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Multiscale approaches for complex liquids

 Domain 
decomposition Molecular detail, 

interfases, surfaces,
macromolecule -fluid interaction

Patch dynamics
 HMM
Velocity-Stress
coupling

Point particle aproximation:
Stokes drag (point particle), 
Faxen terms (finite size effects)
Basset memory effects...
Force Coupling 
particles of finite size
Direct simulation
Immersed boundaries

Eulerian-Lagrangian
Solute-solvent 
hydrodynamic 
coupling

Suspensions 
of colloids or polymers, 
small particles in flow

Non-Newtonian fluids
Unknown constituve relation

polymer mels...

Coarse-grained 
dynamics 

MD
MD nodes used to 

evaluate the local stress 
for the Continuum solver.

Continuum solver provides 
the local velocity gradient 
imposed at each MD node.

shear flows 
sound, heat
large molecules
multispecies
electrostatics

diffusion 
viscosity
anisotropy 
  (nematics...)

How to reduce the 
degrees of freedom

and keep the 
underlying dynamics 

how to "lift MD"

type A

type B
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Outline of the talk

Domain decomposition

OpenMD: generalized open boundary conditions for MD
HybridMD: Particle-continuum hybrid
AdResS: Adaptive Resolution mesoscopic layer.

Particle hydrodynamics:
an Eulerian-Lagrangian approach

Direct Forcing theoretical background
Tests: manipulation of colloidal particles using ultrasound
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Hybrid particle-continuum schemes

Recent review: R. Delgado-Buscalioni, in ”Numerical Analysis and

Multiscale Computations”, Lect. Notes Comput. Sci. Eng., Volume 82,

Springer Verlag (to appear)”

C-P P-C

State-coupling
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B1

FH
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Open Molecular Dynamics
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Open MD
via external forces

mr̈i = fi({r}) + f exti
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Hybrid MD-FH: Sound

De Fabritiis, R.D-B and P. Coveney, PRL, 97 (2006)

RDB and De Fabritiis PRE 76, 036709 (2007)

Important: Mass conservation and similar sound velocities (EOS)
across H
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Hybrid MD-Fluctuating Hydrodynamics
Some test cases: sound

RDB and De Fabritiis PRE 76, 036709 (2007)
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Hybrid MD-Fluctuating Hydrodynamics
Collision of sound waves against DMPC lipid layer

De Fabritiis, R.D-B and P. Coveney, PRL, 97 (2006)

RDB et al, Proc IMechE, Part C: J Mech. Eng. Sci. 222 (2008)
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The Direct Forcing Method for particle
hydrodynamics

Micromanipulation of
micron size particles with ultrasound. Jürg Dual group, ETH
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Direct Forcing for Point particle hydrodynamics.

Motivation

The Immersed Boundary method Ṙp = up

Fluid-structure interaction. Ffp = F({Rp})
No inertial forces

The Stokes coupling method R̈p = (ξ/M) (up −Vp)

A practical relaxation method to achieve u = vp [Ladd,
Dünweg].
Limitted to low Reynolds and small velocity gradients [Maxey,
Riley]
Response time τ limitted by the friction time τ > M/ξ
Cannot solve ultrasound-matter interaction [Mazur, Bedeaux]
or fast inertial forces (turbulence).

Direct Forcing method MpR̈p = Fp(Vp,u)

The fluid-particle force ensures no-slip at the particle site.
Instantaneus momentum transfer: particle inertia, fast forcing
(ultrasound, etc).
Straightforward implementation from Stokes
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Equations of motion

Particle

Ṙp = Vp (1)

Mp
dVp

dt
= −

∫

Vp

∇ · Pdr3 + Fext (2)

Ip
dΩp

dt
= −

∮

S

(r−Rp)× P · ndr2 + Fext × r (3)

Fluid (fluctuating hydrodynamics)

∂ρ

∂t
= −∇ · g (4)

∂g

∂t
= −∇ ·Π+ f . (5)

Stress tensor Π = gu+ P with P = π1+ η[∇u]sym + P̃
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Boundary conditions

Particle surface resolved

u = Vp +Ω× (r−Rp) (6)

