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Open boundaries: applications

Open boundaries are needed in most CFD applications: turbulence,
combustion, simulation of sound devices...

Evacuate sound, shear or heat waves out of the simulation domain.
Open boundaries have been derived for standard CFD.

This work generalizes them to fluctuating hydrodynamics

ULTRASOUND f ~ (G H z scales ranging from microns to nanometers.

Ultrasound applications are wide-spread,

— Transport and manipulation of nanoparticles [ETH, Zurich]

— Complex rheological behaviour of viscoelastic fluids.

— Microflows, Nanoflows.

— Macromolecules-sound interaction (proteins) [Science, 309:1096, 2005.]

— The present NRBC can be combined with hydrid molecular-continuum
simulations involving sound [PRL, 97, 134501 (2006)].



Non-reflecting boundary conditions for CFD: set-up
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Non-reflecting boundary conditions in terms of sound modes.

e Amplitude of sound waves
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with dp = p — pe, Ou = u — wu,, pressure and velocity fluctuations.

e NRBC formulation: At the boundary solve linear Navier-Stokes Eqgs. in the normal-

to-boundary direction:
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Non-reflecting boundary conditions: implementation for primitive variables.

e NRBC: Solve for pressure and velocity at the boundary:
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we work with density §p = dp/c*, where c is the sound velocity.

Closure models for the incoming waves

OP ou . . :
Loyr = dovur | — + pc— Evaluated at the interior domain
Ox Ox
Liy=20 cons: ill posed, overall pressure drift
oc
Lin=K(p—peyq) K= A cons: reflection of low fregs.
Lin = K(p — peq — pcAour) | pros: no drift, no reflection at low freq.( “wave
masking’ )
Ly = K(pcArn) pros: enables fluctuation-dissipation balance,
based on wave masking.




NRBC for FH: Fluctuation-dissipation balance for incoming waves

Stochastic eq. for incoming wave amplitude:
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Stochastic boundary dynamics: (A;n(t)Arn(0)) = = exp(—Kt).
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Sound amplitude variance, thermodynamics, A;ny = (1/2)(cdp/pe — du).
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Mean density fluctuation at equilibrium: grand canonical ensemble,
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density power spectra

Comparison with PBC and Rigid walls:

PSD of waves within the system
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Conclusions

Simulation of ultrasound in microenviroments, via fluctuating hydrodynamics
Open boundaries for sound, low reflection.

Respect hydrodynamics and thermodynamics fluctuations (grand-canonical)
Applied to

— Sound-macromolecule interactions
— Micro-devices (e.g. collimators, microring ultrasound detectors, ...)



