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Pep Español (UNED, Madrid)
Eric vanden-Eijnden (Courant Institute, NY)



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Interfacing models with different degrees of freedom



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Some methods for soft matter simulation

Particle methods Continuum methods

QM = Quantum mechanics
MD = Molecular dynamics
MC = Monte Carlo
DPD = Dissipative Particle
Dynamics
DSMC = Direct simulation
Monte Carlo

CFD = Computational fluid dy-
namics
FD = Finite Differences
SMFD = Spectral methods
LB = Lattice Boltzmann
FH = Fluctuating hydrodynamics
SRD = Stochastic Rotation Dy-
namics
MPM = Mass point method
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Multiscale modelling for different states of matter

QM-MD PRL 93, 175503 (2004)
SOLIDS MD-FD PRL 87(8),086104 (2001)

QM-MD-FD Abraham

GASES DSMC-CFD AMAR [A. Garcia]
MC-CFD PRB, 64 035401.(2001)

MEMBRANES MD-MPM Ayton et al. J.Chem.Phys
122, 244716 (2005)

LIQUIDS
Domain decomposition MD-CFD, MD-FH PRL 97, 134501 (2006)
Eulerian-Lagrangian MD-LB, MD-FH Ladd, Dunweg,...
Velocity-Stress coupling MD-SMFD, MD-FD
Stochastic Rotation Dynamics MD-SRD Malevanets-Kapral
Adaptive Resolution AdResS JChemPhys, 123 224106

(2005)
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Multiscale/Hybrid aproaches for complex liquids

 Domain 
decomposition Molecular detail, 

interfases, surfaces,
macromolecule -fluid interaction

Patch dynamics
 HMM
Velocity-Stress
coupling

Point particle aproximation:
Stokes drag (point particle), 
Faxen terms (finite size effects)
Basset memory effects...
Force Coupling 
particles of finite size
Direct simulation
Immersed boundaries

Eulerian-Lagrangian
Solute-solvent 
hydrodynamic 
coupling

Suspensions 
of colloids or polymers, 
small particles in flow

Non-Newtonian fluids
Unknown constituve relation

polymer mels...

Coarse-grained 
dynamics 

MD
MD nodes used to 

evaluate the local stress 
for the Continuum solver.

Continuum solver provides 
the local velocity gradient 
imposed at each MD node.

shear flows 
sound, heat
large molecules
multispecies
electrostatics

diffusion 
viscosity
anisotropy 
  (nematics...)

How to reduce the 
degrees of freedom

and keep the 
underlying dynamics 

how to "lift MD"

type A

type B
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Imposition of a macroscopic state
into a microscopic simulation box

Related issues (Patch dynamics): How to “lift” the desired
macroscopic state into the microscopic domain.

Also related: Fast equilibration

State coupling

Schwartz iterative method
Constrained molecular dynamics (velocity coupling)
DOLLS/SLLOD: Molecular dynamics in the inertial frame

Flux coupling

Control algorithms

Density profile
Mass (particle insertion)
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Open MD: flux boundary conditions for molecular dynamics

H
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Open MD: flux boundary conditions for molecular dynamics

H

r
e
s
e
r
v
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ir

open MD

B

F
i

ext

Je

Jp
WORK 

pressure tensor

HEAT  FLUX

particles are free to cross H

buffer-end

n

interface of area A 

Fext
i =

giA
∑

i∈B gi
Jp · n ≃

A

NB
(pn + T · n)

p pressure, T shear stress tensor.
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Open MD
Task to be solved at the buffer

Mass control: particle insertion/deletion.

Density profile: controlled by external force distribution.

Imposition of momentum and energy flux
Mass flux across H arises naturally a consequence of the
imposed momentum flux.
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Open MD
Mass control at the buffer

The average buffer mass is controlled to a fixed value 〈MB〉
by a simple relaxation algorithm:

∆MB

∆t
=

1

τB
(〈MB〉 − MB)

with τB ≃ [10 − 100]fs (faster than any hydrodynamic time).

