Non-reflecting boundaries for ultrasound in fluctuating hydrodynamics of open systems

Rafael Delgado Buscalioni

Universidad Autonoma de Madrid, Spain email: rafael.delgado@uam.es

Anne Dejoan

CIEMAT, Madrid, Spain

Funding: Spanish goverment, Ramón y Cajal research contract.

Open boundaries: applications

- Open boundaries are needed in most CFD applications: turbulence, combustion, simulation of sound devices...
- Evacuate **sound**, shear or heat waves out of the simulation domain.
- Open boundaries have been derived for standard CFD.
- This work generalizes them to **fluctuating hydrodynamics**
- ULTRASOUND $f \sim GHz$ scales ranging from microns to nanometers.
- Ultrasound applications are wide-spread,
 - Transport and manipulation of nanoparticles [ETH, Zurich]
 - Complex rheological behaviour of viscoelastic fluids.
 - Microflows, Nanoflows.
 - Macromolecules-sound interaction (proteins) [Science, 309:1096, 2005.]
 - The present NRBC can be combined with hydrid molecular-continuum simulations involving sound [PRL, 97, 134501 (2006)].

Non-reflecting boundary conditions for CFD: set-up

Non-reflecting boundary conditions in terms of sound modes.

• Amplitude of **sound waves**

$$A_{IN} = \frac{1}{2} \left(\frac{\delta p}{\rho_e c} - \delta u \right) \quad \text{moving} \leftarrow$$
(1)

$$A_{OUT} = \frac{1}{2} \left(\frac{\delta p}{\rho_e c} + \delta u \right) \text{ moving} \rightarrow$$
 (2)

with $\delta p = p - p_e$, $\delta u = u - u_e$, pressure and velocity fluctuations.

• **NRBC formulation:** At the boundary solve linear Navier-Stokes Eqs. in the normal-to-boundary direction:

$$\frac{\partial A_i}{\partial t} + \frac{L_i}{\rho_e c} = \pm \frac{1}{\rho_e} \frac{\partial \Pi_{xx}}{\partial x},$$
$$= OUT \to -$$

with $i = IN \rightarrow +$ and $i = OUT \rightarrow$

• Amplitude variations:

$$\frac{L_i}{\rho_e c} = (u \mp c) \frac{\partial A_i}{\partial x}$$

Non-reflecting boundary conditions: implementation for primitive variables.

• **NRBC:** Solve for pressure and velocity at the boundary:

$$\frac{\partial p}{\partial t} + \frac{1}{2} \left(L_{OUT} + L_{IN} \right) = 0$$

$$\frac{\partial u}{\partial t} + \frac{1}{2\rho_e c} (L_{OUT} - L_{IN}) = -\frac{1}{\rho_e} \frac{\partial}{\partial x} (\Pi_{xx}) \,.$$

we work with density $\delta \rho = \delta p/c^2$, where c is the sound velocity.

Closure models for the incoming waves

$L_{OUT} = \lambda_{OUT} \left(\frac{\partial P}{\partial x} + \rho c \frac{\partial u}{\partial x} \right)$	Evaluated at the interior domain
$L_{IN} = 0$	cons: ill posed, overall pressure drift
$L_{IN} = K(p - p_{eq}) K = \frac{\sigma c}{L}$	cons: reflection of low freqs.
$L_{IN} = K(p - p_{eq} - \rho c A_{OUT})$	pros: no drift, no reflection at low freq.("wave
	masking")
$L_{IN} = K(\rho c A_{IN})$	pros: enables fluctuation-dissipation balance,
	based on wave masking.

NRBC for FH: Fluctuation-dissipation balance for incoming waves

• Stochastic eq. for incoming wave amplitude:

$$\frac{dA_{IN}(x_b)}{dt} + KA_{IN}(x_b) = F(t)$$

• Fluctuating stress: $F(t) \equiv \frac{1}{\Delta x \rho_e} \left[\tilde{\Pi}_{xx} (x_b + \frac{\Delta x}{2}) - \tilde{\Pi}_{xx} (x_b - \frac{\Delta x}{2}) \right]$

$$\langle F(t)F(0)\rangle = 2\Phi\delta(t) = \frac{4k_BT\eta_L}{\Delta x^2\rho_e^2V_c}\delta(t)$$

- Stochastic boundary **dynamics**: $\langle A_{IN}(t)A_{IN}(0)\rangle = \frac{\Phi}{K}\exp(-Kt)$. $\langle A_{IN}\rangle = 0$ and $\left[\langle A_{IN}^2 \rangle = \frac{\Phi}{K} \right]$.
- Sound amplitude variance, thermodynamics, $A_{IN} = (1/2)(c\delta\rho/\rho_e \delta u)$.

• Relaxation rate:
$$K = \frac{\nu_L}{(\delta_R \Delta x)^2} \text{ with } \delta_R^{(theor)} = 0.5$$

Mean density fluctuation at equilibrium: grand canonical ensemble,

Comparison with PBC and Rigid walls:

PSD of waves within the system

Reflection coefficient

Conclusions

- Simulation of ultrasound in microenviroments, via fluctuating hydrodynamics
- Open boundaries for sound, low reflection.
- Respect hydrodynamics and thermodynamics fluctuations (grand-canonical)
- Applied to
 - Sound-macromolecule interactions
 - Micro-devices (e.g. collimators, microring ultrasound detectors, ...)