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CONCLUSIONS

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer
 - Can be equipped with **adaptive resolution** (ADRESS-HYBRIDMD) to treat large molecules.
 - Remains to be solved: multispecies and electrostatics across the hybrid interface, energy-conserving adaptive resolution
 - Efficient deployment will require: high performance computing, parallelization.
- Coarse graining with proper dynamics
 - A well-defined method for coarse-graining exists: Zwanzig projection
 - A practical recipe has been formulated to compute the macroscopic dynamics from microscopic simulations.

Coarse Grained dynamics

- HYBRID MD: particle-continuum scheme for liquid matter based on domain decomposition.
 - It can solve: Shear flow, sound waves and heat transfer
 - Can be equipped with adaptive resolution (ADRESS-HYBRIDMD) to treat large molecules.
 - Remains to be solved: multispecies and electrostatics across the hybrid interface, energy-conserving adaptive resolution
 - Efficient deployment will require: high performance computing, parallelization.
- Coarse graining with proper dynamics
 - A well-defined method for coarse-graining exists: Zwanzig projection
 - A practical recipe has been formulated to compute the macroscopic dynamics from microscopic simulations.
 - Demonstrated the procedure for the case of star polymer melts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Possible connexions with Heterogeneous Multiscale Modelling

• OPEN MD can be used to reconstruct a macroscopic state given based on the fluxes across boundaries ("lift" operation for dense liquids).

Possible connexions with Heterogeneous Multiscale Modelling

- OPEN MD can be used to reconstruct a macroscopic state given based on the fluxes across boundaries ("lift" operation for dense liquids).
- It could be easily adapted to impose Dirichlet boundary conditions (state coupling).

Possible connexions with Heterogeneous Multiscale Modelling

- OPEN MD can be used to reconstruct a macroscopic state given based on the fluxes across boundaries ("lift" operation for dense liquids).
- It could be easily adapted to impose Dirichlet boundary conditions (state coupling).
- Alternative methods (accelerated MD: tune $\epsilon > 1$ to accelerate slow variables) may also enhance the lift operation (work in progress).