

MÉTODOS DE COMPUTACIÓN EN FÍSICA DE LA
MATERIA CONDENSADA

Máster en Física de la Materia Condensada y
Nanotecnología

Curso 2010-2011

Rafael Delgado Buscalioni

Métodos aplicados a
Mecánica Clásica

1. Introduction

2. Monte Carlo (MC)

3. Molecular Dynamics (MD)

4. Langevin Dynamics (thermostats)

5. Brownian Dynamics (colloids, polymers in solvent)

6. Hydro-Dynamics at mesoscales

Course material on the following web page:

http://www.uam.es/otros/fmcyn/MetodosComputacionales.html

Reference books

Molecular Dynamics
(Equlibrium and non-equilibrium)
Monte Carlo, Brownian Dynamics, etc.

Monte Carlo
Free Energy, etc..

Understanding Molecular Simulations
Daan Frenkel and Berend Smit
Academic Press (second Edition) (2002)

Computer simulations of Liquids
M.P Allen and D.J Tildesley
Oxford Science Publi. (1987)

Good

Bad...

...leads to Desperado Coding

How to start a code

Cool

distribution
function...

... and its
corresponding
HISTOGRAM

The Monte Carlo Method

(IMPORTANCE SAMPLING)

.

here value of seed was x[0]=-1

The Metropolis Method

Objetive: sample a system whose probability of being in configuration “c” is N(c)

How: Metropolis is based on an importance-weighted random walk:
Visited configurations: “c=o” means old config

 “c=n” means new config
Transition probability: T(o,n).

Along the walk(s) the number of times any “o” is visited is m(o).
Thus, we want: m(o) proportional to N(o)

Detailed balance (sample without bias) N(o) T(o,n)=N(n)T(n,o)

Construction of T.
Probability of trial from o to n: try(o,n)
Probability of accept that trial: acc(o,n)
Indeed, T(o,n)=try(o,n) acc(o,n)

Metropolis choice for try: try(o,n)=try(n,o) symmetric
Detailed balance: N(o) acc(o,n)=N(n) acc(n,o)
i.e, acc(o,n)/acc(n,o) = N(n)/N(o)

Metropolis choice for acc:
acc(o,n)= N(n)/N(o) if N(n)<N(o) (visiting less probable config.)
acc(o,n)= 1 if N(n)>N(o) (accept if n is more populated)

The Metropolis Method for statistical physics

N(c) is proportional to the Boltzman factor exp(-U(c)/kT)

(note: the normalization constant is the partition function, Z,
which is IMPOSIBLE to calculate in most cases)

However, Z is not needed here!
 acc(o,n) = exp(-(U[n]-U[o])/kT) < 1

Transition probability
T(o,n) = acc(o,n) if N(n) > N(o)

 = acc(o,n) N(n)/N(o) if N(n)< N(o)

T(o,o) = 1- T(o,n)

n = o

It is important to also COUNT
not accepted moves for the
histogram normalization

INITIALIZE
 call histogram(0, h)

M = number of MC steps
nacc = 0, number of accepted moves
amp = amplitude of jumps
x0 = initial configuration (value)

LOOP: do i = 1, M
U = uniform in [-1,1] !random uniform
xnew = xold + U*amp !trial move

 acc = f(xnew)/f(old) !acceptance prob.
 !acceptance criterium

 r = uniform in [-1,1]
 if r <acc then !accept move :

 xold=xnew
 nacc=nacc+1
 end if

 call histogram(1, xnew) ! sample
k=nint(xnew/h)+1
his(k)=his(k)+1

end loop

NORMALIZE HISTOGRAM AND PRINT: call histogram(2,dummy)

Metropolis sampling

Some
Monte Carlo Applications
In Statistical Physics of liquids

Ntot,l,ar2/M

∑
=

M

i
ii

D

xg
M

W

1

)(ζ

∑
=

−≈
M

j
jyPg

M 1

1))((
1

jx

B=0

B=0

B=0

B=0

Random
sampling

Importance
sampling

initial energy

MC steps: 1 step = 1 sweep over all spins

Here done in blocks of nblock steps

i,j: spin to be flipped

energy change

check for acceptance

a. Periodic boundary conditions

b. Minimum image convention

particles on sites of fcc lattice

periodic boundary
conditions applied

histogram for g(r) accumulated

test position for k-th particle

check overlap with other
particles

adjust
acceptance ratio

to 50%

normalisation of g(r)

THE METHOD OF MOLECULAR DYNAMICS

The equations of motion of a system of N interacting particles are solved
numerically