ρ = 0∀r ∈ Vp (7)

where r−Rp = Rn

Single site approach (pointwise)

u = Vp at r = Rp (8)
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Momentum balance

Integrate momentum eq. over the whole domain

d

dt

∫

g dr3 =

∫

∇ · P dr3 +

∫

f dr3 (9)

Fluid-particle interaction is short (microscopic) ranged

∫

fdr3 =

∫

∪Vp

fdr3 (10)

Non-overlapping particle volumes

∫

∪Vp

fdr3 =
∑

p

∫

Vp

fdr3 =
∑

p

Fp (11)
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Momentum balance and particle eq. motion

Integrating over one particle volume:

d

dt

∫

Vp

g dr3 =

∫

Vp

∇ · P dr3 + Fp (12)

recall Mp
dVp

dt
= −

∫

Vp

∇ · Pdr3 + Fext (13)

Particle equation of motion

Mp
dVp

dt
=

d

dt

∫

Vp

g dr3 − Fp + Fext (14)

Incompressible fluid:
∫

Vp

g dr3 = ρVp〈u〉p = ρVpVp

∆Mp
dVp

dt
= −Fp + Fext (15)

Archimedes Eureka: Particle mass excess ∆Mp = Mp −mp

with mp = ρVp (evacuated fluid mass).
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The particle-fluid force

Impose zero relative velocity at particle site: 〈u〉p = Vp

Incompressible case
Integrate momentum g = ρu over particle volume Vp and
time ∆t:

ρ〈u〉p(t+∆t) = ρũp +
1

Vp

∫ t+∆t

t

Fp(t
′)dt′. (16)

Pointwise approach: volume averaged quantities:
〈u〉p Vp ≡

∫

Vp

udr3

The unperturbed fluid velocity field is

ρũp = ρ〈u〉p(t)−
∫ t+∆t

t

〈∇ · π〉p(t′)dt′, (17)

The “stick” constraint 〈u〉p = Vp in Eq. (16) yields
∫ t+∆t

t

Fp(t
′)dt′ = ρVp [Vp(t+∆t)− ũp] . (18)
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Eulerian-Lagrangian transformations

Particles move in continuum (Lagrangian) space Rp ∈ R.

Fluid solved at discrete set of Eulerian nodes ri.

Communication requires two operations:

Interpolation of the unperturbed fluid velocity at particle site
Spreading of the particle-fluid force to Eulerian fluid variables

Operators in discrete form: δip = δh(|ri −Rp|)

Interpolation φI
p =

∑

i

δIipφi note : 〈φ〉p → φI
p (19)

Spreading φS
i =

∑

p

δSipφp (20)

with φi = φ(ri) and φp = φ[Rp] .
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Consistency: spreading + interpolation = identity

It will soon be clear why we need adjoint operations:
spreading φp gives φS

i =
∑

p φpδ
S
ip and

interpolation back φSI
p =

∑

q[
∑

i δ
I
ipδ

S
iq]φq.

ThereforeφSI
p = φp if

∑

i

δIipδ
S
iq = δkrpq (21)

where δkrpq is the Kronecker delta.

Note that Interpolation+Spreading is not the identity

However IB kernels satisfy a weaker property

∑

i

δIipδ
S
ip = 1 (22)

BUT: P. (21) = (22) + non-overlapping kernels.

Non-overlap provided by Excluded volume forces, Lubrication
forces. Otherwise no-slip error is small O(∆t)
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Immersed Boundary (IB) Kernels (Peskin)

Constructed with a soft function of compact support:
δh(r) = φ(x/h)φ(y/h)φ(z/h)

φ(u) =







1
3
(1 +

√
1− 3u2) 0 ≤ |u| ≤ 1

2
1
6
(5− 3|u| −

√

−2 + 6|u| − 3u2) 1
2
≤ |u| ≤ 3

2

0 3
2
≤ |u|

Satisfying

∑

i

δh(ri −R) = 1 (23)

∑

i

δ2h(ri −R) = 1/c (24)

∑

i

(ri −R)δh(ri −R) = 0 (25)

where c = 8 for the three point base kernel φ.
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Interpolation/Spreading pair properties

Interpolation and spreading based on the same IB kernel:

δIip ≡ δh(ri −Rp) (26)

δSip ≡ c δh(ri −Rp) (27)

Normalization

∑

i

h3δIip = h3 (28)

∑

i

h3δSip = Vp (29)

Particle effective volume: from (29) and (27): Vp = c h3

For the 3 point kernel c = 8
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Time integration, some notations

System evolving in discrete times tn = n∆t.

