MÉTODOS DE COMPUTACIÓN EN FÍSICA DE LA MATERIA CONDENSADA

Máster en Física de la Materia Condensada y Nanotecnología

Curso 2010-2011

Rafael Delgado Buscalioni

Métodos aplicados a Mecánica Clásica

1. Introduction
2. Monte Carlo (MC)
3. Molecular Dynamics (MD)
4. Langevin Dynamics (thermostats)
5. Brownian Dynamics (colloids, polymers in solvent)
6. Hydro-Dynamics at mesoscales

Course material on the following web page:
http://www.uam.es/otros/fmcyn/MetodosComputacionales.html

Reference books

Understanding Molecular Simulations Daan Frenkel and Berend Smit Academic Press (second Edition) (2002)

Monte Carlo
Free Energy, etc..

Computer simulations of Liquids M.P Allen and D.J Tildesley Oxford Science Publi. (1987)

Molecular Dynamics

 (Equlibrium and non-equilibrium) Monte Carlo, Brownian Dynamics, etc.
1. A BRIEF INTRODUCTION TO COMPUTATION IN CONDENSED MATTER PHYSICS

Computational methods essential to explore the behaviour of condensed phases of matter
We review methods to solve dynamics of particle systems using the methods of classical and quantum mechanics

$\longrightarrow \quad$ COMPUTER SIMULATION

Two basic methods:

- Monte Carlo (MC). Ensemble averages
- Molecular Dynamics (MD). Time averages

ROLE PLAYED BY COMPUTER SIMULATION

How to start a code

...leads to Desperado Coding

Think modular Modular programming

Module (subroutine): A closed set of operations

- Perform only one task
- Transferable to other codes:
=> Independent and Generic

Types of modules:

- Evaluate collective quantities (e.g. temperature, total energy)
- Update shared variables (forces, velocities, positions,..)
- Sample

Evaluate a collective quantity (e.g. temperature)

```
subroutine temperature(iout)
    implicit none
    include 'parameters.inc'\longrightarrow load shared variables
    include 'velocities.inc'
    integer i,iout
    real Temp_x,Temp_y,Temp_z,TEMP
```

 temp_x=0.
 temp_y=0.
 temp_z=0.
 do \(i=1, n p\)
 temp_x=temp_x+ vx (i)*vx \((i) \longrightarrow\) with shared variables,
 temp_y=temp_y+ vy(i)*vy(i)
 temp_z=temp_z+ vz(i)*vz (i)
 end do
 TEMP \(=\left(\right.\) TEMP_x+TEMP_y+TEMP_z)/float (\(3 *_{n p}\))
 write(IOUT,*) 'TEMP', temp_x/float (np),
 \& temp_y/float (np),
\& temp_z/float (np)
return
end

Update shared vars.

(e.g. integrate eq. of motion of particles)

subroutine movea(dt)
implicit none

FIRST PART OF VELOCITY VERLET TIME INTEGRATOR

include 'parameters.inc'
include 'nparticles.inc'
include 'positions.inc'
include 'velocities.inc'
include 'forces.inc'
integer i
real dt,dt2
$\mathrm{dt} 2=\mathrm{dt} / 2.0$
do 100 i $=1$, np
$v x(i)=v x(i)+d t 2 * f x(i)$
vy (i) $=v y(i)+d t 2 * f y(i)$
$v z(i)=v z(i)+d t 2 * f z(i)$
$r x(i)=r x(i)+d t * v x(i)$
$r y(i)=r y(i)+d t * v y(i)$
$r z(i)=r z(i)+d t * v z(i)$
c ** periodic boundaries
$r x(i)=r x(i)-\operatorname{anint}(r x(i) / l x) * l x$
$r y(i)=r y(i)-a n i n t(r y(i) / l y) * l y$
$r z(i)=r z(i)-\operatorname{anint}(r z(i) / l z) * l z$
continue
return
end

Sampling

histogram of $x \quad:$ histo mean values for $\mathrm{y}(\mathrm{x})$: yhisto
initialization call sw=0
sampling calls $s w=1$
output call(s) sw=2

```
subroutine histogram(sw,x,y,xmin,xmax,iout)
    implicit none
    integer sw, nbin,nbin,ibin,iout
    real x,y,xL,dum,dx,xmax,xmin
    parameter (nbin=200) ! number of bins
    real histo(0:nbin)
    real yhisto(0:nbin)
    integer icont,i
    save histo,yhisto,icont,xmax,xmin,dx,XL !local variables need to be saved
    if(sw.eq.0) then
        do i=1,nbin !initialization to zero
        histo(i)=0.
        yhisto(i)=0.
    end do
    icont=0
    xL=xmax-xmin !range of x
    dx=xL/real(nbin) ! bin size -> dx
    else if(sw.eq.1) then
    icont=icont+1 ! counter, always count
    dum=(x-xmin)/xL
    ibin=int(nbin*dum)
    if(ibin.lt.nbin.and.ibin.gt.0) then !check x-range is ok
        yhisto(ibin)=yhisto(ibin)+y
        histo(ibin)=histo(ibin)+1.
    else
        write(*,*) 'warning x out of range',x
    end if
    else if(sw.eq.2) then !normalize and write results
    open(iout,file='histogram.res')
    do ibin=0,nbin
        if(histo(ibin).ne.0) yhisto(ibin)= yhisto(ibin)/histo(ibin)
        histo(ibin)= histo(ibin)/float(iCONT)/DX
        write(iout,*) (ibin+0.5)*dx+xlimit(1),histo(ibin),yhisto(ibin)
    end do
    close(iout)
```