Particle deletion/insertion

Delete particle if : ∆MB < 0 or if it crosses the
buffer-end.
Insert particle if : ∆MB > 0
usher algorithm [J. Chem. Phys, 119, 978 (2003)]
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Open MD
Mass control at the buffer

Particle insertion by the usher algorithm

J. Chem. Phys 119, 978 (2003) for Lennard-Jones fluids

J. Chem. Phys. 121, 12139 (2004) for water

Insert a new molecule at target potential energy ET (usually
ET = e(ρ, T ) mean energy per particle)
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Open MD
Mass control at the buffer

Particle insertion by the usher algorithm

J. Chem. Phys 119, 978 (2003) for Lennard-Jones fluids

J. Chem. Phys. 121, 12139 (2004) for water

Insert a new molecule at target potential energy ET (usually
ET = e(ρ, T ) mean energy per particle)

Easy to implement Based on a modified Newton-Raphson
method in the potential energy landscape.

Thermodynamic control: local energy, temperature and
pressure are kept at the proper equation of state.

Negligible insertion cost < 1% total CPU (LJ), ∼ 3% (water).

Very fast: water into water at low energy (ET = e) requires
100 iterations (105 fater than random insertion)
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Open MD
Density profile at the buffer

The external force on a molecule i in the buffer:

fext
i =

g(xi)
∑

i∈B g(xi)
Fext (withFext = AHJH · eH)
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Open MD
Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux Jp and energy flux Je across H
Over ∆t JpA∆t =

∑

i∈B Fext
i ∆t +

∑

i′ ∆(mvi′ )

JeA∆t
︸ ︷︷ ︸

Total input

=
∑

i∈B

Fext
i · vi∆t

︸ ︷︷ ︸

External force

+
∑

i′

∆ǫi′

︸ ︷︷ ︸

Particle insertion/removal
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Open MD
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Impose: momentum flux Jp and energy flux Je across H
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∑
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External force

+
∑

i′
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Particle insertion/removal

External force: Fext
i = 〈Fext

i 〉 + F̃ext
i (particle i ∈ B)
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Open MD
Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux Jp and energy flux Je across H
Over ∆t JpA∆t =

∑

i∈B Fext
i ∆t +

∑

i′ ∆(mvi′ )

JeA∆t
︸ ︷︷ ︸

Total input

=
∑

i∈B

Fext
i · vi∆t

︸ ︷︷ ︸

External force

+
∑

i′

∆ǫi′

︸ ︷︷ ︸

Particle insertion/removal

External force: Fext
i = 〈Fext

i 〉 + F̃ext
i (particle i ∈ B)

Momentum introduced by the mean external force 〈Fi〉

〈Fext〉 =
A

NB
j̃p where j̃p ≡ Jp −

∑

i′ ∆(mvi′ )

Adt
.
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Open MD
Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux Jp and energy flux Je across H
Over ∆t JpA∆t =

∑

i∈B Fext
i ∆t +

∑

i′ ∆(mvi′ )

JeA∆t
︸ ︷︷ ︸

Total input

=
∑

i∈B

Fext
i · vi∆t

︸ ︷︷ ︸

External force

+
∑

i′

∆ǫi′

︸ ︷︷ ︸

Particle insertion/removal

External force: Fext
i = 〈Fext

i 〉 + F̃ext
i (particle i ∈ B)

Momentum introduced by the mean external force 〈Fi〉

〈Fext〉 =
A

NB
j̃p where j̃p ≡ Jp −

∑

i′ ∆(mvi′ )

Adt
.

Energy introduced via dissipative work of the fluctuating forces F̃ext
i

F̃ext
i =

Av′

i
∑NB

i=1 v
′2
i

[

j̃e − j̃p · 〈v〉
]

with j̃e ≡ Je −

∑

i′ ∆ǫi′

Adt
.
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Open MD
Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)
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Open MD
Imposition of momentum and energy flux

Flekkoy, RDB, Coveney, PRE 72, 026703 (2005)

Impose: momentum flux Jp and energy flux Je across H
Over ∆t JpA∆t =

∑

i∈B Fext
i ∆t +

∑

i′ ∆(mvi′ )

JeA∆t
︸ ︷︷ ︸

Total input

=
∑

i∈B

Fext
i · vi∆t

︸ ︷︷ ︸

External force

+
∑

i′

∆ǫi′

︸ ︷︷ ︸

Particle insertion/removal

External force: Fext
i = 〈Fext

i 〉 + F̃ext
i (particle i ∈ B)

Momentum introduced by the mean external force 〈Fi〉

〈Fext〉 =
A

NB
j̃p where j̃p ≡ Jp −

∑

i′ ∆(mvi′ )

Adt
.