The system is classical, and can be described by means of the potential energy

{ }()krUU
=

The equations of motion are:

m

U

dt

vd

v
dt

rd

ii

i
i

∇−=

=





Since the energy is conserved, the system evolution can be visualised as a
trajectory on a hypersurface in phase space,

where T is the kinetic energy

{ } { }() { }() { }() ., constrUvTvrH kkkk =+= 

Integration methods

Based on finite difference schemes, in which time t is discretised using a time
interval h

Knowing the coordinates and the forces at time t, the state at a later time t+h is
obtained

The simplest (but still powerful!) algorithm is the Verlet algorithm

VERLET ALGORITHM

We write the following Taylor expansions:

 ++++=+)(
6

)(
2

)()()(
32

tv
h

tF
m

h
tvhtrhtr iiiii

 +−+−=−)(
6

)(
2

)()()(
32

tv
h

tF
m

h
tvhtrhtr iiiii

Adding, neglecting terms of order O(h4) , and rearranging:

The kinetic energy at time t can now be obtained as

)()()(2)(
2

tF
m

h
htrtrhtr iiii

 +−−=+

This is a recurrence formula, allowing to obtain the coordinates at time t+h
knowing the coordinates at times t and t-h

It is a formula of third order (the new positions contain errors of order h4)

The velocities can be obtained from the expansion:

)()(2)()(2hOtvhhtrhtr iii ++−=+ 

as

h

htrhtr
tv ii

i 2

)()(
)(

−−+=


(which contains errors of order h2)

∑
=

=
N

i
ic tvmtE

1

2
)(

2

1
)(



Using the equipartition theorem, the temperature can be obtained as

22

1 2 kT
mv =α c

f

N

i
i

f

E
kN

v
kN

m
T

2

1

2 == ∑
=



where

α = arbitrary degree of freedom

Nf = number of degrees of freedom

LEAP-FROG VERSION

Numerically more stable version than standard algorithm. We define:

h

trhtrh
tv

h

htrtrh
tv ii

i
ii

i

)()(

2
 ,

)()(

2





 −+=





 +−−=





 −

Positions are updated according to






 ++=+

2
)()(

h
tvhtrhtr iii



)()()()()(
2

tF
m

h
htrtrtrhtr iiiii

 +−−=−+

Using the Verlet algorithm,

so that

)(
2

2

tF
m

hh
tv

h
tv iii

 +




 −=





 +

Therefore leap-frog version or Hamiltonian version is






 ++=+

2
)()(

h
tvhtrhtr iii



)(
2

2

tF
m

hh
tv

h
tv iii

 +




 −=





 +

2
22

)(





 −+





 +

=

h
tv

h
tv

tv
ii

i




The velocities are obtained as

Stability of trajectories

Systems with many degrees of freedom have a tendency to be unstable

If δ is the distance in phase space between two trajectories that initially are
very close, and write

then the system is

tCet λδ =)(

• STABLE if δ < 0 or decreases faster than exponentially

• UNSTABLE if δ > 0; the system is said to be chaotic

λ = Lyapounov coefficient

Lyapounov instability is important because:

1. it limits the time beyond which an accurate trajectory can be found

2. to reach high accuracy after time t we need too many accurate decimal
digits in the initial condition

ελ −= 100ce t

10log

log 0 tc λε −=

Since systems with many degrees of freedom are intrinsically unstable, very
accurate integration algorithms are useless

The basic requirements that an algorithm should satisfy are:

1. Time reversibility:

U
dt

vd
m

v
dt

rd

i
i

i
i

−∇=

=



 The equations are invariant under the

transformations

tt −→

ii vv
 −→

The Verlet algorithm is time reversible

Irreversibility in some algorithms induces
intrinsic energy dissipation so that energy is
not conserved

)()()(2)(
2

tF
m

h
htrtrhtr iiii

 +−−=+)()()(2)(
2

tF
m

h
htrtrhtr iiii

 ++−=−
hh −→

)()()(2)(
2

tF
m

h
htrtrhtr iiii

 +−−=+

2. Symplecticity:

The probability distribution { } { }()tvrf ii ,,


evolves like an incompressible

fluid, which implies 0=f

A symplectic algorithm conserves the volume of phase space

A molecular-dynamics FORTRAN code

• declare variables
• starting positions and velocities

• initialise parameters

M
D

 lo
op

• update positions and velocities (leap frog)

lo
op

 o
ve

r
pa

irs
 o

f
p

ar
tic

le
s

• averages and print out

• calculate relative position (using
minimum image convention)

• accumulate forces
• accumulate energies, virial, etc.

• apply periodic boundary conditions

Maxwell-Boltzmann
distribution for velocities

Particles initially on nodes
of a fcc lattice

periodic boundary conditions

FORCE
calculation

minimum image
convention

add up forces to each
member of ij pair

update velocities and
positions

histogram for g(r)

normalise radial
distribution function

 FIN

 FIN

/m

T({vk }) es la energía cinética

O(h2)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