end if
return
end

A modular program for molecular dynamics (MD)

include file init.inc

integer nstep,nbitac,nsave,nsamp real dt ,tmax common/initio1/nstep,nbitac,nsave,nsamp common/initio2/dt,tmax real tempinit common/temperature_input/tempinit logical zero_momentum common/init_momentum_zero/zero_momentum

program md

implicit none
include 'parameters.inc' global parameters
include 'init.inc' \longrightarrow shared vars. required
call init

```
call mean_thermo(0)
```

call histogram(0)
call force !initial forces
if(zero_momentum) call set_zero_momentum
call save_config
ttime=0
step=0
nstep $=$ int (tmax/dt)
do while (step.lt. nstep)
step $=$ step +1
call movea (dt)
call force
call moveb (dt)
*** SAMPLE ****
if (mod (step, nsamp).eq. 0) then
call total_momentum(6)
call mean_thermo(1)
call histogram(1)
end if
c *** WRITE OUTPUT ***
if (mod(step,nbitac).eq.0) then
call histogram(2)
end if
end do
end

Compiling with makefile

1> touch makefile
 $2>$ make - f make.md

```
file: make.md
F77=gfortran
F77FLAGS= -03
FILE= bin/mdcode
OBJ= md.f init.f force.f move.f mean_thermo.f set_zero_momentum.f
total_momentum.f histogram.f save_config.f
$(FILE): $(OBJ)
    $(F77) $(F77FLAGS) $(OBJ) $(LDFLAGS) -o $(FILE)
$(OBJ): makefile
```


The Monte Carlo Method

Any method using random numbers
We would like to know how to generate random deviates x, distributed according to the probability function $f(x)$ in the interval $[a, b]$:

$$
f(x) d x=\text { probability that } x \text { lies within the interval }[x, x+d x]
$$

All methods rely on the possibility to generate uniformly distributed random numbers, i.e. $f(x)=1$ in the interval $[0,1]$

1. How to generate uniformly distributed random numbers

All FORTRAN compilers have intrinsic functions to generate uniformly distributed random numbers, but very often they are not good enough
distribution

A possible method: The digits in the product of the two integer numbers

$$
12345 \times 65539=809078955
$$

look random. If we truncate the last five digits, we get

$$
\begin{aligned}
08090 \mid 78955 \rightarrow 78955 \times 65539 & =5174631745 \\
51746 \mid 31745 \rightarrow 31745 \times 65539 & =2080535555 \\
20805 \mid 35555 \rightarrow 35555 \times 65539 & =\ldots
\end{aligned}
$$

12345 is the seed, while 65539 is called the base
Dividing by 10^{5}, we obtain the sequence of numbers

$$
0.78955, \quad 0.31745, \quad 0.35555, \ldots
$$

which are apparently random; these are pseudo-random numbers
Special care that multiplication gives numbers in defined interval; for example, with 4 -byte (32-bit) integers

Possible subroutine (the one we will use)

```
001. !
002. ! Random number generator
003. !
004. subroutine ggub(dseed,r)
005. real*8 z,d2p31m,d2pn31,dseed
006. data d2p31m/2147483647./,d2pn31/2147483648./
007. z = dseed
008. z = dmod(16807.*z,d2p31m)
009. r = z / d2pn31
010. dseed = z
011. end
16807 is the base
dseed is the seed (provided by the user)
\(r\) is a random number in \([0,1]\) (NOTE: single-precision variable)
Example of main program:
001. implicit real*8(a-h,o-z)
002. real*4 r
003. dseed=527321d0
004. call ggub(dseed,r)
005. end
```


2. How to generate random numbers distributed according to a general $f(x)$

We review three methods

- Acceptance-rejection method

Not very efficient (it involves generating 2 random numbers to obtain 1 number)
If x and y are uniform random numbers, then

$$
\{x / f(x) \leq y\}
$$

is distributed according to $f(x)$. The steps are:

1. we generate uniform numbers x and y in $[a, b]$
2. if $f(x) \leq y$, we accept x; otherwise x is rejected
3. we go to step 1

- Inversion method

This method uses the cumulative function:

$$
P(x)=\int_{a}^{x} d x^{\prime} f\left(x^{\prime}\right), \quad P(a)=0, \quad P(b)=1
$$

$P(x)$ is a monotonically increasing function, so it can be inverted to give $x=P^{-1}(y)$
Then, if y is uniform in $[0,1]$, then x is distributed with $f(x)$ in $[a, b]$

- Method of Metropolis et al.