Energy introduced via dissipative work of the fluctuating forces F̃ext
i

F̃ext
i =

Av′

i
∑NB

i=1 v
′2
i

[

j̃e − j̃p · 〈v〉
]

with j̃e ≡ Je −

∑

i′ ∆ǫi′

Adt
.

Mass flux across H arises naturally from momentum flux

Respects second law.
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Open MD: Molecular dynamics at different ensembles

The amount of heat and work done into the MD system is
exactly controlled

The system comunicates with the exterior at its boundaries,
like a real system.

Possible MD-ensembles

Grand canonical
µBVT

Isobaric ensemble
Jp = P n̂.

Constant enthalpy
Je = M〈v〉 · F = −p∆V
∆N = 0
∆E + p∆V = ∆H = 0

Constant heat flux, Q
Je = Q
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Open MD: Mass fluctuations at grand canonical ensemble

Var[ρ] = kBTρ/(V c2
T ) with c2

T = (∂p/∂ρ)T
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Hybrid particle-continuum dynamics

Coupling molecular dynamics (MD)

and fluctuating hydrodynamics (FH)
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Continuum fluid dynamics

Conservation law ∂Φ/∂t = −∇ · Jφ

mass Φ = ρ Jρ = ρu
momentum Φ = g ≡ ρu(r, t) Jg = ρuu + P

energy ρe Je = ρue + P : u + Q

Closure relations
Equation of state p = p(ρ)

Constitutive relations

Pressure tensor P = p1 + Π + Π̃
Viscous tensor Π = −η

(
∇u + ∇uT

)
+ (2η/3 − ξ)∇ · u

Conduction heat flux Q = −κ∇T + Q̃
Fluctuating heat and stress a la Landau

Stress fluctuations 〈Π̃(r1, t)Π̃(r2, 0)〉 = 2kBTCαβγδδ(r2 − r1)δ(t)
Cαβγδ =

[
η(δαδδβγ + δαγδβδ + (ζ − 2

3
η)δαβδδγ

]

Heat flux fluctuations Q̃



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

CFD: The finite volume scheme

Finite volume schemes for fluctuating hydrodynamics

Alejandro Garcia et al. Phys. Rev. E, 76, 016708, (2007)
energy,chemical species

Pep Español. Phys. Rev. E, 64, 046115, (2001) Lagrangian on
Voronoi cells

G. De Fabritiis et al Phys Rev E, 75 026307 (2007) FH for argon
and water

RDB and A. Dejoan, Phys Rev E ,78 046708 (2008) Open BC for
FH

∫

Vc

∂Φ/∂t = −

∮

Sα

Jφ · ds

Vc
∆Φc

∆t
= −

∑

f=faces

AfJ
φ
f · ef (explicit Euler scheme)
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Hybrid MD

CFD: Finite volume
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Hybrid MD

Flux at interface H
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Hybrid MD

Local P variables
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Hybrid MD

Local P fluxes
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Hybrid MD

Send fluxes to MD
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Hybrid MD

Flux balance
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Hybrid MD

Conservative scheme
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Hybrid MD
Time coupling



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Hybrid MD
Coupling time and stress fluctuations

Green-Kubo relations

Molecular dynamics: decorrelation time τc ∼ 100fs (simple liquids)

〈J2
MD〉 =

ηkBT

V τc
with, τc ≡

∫
∞

0 〈J(t)J(0)〉dt

〈J(0)2〉

Fluctuating hydrodynamics, decorrelation time ∆tFH/2

〈J2
FH〉 =

2ηkBT

V ∆tFH

Balance the stress fluctuations 〈J2
MD〉 = 〈J2

FH〉:

∆tFH = 2τc = δtS Sampling time = twice MD decorrelation time

Coupling time (in general) ∆tc = nFH∆tFH = Nsδts
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Hybrid MD : Simulations

Shear flow (steady/unsteady) PR E, 67, 046704 (2003)

Sound waves across MD box. PRL, 97, 134501 (2006)

Heat

Open systems with proper mass fluctuations: PRE 76, 036709
(2007)

Flow-soft matter interaction
Water sound wave colliding against a lipid layer [PRL, 97
(2006)].
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Hybrid MD
Embedding TIP3P water with a fluctuating hydrodynamics solver

−25 −20 −15 −10 −5 0 5
0

0.01

0.02

0.03

0.04

n
 (

A
−

3
)

z (A)

B P

H 

water density profile

Hybrid MD-FH
setup

DMPC 
(lipid layer)

PRL, 97, 134501 (2006)