The time integral is noted as

φ ≡ 1

∆t

∫ tn+1

tn

φ(t)dt (30)

The interpolator and spreading operators depend on time via
the particle position.

δIipn ≡ δI(|ri −Rp(tn)|) (31)

Interpolation at equal times: un
p =

∑

i δ
I
ipnu

n
i

Interpolation at unequal times: un
pn+1 =

∑

i δ
I
ipn+1u

n
i
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Time integration: the algorithm

1) Unperturbed Eulerian ve-

locity

ρũi = ρun
i − [∇ ·Π]i∆t

2) Particle positions Rn+1
p = Rn

p +Vp∆t

3) Unperturbed Lagrangian

velocity

ũp =
∑

i δ
I
ipn+1ũi

4) Particle velocity

Mp ≡ δMp +mp

Vn+1
p =

δMp

Mp

Vn
p +

mp

Mp

ũp +
Fext∆t
Mp

5) Force spreading fi∆t = ρ
∑

p

[

Vn+1
p − ũp

]

δS
ipn+1

Check:
up = ũp+

∑

q (Vq − ũq)
∑

i δ
I
ipδ

S
iq = ũp+

∑

q (Vq − ũq) δ
Kr
pq = Vp
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Lagrangian dynamics of a fluid parcel (δMp = 0)

Eulerian discretized momentum eq.

gn+1
i − gn

i = −∇ ·
[

gu+ [∇ · P]i
]

∆t

Lagrangian: interpolate at p site: (
∑

i δ
I
ipn+1�)

∆gp = gn+1
p − gn

p =
(

gn
pn+1 − gn

pn

)

−∇ ·
[

gup + [∇ · P]p
]

∆t

where δgp ≡
(

gpn+1 − gpn
)

= ∆Rp · ∇Rgpn = ∆tVp · ∇Rgpn

Explicit scheme (Euler):

ρn+1
p

∆up

∆t
+∇ · Pn+1

p =

δup∇ · gn
pn+1 + ρnpn+1

(

Vn
p − un

pn+1

)

· ∇un
pn+1 = O(ρu3∆t/l2)

Semi-implicit (Crank-Nicholson):

ρ
n+ 1

2
p

∆up

∆t
+∇ · Pn+ 1

2
p = O(ρu4∆t2/l3)
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Eulerian discretized momentum eq.

gn+1
i − gn

i = −∇ ·
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gu+ [∇ · P]i
]

∆t

Lagrangian: interpolate at p site: (
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i δ
I
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∆gp = gn+1
p − gn

p =
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gn
pn+1 − gn

pn

)

−∇ ·
[

gup + [∇ · P]p
]

∆t
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(

gpn+1 − gpn
)

= ∆Rp · ∇Rgpn = ∆tVp · ∇Rgpn

Explicit scheme (Euler):
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Eulerian-Lagrangian momentum consistency

Accuracy: differences in total fluid momentum gain
in Eulerian and Lagrangian variables

Eulerian momentum ∆WE = h3
∑

i

(

∆gi +∇ ·Π]i∆t
)

∆WE =
∑

i

∑

p

h3fip∆t =
∑

p

Fp∆t (32)

Fluid+particle (Eulerian) momentum exactly conserved

Lagrangian momentum

∆WL =
∑

p

Fp∆t+O(ρu3∆t2/h2)(explicit scheme) (33)

Explicit scheme: limited to Re< 1/CFD (Courant no.)
Semi-implicit: Lagrangian momentum error O(∆t3)
Higher order schemes (open problem).
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Compressible fluid at low Mach number

Trivial generalization of the spread force density

fip∆t = ρi [Vp − ũp] δ
S
ip (34)

Particle-fluid force:

Eulerian
∑

i

fiph
3∆t = ρpVp [Vp − ũp] = Fp∆t (35)