Very general and elegant method, very important in statistical and condensed-matter physics
A sequence of numbers is generated

$$
x^{[0]}, x^{[1]}, x^{[2]}, \ldots
$$

such that, asymptotically, the numbers are distributed according to $f(x)$
We begin with a seed, $x^{[0]}$, and iteratively obtain $x^{[n]} \rightarrow x^{[n+1]}$ by applying the following algorithm:

- Obtain a test number as

$$
x^{[t]}=x^{[n]}+\zeta \Delta x
$$

where $\zeta \in[-1,1]$ is a uniform random number, and Δx a constant

- Accept $x^{[t]}$ as a new member of the sequence of random numbers with probability

$$
r=\frac{f\left(x^{[t]}\right)}{f\left(x^{[n]}\right)}
$$

which means:

$$
\left\{\begin{array}{lll}
\text { si } r>\xi & \text { test value accepted, i.e. } & x^{[n+1]}=x^{[t]} \\
\text { si } r<\xi & \text { test value not accepted, i.e. } & x^{[n+1]}=x^{[n]}
\end{array}\right.
$$

where $\xi \in[0,1]$ is a uniform random number

A few important points to bear in mind:

- Numbers are distributed according to $f(x)$, but only asymptotically

A warm-up period, long enough to reach the asymptotic regime, is needed

- The value of Δx is adjusted so that approximately 50% of the tested numbers are accepted This insures a quick convergence to the asymptotic regime
- The method only rely on the ratio $r=f\left(x^{[t]}\right) / f\left(x^{[n]}\right)$, which does not depend on the normalisation of the distribution function

It is this feature that makes the Metropolis et al. algorithm so useful in applications to statistical physics

- The Metropolis et al. algorithm may be easily extended to more than one random variables

$$
\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)
$$

The sequence is

$$
x^{[0]}, x^{[1]}, \ldots
$$

and test vectors are generated as

$$
\mathbf{x}^{[t]}=\mathbf{x}^{[n]}+\zeta \Delta \mathbf{x}
$$

following exactly the same steps as before

As an example, we apply the method to

$$
f(x)=c e^{-x^{4}}
$$

which is quite difficult for the first two methods.c is a normalisation constant, such that

$$
\int_{-\infty}^{\infty} d x f(x)=1
$$

Its value does not need to be known to implement the Metropolis et al. algorithm (we just calculate c to compare the results with the normalised distribution)

$$
\int_{-\infty}^{\infty} d x e^{-x^{4}}=2 \int_{0}^{\infty} d x e^{-x^{4}}=\frac{1}{2} \int_{0}^{\infty} d t t^{-3 / 4} e^{-t}=\frac{1}{2} \Gamma\left(\frac{1}{4}\right)=1.8128 \ldots
$$

here value of seed was $x^{[0]}=-1$

The Metropolis Method

Objetive: sample a system whose probability of being in configuration " c " is $N(c)$
How: Metropolis is based on an importance-weighted random walk: Visited configurations: " $c=0$ " means old config
"c=n" means new config
Transition probability: $T(o, n)$.
Along the walk(s) the number of times any "o" is visited is m(o).
Thus, we want: $\mathrm{m}(\mathrm{o})$ proportional to $\mathrm{N}(\mathrm{o})$
Detailed balance (sample without bias) $\mathrm{N}(\mathrm{o}) \mathrm{T}(\mathrm{o}, \mathrm{n})=\mathrm{N}(\mathrm{n}) \mathrm{T}(\mathrm{n}, \mathrm{o})$
Construction of T.
Probability of trial from o to n : $\operatorname{try}(\mathbf{o}, \mathbf{n})$
Probability of accept that trial: acc(o,n)

Indeed,
Metropolis choice for try:
Detailed balance:
i.e,

Metropolis choice for acc:
$\operatorname{acc}(\mathrm{o}, \mathrm{n})=\mathrm{N}(\mathrm{n}) / \mathrm{N}(\mathrm{o})$ if $\mathrm{N}(\mathrm{n})<\mathrm{N}(\mathrm{o})$ (visiting less probable config.)
$\operatorname{acc}(0, n)=1 \quad$ if $N(n)>N(0)$ (accept if n is more populated)

Transition probability

$$
\begin{aligned}
T(0, n) & =\operatorname{acc}(o, n) & & \text { if } N(n)>N(o) \\
& =\operatorname{acc}(0, n) N(n) / N(o) & & \text { if } N(n)<N(o)
\end{aligned}
$$

$$
\mathrm{T}(\mathrm{o}, \mathrm{o})=1-\sum_{\mathrm{n} \neq \mathrm{o}} \mathrm{~T}(\mathrm{o}, \mathrm{n}) \longrightarrow \begin{aligned}
& \text { It is important to also COUNT } \\
& \text { not accepted moves for the } \\
& \text { histogram normalization }
\end{aligned}
$$