PRE, 76, 036709 (2007)



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Hybrid MD @ equilibrium state:
velocity and stress fluctuations



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Hybrid MD @ non-equilibrium:
shear flow



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Hybrid MD @ non-equilibrium:
sound waves



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Hybrid MD @ non-equilibrium:
sound waves



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Sound - (soft) mattter interaction

RDB et al, J. Mech. Engineering Sci. (2008)



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Adaptive Resolution
one motivation



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Adaptive Resolution
one motivation

usher cannot insert large molecules

H

open MD for complex molecules

B

Buffer

Je

Jp
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Adaptive Resolution Scheme

Praprotnik, Delle Site, Kremer, J. Chem. Phys 123 224106 (2005)

Ann. Rev. Phys. Chem. 59 545 (2008)
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Praprotnik, Delle Site, Kremer, J. Chem. Phys 123 224106 (2005)

Ann. Rev. Phys. Chem. 59 545 (2008)
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AdResS

pros

Reduction of degrees of freedom for the liquid outside the
region of interest.

Conserves momentum (3rd Newton Law by construction)

Fluid structure and pressure can be recovered in the
coarse-grained domain.

Self-diffusion of atomistic and coarse-grained domains can be
somehow matched (a first-principles theory is lacking in the
literature).

cons

It does not conserves energy =⇒ cannot describe heat transfer

Substantial work for fine-tunning both cg and hyb models
(effective potentials, pressure, viscosities)

Restricted to a single thermodynamic state
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AdResS combined with open MD or Hybrid MD
A triple-scale hybrid

RDB, K. Kremer, M. Praprotnik

J. Chem. Phys, 128 114110, (2008); J. Chem. Phys -in press- (2009)

Enables hybrid description of large molecules with large scale
hydrodynamics

Eliminates the need for fine-tunning both cg and hyb models
(effective potentials, pressure, viscosities)

Can be extended to work along a thermodynamic process (at
constant temperature)

Opens a route to describe heat transfer (still to be solved)
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HybridMD-AdResS triple scale
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HybridMD-AdResS triple scale

Simulation of TIP3P water under oscillatory shear
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Coarse graining dynamics
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The state of the art

The current idea is to obtain effective potentials from the
distribution probability of distances between CoM.

The hope is that this effective potential allows for realistic
simulations.

For static equilibrium properties the method works, but
dynamic properties like diffusion are badly represented.

The eliminated degrees of freedom should appear as
dissipation and noise.



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Faraday Discuss., 144, 301, (2010)

A well-defined method for coarse-graining exists:
Zwanzig projection



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Faraday Discuss., 144, 301, (2010)

A well-defined method for coarse-graining exists:
Zwanzig projection

Deemed as a “formal” procedure (and therefore useless...).



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Faraday Discuss., 144, 301, (2010)

A well-defined method for coarse-graining exists:
Zwanzig projection

Deemed as a “formal” procedure (and therefore useless...).

How to make Zwanzig Projection Operator a practical useful
tool.



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Faraday Discuss., 144, 301, (2010)

A well-defined method for coarse-graining exists:
Zwanzig projection

Deemed as a “formal” procedure (and therefore useless...).

How to make Zwanzig Projection Operator a practical useful
tool.

Demonstrate the procedure for the case of star polymer melts.
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Outline of Zwanzig theory

The microscopic state is z = (· · · ,qi,pi, · · · ). Its dynamics is

∂tzt = Lzt zt = exp{tL}z0

where zt is the microscopic state at time t and L is the Liouville
operator.

The macroscopic state of the system is represented by a set of
functions A(z).
Its dynamics is

∂tA(zt) = LA(zt) = exp{tL}LA(z0) Not closed!
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The projector

The essence of Zwanzig theory is the projection operator P

PF (z) = 〈F 〉A(z)
F(z)

A(z)

z

where

〈· · · 〉α =
1

Ω(α)

∫

dzρeq(z)δ(A(z) − α) · · ·

Ω(α) =

∫

dzρeq(z)δ(A(z) − α)

and ρeq(z) is the equilibrium ensemble.
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The tricks

From

∂tA(zt) = LA(zt) = exp{tL}LA(z0)

insert 1 = P + Q

∂tA(zt) = exp{tL}PLA(z0) + exp{tL}QLA(z0)

and use Duhamel-Dyson identity

exp{tL} = exp{tQL} +

∫ t

0
ds exp{(t − s)L}PL exp{sQL}
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The macro dynamics