Lagrangian

∑

i

δIipfiph
3∆t = ρ∗pVp [Vp − ũp] = F∗

p∆t (36)

with ρ∗p =
∑

i ρiδ
I
ipδ

S
ip. recall that

∑

i δ
I
ipδ

S
ip = 1 so ρ∗p ≃ ρp

Force inconsistency: δF = |F − F ∗|/F < 0.17Ma2.
Scheme valid at low Mach number
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Tests

Hydrodynamic radius: RH = 0.9h (translational invariance:
Std[Rh]≃ 1%)

Drag force: valid up to Re ∼ 10 (equivalent to slippery
sufaces)

Velocity profiles

Hydrodynamic forces: Oseen and Lubrication

Fluctuations

Velocity autocorrelation: long time tails

Acoustic force
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Sound-particle interaction

Micromanipulation of micron size particles with ultrasound. Jürg
Dual group, ETH
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Sound-particle interaction

A stationary sound wave generates an average force on a
particle given by the gradient of a mean potential field
〈F〉 = −∇〈U〉,

〈U〉 = 2πR3ρf

(

〈δp2〉
3ρ2fc

2
f

f1 −
1

2
〈δu2〉f2

)

(37)

f1 = 1− ρfcf/(ρpcp) and f2 = 2(ρp − ρf )/(2ρp + ρf )

Acoustic force for standing plane wave (wavenumber k,
amplitude ∆ρ)

〈F〉 =
πc2f∆ρ2R3k

ρf

(

1

3
f1 +

1

2
f2

)

sin(2kz)ẑ (38)

Fit f1, f2 and R from simulations:cp = cf and R = 1.19RH
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Sound-particle interaction

Acoustic boundary layer δ =
√

(ν/ω), with ν = η/ρ
Wave number: λ = c 2π/ω
Particle radius: RNS

Simulation

RNS/λ ≃ 0.06.
Viscous effects: δ/RNS ≃ 0.2
Stokes limit δ/RH >> 1 is not valid. (Stokes coupling not
suited)
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Sound-particle interaction

Animation
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Direct forcing: pressure perturbation around particle
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Acoustic force

Force of a standing wave at different positions
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Acoustic force

Maximum force versus density ratio
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Acoustic force

Maximum force versus fluid sound velocity
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Stokes approximation for point particles

Review: Dünweg and Ladd Adv. Polym. Sci, 2008

Particle moving in an otherwise quiescent fluid, u∞ = 0

Fluid-Particle force
F = ξbare(Vp − up)

Fluid velocity: up = T avF

Effective friction: F = ξefVp

1

ξef
=

1

ξbare
+

1

ξhydro

Efective hydrodynamic radius: RH = 6πη/ξef

1

RH

=
1

a0
+

1

g h

with a0 = ξbare/(6πη) and g h = ξhydro/(6π/η).
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Finite size effects on RH = g h

Direct Forcing:
g

gL
= 1− 2.84

gh

L
+ ...

Stokes coupling:
g

gL
=

6πη gh

ξbare
+ 1− 2.84

gh

L
+ ..

0 0.02 0.04 0.06 0.08 0.1 0.12
gh/L

0.4

0.6

0.8

1

1.2
g

/g
L

This method
 y=(1-2.837*x+4.1887*x^3-27.359*x^6) -Hasimoto-

Stokes coupling (offset = g/a
0
)

Direct Forcing: strong coupling limit, instantaneous relaxation
1/ξbare = 0
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Drag at finite Reynolds number

0.01 0.1 1
Re

1

1.1

1.2

1.3

1.4

1.5

1.6
F

/F
S

to
ke

s

This method
1+0.1315 Re

(0.82-0.05ln(Re))
 (fit exp)

1+0.011578 Re
(2.49427-0.243206ln(Re))

Padding: SRD, Slip bc
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Velocity profile around particle: PBC

Deviations at large distances are due to finite size effects.