The Metropolis Method for statistical physics

$N(c)$ is proportional to the Boltzman factor $\exp (-U(c) / k T)$
(note: the normalization constant is the partition function, Z, which is IMPOSIBLE to calculate in most cases)

However, Z is not needed here!

$$
\operatorname{acc}(\mathrm{o}, \mathrm{n})=\exp (-(\mathrm{U}[\mathrm{n}]-\mathrm{U}[\mathrm{o}]) / \mathrm{kT})<1
$$

Metropolis sampling

INITIALIZE

call histogram $(0, \mathrm{~h})$
$M=$ number of $M C$ steps
nacc $=0$, number of accepted moves
amp = amplitude of jumps
$x 0=$ initial configuration (value)

LOOP: do $\mathrm{i}=1, \mathrm{M}$

```
    U = uniform in [-1,1] !random uniform
                xnew = xold + U*amp !trial move
        acc =f(xnew)/f(old) !acceptance prob.
                            lacceptance criterium
```

\(\left.\begin{array}{c}r=uniform in[-1,1]

if r<acc then

xold=xnew

nacc=nacc+1

end if\end{array}\right\}\)| call histogram(1, xnew) |
| :---: |
| $k=n i n t(x n e w / h)+1$ |
| his(k)=his(k)+1 |

end loop

FORTRAN code that implements the algorithm for this problem:

```
001. !
002. ! Metropolis et al. algorithm
003. ! for f(x)=c exp (-x**4)
004. !
005. parameter (n=1000)
006. real*8 dseed,his(-n:n),h,x,rr,xt,amp,darg, anorma
007. real*4 r
008. integer i,m,j,k,n 024. if(dble(r).lt.rr) then
009. h=0.1d0 025. x=xt
010. dseed=53211d0 026. nacc=nacc+1
011. amp=0.2d0
012. m=10**6
013. nacc=0
014. do i=1, n
015. his(i)=0
016. end do
017. x=0.2 032. anorma=0d0
027. end if
    028. k=dnint(x/h)+1
    029. if(k.gt.n.or.k.lt.-n) stop 'k fuera de intervalo'
    030. his(k)=his(k)+1
    031. end do
018. do j=1, m 033. do k=-n, n
019. call ggub(dseed,r) 034. anorma=anorma+his(k)
020. xt=x+(2*r-1)*amp
021. darg=xt**4-x**4
035. end do
022. rr=dexp(-darg)
036. do k=-n, n
023. call ggub(dseed,r) 037. write(*,*) (k-1)*h,his(k)/(anorma*h)
038. end do
039. end
```

```
024. if(dble(r).lt.rr) then
025. x=xt
026. nacc=nacc+1
027. end if
028. k=dnint (x/h)+1
029. if(k.gt.n.or.k.lt.-n) stop 'k fuera de intervalo'
030. his(k)=his(k)+1
031. end do
032. anorma=0d0
033. do k=-n, n
034. anorma=anorma+his(k)
035. end do
036. do k=-n, n
037. write(*,*) (k-1)*h,his(k)/(anorma*h)
038. end do
039. end
```


Some Monte Carlo Applications In Statistical Physics of liquids

3. Applications in statistical physics

Problems in statistical and condensed-matter physics usually have many degrees of freedom
There are two types of problems:

- Non-thermal problems: configurations with constant statistical weight

Examples:
a. Random walk
b. Modified random walks
c. Percolation problem

- Thermal problems: configurations are weighted by Boltzmann distribution

$$
P_{i} \propto e^{-E_{i} / k T}
$$

and configurations are generated using the Metropolis et al. algorithm
Examples:
a. Ising model in 2D (discrete variables)
b. Hard spheres (continuous variables)

Random walk (RW)

This model is used to describe a number of problems in statistical physics:

- Brownian motion
- a single polymer macromolecule in solution (limit of high flexibility)
- diffusion of a particle
- ...

We start from an origin ' 0 ', and define four unit vectors

$$
\mathbf{v}_{1}=(+1,0), \quad \mathbf{v}_{2}=(0,+1), \quad \mathbf{v}_{3}=(-1,0), \quad \mathbf{v}_{4}=(0,-1)
$$

An N-step random walk (RW) is generated as follows:

1. set $\mathbf{r}_{0}=(0,0)$ and $n=0$
2. choose an integer random number m_{n} from the set $\{1,2,3,4\}$
3. make $\mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{m_{n}}$
4. if $n=N$, set $\mathbf{R}=\mathbf{r}_{n}$; otherwise we go back to step 2

The vector \mathbf{R} connects the origin with the last point generated in the random walk
Clearly, if we generate two different random walks, the vector \mathbf{R} will be different.
If the lattice has coordination (number of neighbours) z, the number of different N-step random walks is

$$
Z_{N}^{\mathrm{Rw}}=z^{N}
$$

For a polymer chain, Z_{N}^{RW} would be the partition function of the polymer (assuming the configurations of the polymer had zero energy).