By using the form of the projector we obtain the exact equation

∂tA(zt) = 〈LA〉A(zt) +

∫ t

0
dsM(A(zt−s), s)

∂S

∂α
(A(zt−s)) + R̃t(z)
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The macro dynamics

By using the form of the projector we obtain the exact equation

∂tA(zt) = 〈LA〉A(zt) +

∫ t

0
dsM(A(zt−s), s)

∂S

∂α
(A(zt−s)) + R̃t(z)

where

S(α) = kB ln Ω(α) = kB ln

∫

ρeq(z)δ(A(z) − α)dz

M(α, t′) =
1

kB
〈R̃0R̃t′〉

α

R̃t(z) = exp{tQL}QLA(z) Not closed!
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Markovian approximation

M(α, t′) =
1

kB
〈R̃0R̃t′〉

α ≈ M(α)δ(t′)

M(α) =
1

kB

∫
∞

0
〈R̃0R̃s〉

αds Green-Kubo

Then

∂tαt = 〈LA〉αt + M(αt)
∂S

∂α
(αt) + R̃t(z)

Closed equation! (Rt is a known white noise).
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How to compute the objects from MD?

The three basic objects to compute in Zwanzig’s theory are 〈LA〉α,
S(α), and M(α).
We need to compute constrained averages.

〈· · · 〉α =
1

Ω(α)

∫

dzρeq(z)δ(A(z) − α) · · ·

Ω(α) =

∫

dzρeq(z)δ(A(z) − α)

To compute the friction matrix through Green-Kubo, we need

R̃t = exp{tQL}QLA(z0)

Zwanzig theory is formal...
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How to compute the objects from MD?

From the exact equation

∂tA(zt) = 〈LA〉A(zt) +

∫ t

0
dsM(A(zt−s), s)

∂S

∂α
(A(zt−s)) + R̃t(z)

At “short times”, we may approximate the projected current by

R̃t ≈ LA(zt) − 〈LA〉A(zt)

exp{tQL}QLA(z0) ≈ exp{tL}QLA(z0)

This is not very systematic. Worst: the friction matrix vanish!!
(Plateau problem).
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A more systematic approach

From the exact equation

∂tA(zt) = 〈LA〉A(zt) +

∫ t

0
dt′M(A(zt−t′ ), t

′)
∂S

∂α
(A(zt−t′ )) + R̃t(z)

Perform the change of variables t′ = ǫ2τ ,

∂tαt = 〈LA〉αt +

∫ t/ǫ2

0
dτǫ2M(αt−ǫ2τ , ǫ

2τ)
∂S

∂α
(αt−ǫ2τ ) + R̃t(z)

Assume

lim
ǫ→0

ǫ2M(αt−ǫ2τ , ǫ
2τ) ≡ m(αt, τ)

Then

∂tαt = 〈LA〉αt +

∫
∞

0
m(αt, τ)dτ

∂S

∂α
(αt) + R̃t(z)
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A more systematic approach

When the limit exists?

ǫ2M(αt−ǫ2τ , ǫ
2τ) =

1

kB
〈(ǫQLA) exp{τǫ2QLQ}(ǫQLA)〉αt−ǫ2τ

Assume

L = L0 +
1

ǫ
L1 +

1

ǫ2
L2

with

L2A = 0

PL1A = 0

Then the limit exists

ǫ2M(αt−ǫ2τ , ǫ
2τ) =

1

kB
〈L1A exp{τL2}L1A〉α + O(ǫ)
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A more systematic approach

Therefore, if L = L0 + 1
ǫ L1 + 1

ǫ2 L2, with L2A = 0 and PL1A = 0
then for ǫ → 0, we have a Markovian SDE

∂tαt = 〈L0A〉αt + M(αt)
∂S

∂α
(αt) + R̃t(z)

where the Green-Kubo friction matrix is given by

M (αt) =
1

kB

∫
∞

0
〈L1A exp{τL2}L1A〉αdτ
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A more systematic approach

However, L 6= L0 + 1
ǫ L1 + 1

ǫ2 L2 in general...
Introduce an evolution operator R “similar” to L and such that

RA(z) = 0

RH(z) = 0

It is always possible to decompose the Liouville operator as

L = L0 + L1 + L2

L0 = P (L −R)

L1 = Q(L −R)

L2 = R

By construction, L2A = 0 and PL1A = 0.
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A more systematic approach

Now, instead of L = L0 + L1 + L2, model the system with Lǫ

Lǫ ≡ L0 +
1

ǫ
L1 +

1

ǫ2
L2

This is not the real dynamics except when ǫ = 1. Hopefully, it is
very similar, even in the ǫ → 0 limit.
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A more systematic approach

Now, instead of L = L0 + L1 + L2, model the system with Lǫ

Lǫ ≡ L0 +
1

ǫ
L1 +

1

ǫ2
L2

This is not the real dynamics except when ǫ = 1. Hopefully, it is
very similar, even in the ǫ → 0 limit.