0 2 4 6 8 10 12 14
d / R

H

0
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1

u
r/
u

0

θ=0     Theoretic
θ=π/4  Theoretic
θ=0     direction (0,0,1)
θ=π/4  direction (0,0,1)
θ=0     direction (0,1,1)
θ=π/4  direction (0,1,1)
θ=0     direction (1,1,1)
θ=0     direction (1,0,0) Stokes
θ=π/4  direction (1,0,0) Stokes

(Lines: analytic solution for Re = 0)
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Velocity profile around particle: fixed velocity BC

To check for finite size effects we fix the fluid velocity u0 at the
core of a spheric shell around the particle of radius rs

u(|r−Rp| = rs) = u0

.
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1

|u
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(Lines: analytic solution for Re = 0)
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Forces between two particles: Oseen and Lubrication forces

Particles with same hydrodynamic radius

Oseen force: RH = 0.9h
Lubrication: best fit with RL = 0.92RH

F l = −6πη
R2

1R
2
2

(R1 +R2)2

(

1

s
− 1

sc

)

(V1 −V2)R̂12R̂12 for s < sc

with s = |R12| −R1 −R2

1 2 3 4 5 6 7 8
R

pq
/h

1

1.5

2

2.5

3

3.5

4

Fo
rce

/F
or

ce St
ok

es

This method
Oseen
Oseen + Lubrication
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Forces between two particles: Oseen and Lubrication forces

Particles with same hydrodynamic radius

Oseen force: RH = 0.9h
Lubrication: best fit with RL = 0.92RH
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Direct forcing: Velocity decay and long-time tail

0.1 1 10
t/tν
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1

<
V

(t
)V

(0
)>

/K
B
T

rho_p = 10rho_f
rho_p=2.4*rho_f
rho_p=rho_f
Padding
k

B
T=0, v(t)/v(0)
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Particle within Fluctuating Hydrodynamics

Particle kinetic temperature thermalizes with fluid

There is no dissipative channel in the particle motion, as
happens in Stokes coupling

No need for Langevin force in the particle motion
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Conclusions

Direct forcing for pointwise particles

Fluid-Particle force from imposition of no-slip at particle site.

Generalization of Stokes coupling method (strong coupling
limit)

Processes involving fast momentum transfer friction time

Ultrasound-particle interaction
Oscillatory rheology
Turbulent flows

Particle inertia is taken into account

Wall b.c. of arbitrary shape (first order accuracy). Easily
generalized to elastic boundaries (IB with inertia)

Fluctuating hydrodynamics: Fluid momentum fluctuation are
transmitted to the particles without dissipation: “ particle
thermostat” is not required.
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Conclusions

Implementation

No-slip implemented in one-step (no iterations).

The algorithm: easy to implement from a Stokes code

Parallelizable and written in CUDA (GPU): (50-100 faster than in a
single CPU)

Formalization (in colab. Aleks Donev)

Proyection operators

Fluctuation-dissipation balance

Applications (too many)

Manipulation of colloids using ultrasound

Particle dispersion in turbulent flow: memory effects, finite particles

Effects of hydrodynamics on colloidal fluid gelation (E. Del Gado,
ETH)
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Calculation of g: finite size effects

Settling velocity of a periodic array of particles with
interparticle distance L (Hasimoto, 1959)

VL

V∞

= 1− 2.84
RH

L
+ 4.1887

RH

L

3

− 27.359 ∗ RH

L

6

+ ..

10 100
L/R

H

0.2

0.4

0.6

0.8

1

V
(L

)/
V

S
to

ke
s 

Simulations, R
H
=0.902h

(analytic) Hasimoto (1959) 
Edwald sum

Settling velocity in periodic boxes of size L
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Calculation of g: finite size effects

If the Stokes relation is assumed in PBC, RH = gh has to be
redefined, RL

H ≡ gLh, with

g

gL
=

VL

V∞

= 1− 2.84
gh

L
+ ...
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Hydrodynamic Radius in Direct forcing

Simulations:

PBC box of size L.
Particle: constant external force Fext = Fextk

Fluid: external pressure gradient ∂pext/∂z = Fext/L
3

Total momentum conserved
Steady state Fext = Fdrag, Vp = Vlim

p and u∞ = ulim
∞

.
The hydrodynamic radius RH is defined via the Stokes drag

Fdrag = 6πηRH(Vp − u∞)

Results

RH = g h
g = (0.89± 0.05)
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Translational invariance: g

Quite small variation of g in mesh: Std[g] ≤ 0.01ḡ

0 20 40 60 80
different positions in space

1
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gL

1.048
Std[g]/g = 0.01
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