Statistical behaviour of \mathbf{R}
Clearly:

$$
\begin{gathered}
\langle\mathbf{R}\rangle=\mathbf{0} \quad\langle\ldots\rangle \text { average over different chains } \\
\left.\left.\left.\left\langle R^{2}\right\rangle=\left.\langle | \mathbf{R}\right|^{2}\right\rangle=\left.\langle | \sum_{n=1}^{N} \mathbf{v}_{m_{n}}\right|^{2}\right\rangle=\left.\left\langle\sum_{n=1}^{N}\right| \mathbf{v}_{m_{n}}\right|^{2}\right\rangle+\left\langle\sum_{n=1}^{N} \sum_{\substack{p=1 \\
n \neq p}}^{N} \mathbf{v}_{m_{n}} \cdot \mathbf{v}_{m_{p}}\right\rangle=N
\end{gathered}
$$

moves are independent and therefore uncorrelated. We then have

$$
\left\langle R^{2}\right\rangle_{\mathrm{Rw}}=N, \quad r_{N} \equiv \sqrt{\left\langle R^{2}\right\rangle_{\mathrm{Rw}}}=\sqrt{N}
$$

where r_{N} defines an end-to-end distance. This result holds in the limit $N \rightarrow \infty$.

Code to generate random walks of length Ntot:

```
001. !
002. ! Random walk
003. !
004. implicit real*8(a-h,o-z)
005. real*8 dseed
006. real*4 r
007. dimension i(4),i(4)
008.
009. data i/1,0, -1,0.
010. data j/0,1,0,-1.
011.
012. dseed=51323d0
013. Ntot=20
014. M=10**6
015. ar2=0
016.
017. do l=1,M
018. x=0
019. y=0
```


With this code the following results were obtained.
(a) value of $\left\langle R^{2}\right\rangle / N$ with respect to number of chains generated for a value $N=20$. It can be seen that the results tend to unity as M, the number of chains, increases.
(b) value of $\left\langle R^{2}\right\rangle$ with respect to N. We can also see how the results tend to confirm the theoretical prediction that $\left\langle R^{2}\right\rangle$ increases linearly with N (the continuous line has slope one).

Modified random walks

The random walk has some shortcomings in polymer physics:

- a polymer chain cannot turn back on itself
- a polymer chain cannot intersect itself

These problems stem from neglect of the excluded volume between the units
The non-reversal random walk (NRRW) model corrects for the first problem, by first defining

$$
\mathbf{v}_{n \pm 4}=\mathbf{v}_{n}
$$

and then modifying step 2 of the RW for $n>1$:

1. make $\mathbf{r}_{0}=(0,0)$ and $n=0$
2. choose an integer random number m_{n} from the set $\left\{m_{n-1}-1, m_{n-1}, m_{n-1}+1\right\}$
3. make $\mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{m_{n}}$
4. if $n=N$ we set $\mathbf{R}=\mathbf{r}_{n}$; otherwise go to step 2

The partition function is now

$$
Z_{N}^{\mathrm{NRRW}}=(z-1)^{N}
$$

To avoid the second problem, we can introduce the so-called self-avoiding random walk (SARW)
The following additional condition in step 3 of the NRRW algorithm is added:
3^{\prime} if the node \mathbf{r}_{n+1} has been already visited, the process stops and we start it over again.
The partition function of the SARW model is much more complicated; actually an analytic expression is known only in the limit $N \rightarrow \infty$:

$$
Z_{N}^{\text {SARW }} \underset{N \rightarrow \infty}{ } \quad N^{\gamma-1} z_{\mathrm{eff}}^{N}, \quad z_{\mathrm{eff}} \leq z-1
$$

where γ is a critical exponent, and $z_{\text {eff }}$ is the effective coordination number (in $1 \mathrm{D} z_{\text {eff }}=z-1$, with $z=2$)

RW

NRRW

SARW

When N is large, the SARW algorithm becomes very inefficient since most of the attempts to make the chain grow are rejected. In this limit, the ratio of accepted to attempted steps can be calculated as:

$$
\begin{aligned}
& P_{N}=\frac{Z_{N}^{\text {ARFW }}}{Z_{N}^{\text {NRRW }}} \longrightarrow \\
& N \rightarrow \infty
\end{aligned} \quad N^{\gamma-1}\left(\frac{z_{\text {eff }}}{z-1}\right)^{N}=e^{-N \log \frac{z-1}{z_{\text {eff }}}+(\gamma-1) \log N}
$$