Instead of perpetrating unsystematic approximation errors, we

prefer to perpetrate systematic modelling errors.
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A more systematic approach

In terms of the new operator R

〈L0A〉α = 〈LA〉α

M(α) =
1

kB

∫
∞

0
〈(LA − 〈LA〉α) exp{τR}(LA − 〈LA〉α)〉αdτ
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A more systematic approach

In terms of the new operator R

〈L0A〉α = 〈LA〉α

M(α) =
1

kB

∫
∞

0
〈(LA − 〈LA〉α) exp{τR}(LA − 〈LA〉α)〉αdτ

The basic difference with the “usual” aproximation
(plateau-problematic) is that instead of

exp{QLt} ≈ exp{Lt}

we now approximate

exp{QLt} ≈ exp{Rt}
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A more systematic approach

Note that because RA = 0,RH = 0, the dynamics exp{τR}
samples ρeq(z)δ(A(z) − α).
By ergodicity, we have now a practical method for computing
constrained averages and correlations with time averages

〈F 〉α = lim
T→∞

1

T

∫ T

0
dτ exp{τR}F (z)

〈δJ exp{τR}δJ〉α = lim
T→∞

1

T

∫ T

0
dτ0 exp{τ0R}δJ(z)

× exp{(τ0 + τ)R}δJ(z)

where the initial condition z satisfies A(z) = α.
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A more systematic approach

Yet, we need to define R.

Take the Hamiltonian dynamics constrained with Lagrange
multipliers to give Ȧ = 0:

q̇i =
∂H

∂pi
−λµ

∂Aµ

∂pi

ṗi = −
∂H

∂qi
+λµ

∂Aµ

∂qi

The Lagrange multipliers can be obtained explicitly from Ȧ = 0

λν = {Aµ, Aν}
−1LAµ
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Summary

The equivalent Fokker-Planck equation

∂tρ(α, t) =
∂

∂α
v(α)ρ(α, t) + kB

∂

∂α
Ω(α)M(α)·

∂

∂α

ρ(α, t)

Ω(α)

where

Ω(α) =

∫

dzρeq(z)δ(A(z) − α)

v(α) = 〈LA〉α

M(α) =
1

kB

∫
∞

0
〈(LA − 〈LA〉α) exp{τR}(LA − 〈LA〉α)〉αdτ

All these objects may be computed from simulating the
constrained dynamics
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Coarsening star polymers

MD CoM

160 star molecules: 12 arms, 6 monomers each. L-J non-bonded
interaction, FENE bonded interaction
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Coarsening star polymers

Level Variables Dynamics

Micro z = {riµ ,piµ} ż = Lz

Macro A(z) =

{

Rµ(z) = 1
mµ

∑

iµ
miµriµ

Pµ(z) =
∑

iµ
piµ

SDE
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Coarsening star polymers

Level Variables Dynamics

Micro z = {riµ ,piµ} ż = Lz

Macro A(z) =

{

Rµ(z) = 1
mµ

∑

iµ
miµriµ

Pµ(z) =
∑

iµ
piµ

SDE

So we need to find out Ω(α), v(α) and M(α) of the SDE.
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Coarsening star polymers

The equilibrium distribution Ω(α) is

Ω(R,P ) =

∫

dzρeq(z)δ(R − R̂(z))δ(P − P̂ (z))

Integrating out momenta

Ω(R,P ) = Ω(R)
1

√

2πT
∏

µ Mµ

exp

{

−β
∑

µ

P 2
µ

2Mµ

}

The effective potential is defined through

Ω(R) =
1

Q
exp

{

−
V eff(R)

kBT

}
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Coarsening star polymers

The drift term v(α) = 〈LA〉α is now

〈

LR̂µ

〉RP
=

Pµ

Mµ
→ LR −

〈

LR̂µ

〉RP
= 0

〈

LP̂µ

〉RP
= 〈Fµ〉

RP → 〈Fµ〉
R = −

∂V eff

∂Rµ



Introduction Open MD Hybrid MD AdResS-HybridMD Coarse Grained dynamics Conclusions