The algorithm becomes exponentially inefficient (impractical for $N \simeq 100$)
From Monte Carlo simulations it is known that

$$
\left\langle R^{2}\right\rangle_{\text {sARw }}=N^{2 \nu}, \quad \nu \simeq 0.59 \quad \nu \text { critical exponent }
$$

The percolation problem

Percolation is a simple but non-trivial geometrical problem. The simplest form of percolation is:

- a square lattice with N sites
- each site can be occupied with probability p (left empty with probability $1-p$)
- a cluster of size l is defined as a group of l connected nearest neighbours
- let $n_{l}(p)$ be the number of clusters of size l
- let $P(p)$ be the fraction of occupied sites (number of occupied sites with respect to the total number of sites N) that belong to the largest cluster

Percolation transition with respect to p :
there appears a cluster in the system that percolates, i.e. spans the whole system, at

$$
p=p_{c}
$$

where p_{c} is a critical probability

Percolating cluster: cluster with a size similar to that of the system

The percolation problems can be analysed by means of the Monte Carlo method:

- each site of the lattice is occupied with probability p :

1. sites are visited sequentially (one after the other)
2. for each site we generate a uniform random number ζ in $[0,1]$
3. If $\zeta<p$, we occupy the site with an atom, otherwise we leave it empty

After visiting the N sites we will have generated one configuration

- Clusters in each configuration are identified
- $P(p)$ is obtained by averaging over a large number of configurations

For the 2D square lattice, simulations give $p_{c} \simeq 0.59$
The percolation problem is rather similar to a second-order transition if we make

$$
\begin{aligned}
P(p) & \rightarrow \text { order parameter } \\
G(p)=\sum_{l} n_{l}(p) & \rightarrow \text { free energy }
\end{aligned}
$$

The problem has critical and scaling properties:

$$
P(p) \sim\left(p-p_{c}\right)^{\beta}, \quad G(p) \sim\left(p-p_{c}\right)^{2-\alpha},
$$

where α and β are critical exponents

Numerical integration with many variables

Traditional numerical integration methods cannot be used here
Let the integration volume be a cube of side D, and define a square lattice with n nodes per axis.
Then the ratio of nodes on the surface to nodes in the bulk is

$$
\frac{2 D n^{D-1}}{n^{D}}=\frac{2 D}{n} \xrightarrow[D \rightarrow \infty]{\longrightarrow} \infty
$$

As D increases the method becomes highly inefficient!
The Monte Carlo method approximates $\quad \int_{V^{D}} g(x) d^{D} x \simeq \frac{W^{D}}{M} \sum_{i=1}^{M} g\left(x_{i}\right) \zeta_{i}$

- $x \equiv\left(x_{1}, x_{2}, \ldots, x^{D}\right)$ is a vector in D dimensions
- V^{D} is the D-dimensional integration volume
- $W^{D} \supseteq V^{D}$ is a volume that contains the volume V^{D}
- M is the number of uniform random numbers x_{i} generated in W^{D}
- and ζ_{i} is a number such that

$$
\zeta_{i}= \begin{cases}1, & \text { if } x_{i} \in V^{D} \\ 0, & \text { otherwise }\end{cases}
$$

The method is especially powerful when there is a normalised distribution function in the integrand. Consider the 1D integral

$$
I=\int_{a}^{b} d x f(x) g(x), \quad f(x) \geq 0, \quad \int_{a}^{b} d x f(x)=1
$$

The Monte Carlo method with uniform sampling gives

$$
I=\int_{a}^{b} d x f(x) g(x) \simeq \frac{b-a}{M} \sum_{i=1}^{M} f\left(x_{i}\right) g\left(x_{i}\right), \quad\left\{x_{i}\right\} \text { uniformly distributed numbers in }[a, b]
$$

Making use of the cumulative function $P(x)$:

$$
y=P(x)=\int_{a}^{x} d x^{\prime} f\left(x^{\prime}\right) \quad \rightarrow \quad d y=f(x) d x
$$

If we make the change in variables $x \rightarrow y$, we have:

$$
I=\int_{a}^{b} d x f(x) g(x)=\int_{0}^{1} d y g\left(P^{-1}(y)\right) \approx \frac{1}{M} \sum_{j=1}^{M} g(\overbrace{P^{-1}\left(y_{j}\right)}))
$$

Now if y is uniformly distributed in $[0,1]$, then $P^{-1}(y)$ is a random variable distributed according to $f(x)$

$$
I=\int_{a}^{b} d x f(x) g(x) \simeq \frac{1}{M} \sum_{j=1}^{M} g\left(x_{j}\right), \quad\left\{x_{j}\right\} \text { distributed as } f(x) \text { in }[a, b]
$$

This may be directly extended to multidimensional integrals with an integrand weighted by a distribution function.