Coarsening star polymers

The friction matrix M(α) 1
kB

∫
∞

0 〈δLA exp{τR}δLA〉αdτ is now

Mµν(R,P ) =





0 0

0 γµν(R,P )





The mutual friction coefficients between molecules µ, ν are

γµν(R,P ) =

∫
∞

0
dt〈δFν exp{Rt}δFµ〉

RP

δFµ = F̂µ −
〈

F̂µ

〉RP
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Coarsening star polymers

The SDE for the CoM provided by Zwanzig theory are

∂tRµ = Vµ

∂tPµ =
∑

ν

〈Fµν〉
R −

∑

ν

γµν(R)Vµν + F̃µ

where Vµν = Vµ − Vν .
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Coarsening star polymers

The SDE for the CoM provided by Zwanzig theory are

∂tRµ = Vµ

∂tPµ =
∑

ν

〈Fµν〉
R −

∑

ν

γµν(R)Vµν + F̃µ

where Vµν = Vµ − Vν .

These are the equations of Dissipative Particle Dynamics.
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Coarsening star polymers

The constrained dynamics R is now simply

ṙiµ = viµ−Vµ

ṗiµ = Fiµ−
miµ

Mµ
Fµ

That, obviously, satisfy Ṙµ = 0 and Ṗµ = 0.
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Coarsening star polymers

The constrained dynamics R is now simply

ṙiµ = viµ−Vµ

ṗiµ = Fiµ−
miµ

Mµ
Fµ

That, obviously, satisfy Ṙµ = 0 and Ṗµ = 0.

By running this dynamic equations and performing time averages
we may compute

〈Fµν〉
R

γµν(R) =
1

kBT

∫
∞

0
dt〈δFµ exp {tR}δFν〉

R
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Coarsening star polymers

We assume pair-wise additivity

〈Fµν〉
R = 〈Fµν〉

Rµν

γµν(R) =
1

kBT

∫
∞

0
dt〈δFµ exp {tR}δFν〉

Rµν
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Coarsening star polymers

We assume pair-wise additivity

〈Fµν〉
R = 〈Fµν〉

Rµν

γµν(R) =
1

kBT

∫
∞

0
dt〈δFµ exp {tR}δFν〉

Rµν

〈Fµν〉
Rµν = 〈Fµν ·eµν〉

Rµν eµν

γµν(Rµν) = A(Rµν)1 + B(Rµν)eµνeµν
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Coarsening star polymers

Markovian behaviour expected?
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Coarsening star polymers

The plateau problem
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Coarsening star polymers

The average force 〈Fµν〉
Rµν
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Coarsening star polymers

The friction coefficient γ(Rµν) = A(Rµν)1 + B(Rµν)eµνeµν
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Result of the comparison

The radial distribution function of the CoM
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Result of the comparison

The radial distribution function of the CoM
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The pressure and the temperature of the DPD and MD differ in
less than 1%.
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Result of the comparison

The velocity autocorrelation function of the CoM
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Result of the comparison

The velocity autocorrelation function of the CoM
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DPD CGMD (frictionless)

Friction is crucial.
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Conclusions

Hybrid MD: particle-continuum scheme for liquid matter
based on domain decomposition.

It can solve: Shear flow, sound waves and heat transfer
Can be equipped with adaptive resolution
(AdResS-HybridMD) to treat large molecules.
Remains to be solved: multispecies and electrostatics across
the hybrid interface, energy-conserving adaptive resolution
Efficient deployment will require: high performance computing,
parallelization.

Coarse graining with proper dynamics

A well-defined method for coarse-graining exists: Zwanzig
projection
A practical recipe has been formulated to compute the
macroscopic dynamics from microscopic simulations.
Demonstrated the procedure for the case of star polymer melts.
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Possible connexions with Heterogeneous Multiscale Modelling

Open MD can be used to reconstruct a macroscopic state
given based on the fluxes across boundaries (“lift” operation
for dense liquids).

It could be easily adapted to impose Dirichlet boundary
conditions (state coupling).

Alternative methods (accelerated MD: tune ǫ > 1 to
accelerate slow variables) may also enhance the lift operation
(work in progress).
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