Thermal problem: Ising model in 2D

We consider square lattice, with a $1 / 2-$ spin on each site, $s_{i}= \pm 1($ spin up +1 , spin down -1$)$ The Hamiltonian of the system is

$$
H\left(\left\{s_{i}\right\}\right)=-J \sum_{n n} s_{i} s_{j}-B \sum_{i} s_{i}, \quad J>0, \quad B \text { magnetic field }
$$

$n n$ stands for nearest neighbours (four for the square lattice) We represent each configuration of N spins by

$$
s \equiv\left\{s_{i}\right\}=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}
$$

Technically this is a more complicated problem, since configurations have to be weighted by the normalised Boltzmann factor:

$$
P(s)=\frac{e^{-\beta H(s)}}{\sum_{s} e^{-\beta H(s)}}, \quad \beta=\frac{1}{k T}
$$

How to generate configurations? We will use an importance-sampling technique, the Metropolis et al. algorithm

Uniform sampling will produce configurations that, in most cases, will have a negligible statistical weight (i.e. small Boltzmann factor), which will give rise to very inefficient (or even helpless!) simulations.

Uniform sampling

The sum \sum_{s} extends over the 2^{N} configurations of the spins. For example, for $N=10^{4}$

$$
2^{N}=2^{10^{4}} \simeq 10^{3010.3} \quad \rightarrow \quad \text { out of question! }
$$

A reduced set of configurations is chosen, and these are randomly and uniformly selected:

1. We choose a uniform random number $\zeta \in[0,1]$
2. If $\zeta<0.5$, we set $s_{i}=+1$; otherwise, we set $s_{i}=-1$
3. We repeat for all spins $i=1,2, \ldots, N$

Monte Carlo code for the 2D Ising model

Details on how to implement the importance-sampling technique:

- Trial moves: spins are moved one at a time. Spins are visited sequentially or randomly, and switched from up to down or from down to up. Change of energy involved in switching the i-th spin is

$$
\Delta E=E_{t}-E_{0}=2 s_{i} \sum_{n . n .} s_{j}
$$

Move accepted with probability

$$
r=\frac{e^{-\beta E_{t}}}{e^{-\beta E_{0}}}=e^{-\beta \Delta E} \quad \text { partition function not needed! }
$$

After we have attempted to turn the N spins, we have one MC step.

- Initialisation: we may start from all-up, all-down, or random configurations.
- Warming up: the Metropolis et al. algorithm generates configurations asymptotically, so a warm-up period is needed


```
001. !
002. ! 2D-Ising model Monte Carlo with
003. ! importance sampling
004. !
005. parameter ( }n=20\mathrm{ )
006. integer*1 is(n,n)
007. real*8 dseed
008. dimension histm(101),histe(101)
009.
010. data dseed /186761d0/
011. nsteps = 100000000
012. nblock=10
013.
014. n2 = n*n
015. T=2.1
016.
017. ama = 0
018. amaa =0
019. ene = 0
020. enea =0
021.
022. do i=1,101
023. histm(i)=0
024. histe(i)=0
025. end do
026.
027. do i = 1, n
028. do j = 1, n
029. is(i,j)=1
030. call ran (dseed,random)
031. if(random.lt.0.5) is(i,j)=-1 ! comment to set ordered state
```

```
032. ama = ama + is(i,j)
033. end do
034. end do
035.
036. do i = 1, n
037. ip = i + 1
038. if (ip .gt. n) ip = 1
039. do j = 1, n
040. jp = j + 1
041. if (jp .gt. n) jp = 1
042. ene = ene - is(i,j)*(is(ip,j)+is(i,jp))
043. end do
044. end do
045.
046. do k = 1, nsteps/nblock
047. do l = 1, nblock
048.
MC steps: 1 step = 1 sweep over all spins
    Here done in blocks of nblock steps
049. do i = 1, n
050. do j=1, n \longleftarrow i,j: spin to be flipped
051. sij = is(i,j)
052. ip = i + 1
053. if (ip.gt.n) ip=1
054. im = i - 1
055. if (im.lt.1) im=n
056. jp = j + 1
057. if (jp.gt.n) jp=1
058. jm = j - 1
059. if (jm.lt.1) jm=n
060. de = 2*sij*(is(ip,j)+is(im,j)+is(i,jp)+is(i,jm)) \longleftarrow energy change
061. call ran (dseed,random)
```

```
062. if (exp(-de/T) .gt. random) then
063. is(i,j) = -sij
064. ama = ama - 2*sij
065. ene = ene + de
066. end if
067. end do
068. end do
069.
070. end do
071.
072.
073. amaa = amaa + ama
071.
071. im=(ama/n2+1)*0.5e2+1
071. histm(im)=histm(im)+1
074.
075. ie=(ene/n2+2)*50.0+1
076. histe(ie)=histe(ie)+1
077. end do
078.
079. write(*,'(''T= '',f5.3,''M/N= '',f5.3,'' E/N= '',f6.3)')
080. >T, abs(amaa/(nsteps/nblock*n2)), enea/(nsteps/nblock*n2)
081.
082. open(3,file='histe.dat')
083. sum=0
084. do i=1,101
085. sum=sum+histe(i)
086. end do
087. do i=1,101
088. emm=2*(i-1)/100.0-2
089. write(3,'(2f9.3)') emm,histe(i)/sum*50.0
090. end do
091. close(3)
```

93. open(3,file='histm.dat')
94. sum=0
95. do $i=1,101$
96. sum=sum+histm(i)

097 . end do
098. do $i=1,101$
099. amm=2*(i-1)/100.0-1
100. write(3,'(2f9.3)') amm,histm(i)/sum*50.0
101. end do
102. close(3)
103.
104. end

(a) MC time evolution of magnetisation per spin, M / N, and energy per spin, E / N, at two different temperatures. $N=20 \times 20$.
(b) Phase diagram (M / N vs. T) and dependence of energy per spin, E / N, on T. Number of MC steps $=10^{7}$.

Model with continuous variables: hard spheres

Simple but important model in the development of the statistical mechanics of fluids and solids. It mimicks the interaction potential between two spherical molecules, $\phi(r)$:

$$
\phi(r)= \begin{cases}\infty, & r<\sigma \\ 0, & r>\sigma\end{cases}
$$

It is an athermal model (i.e. thermodynamic properties depend trivially on temperature) since the corresponding Boltzmann factor does not depend on temperature T :

$$
e^{-\beta \phi(r)}= \begin{cases}0, & r>\sigma(\text { spheres overlap }) \\ 1, & r>\sigma \text { (spheres do not overlap) }\end{cases}
$$

Only configurations where there is no overlap between the spheres are allowed. These have the same statistical weight, and possess zero energy.

Despite its 'trivial' appearance, the hard-sphere model contains highly non-trivial physics.

- fluid phase with long-range positional disorder
- crystalline phase with long-range (fcc) positional order
- amorphous (metastable) phase with long-range positional disorder but negligible viscosity coefficient and virtually zero diffusion

packing fraction, η

ratio of volume occupied by N spheres to total volume V :

$$
\eta=\frac{N v}{V}=\rho v=\frac{\pi}{6} \rho \sigma^{3}, \quad v=\begin{gathered}
\left(\frac{4 \pi}{3}\right) \times\left(\frac{\sigma}{2}\right)^{3}=\frac{\pi}{6} \sigma^{3} \\
\text { (molecular volume) }
\end{gathered}
$$

Pressure and radial distribution function. The radial distribution function $g(r)$ is a function of the distance between a pair of particles. It is a measure of the local order of the fluid.

$$
g(r)=\frac{\text { mean number of particles around a given one at distance } r}{\text { expected number with interactions turned off }}
$$

For a dense fluid, the function shows a strong first peak at distances $\sim \sigma$, and a damped oscillatory structure tending to one as r increases.

The reduced pressure is given by

$$
\frac{p}{\rho k T}=1-\frac{2 \pi \rho}{3 k T} \int_{0}^{\infty} d r r^{3} \phi^{\prime}(r) g(r)=1+\frac{2 \pi \rho}{3} \sigma^{3} g\left(\sigma^{+}\right)
$$

Approximations for the fluid and the crystal:

- fluid: virial equations of state (virial coefficients)
- crystal: free-volume approximation

Virial equation of state

It is a density expansion, based on experimental data, in terms of the virial coefficients B_{n} :

$$
\frac{p V}{N k T}=1+\sum_{n=1}^{\infty} B_{n+1} \rho^{n}=1+\sum_{n=1}^{\infty} B_{n+1}^{*} \eta^{n}, \quad B_{n}^{*}=\frac{B_{n}}{v^{n-1}}
$$

Expressions for virial coefficients based on statistical mechanics:

$$
\begin{aligned}
& B_{2}=-\frac{1}{2} \int d \mathbf{r} f(r) \\
& B_{3}=-\frac{1}{3} \int d \mathbf{r} \int d \mathbf{r}^{\prime} f(r) f\left(r^{\prime}\right) f\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
\end{aligned}
$$

where $f(r)=\exp [-\beta \phi(r)]-1$ is the Mayer function. For hard spheres The second virial coefficient is analytical:

$$
f(r)= \begin{cases}-1, & r<\sigma \\ 0, & r>\sigma\end{cases}
$$

$$
B_{2}=\frac{1}{2} \times 4 \pi \int_{0}^{\sigma} d r r^{2}=\frac{2 \pi}{3} \sigma^{3}=4 v
$$

Let us evaluate the B_{3} coefficient using multidimensional Monte Carlo integration. B_{3} is known exactly, $B_{3}=5 \pi^{2} \sigma^{6} / 18 \simeq 2.74156$. In spherical coordinates:

$$
\begin{aligned}
B_{3}=-\frac{1}{3} & \times \int_{0}^{\sigma} d r r^{2} \int_{-1}^{1} d(\cos \theta) \int_{0}^{2 \pi} d \phi \\
& \times \int_{0}^{\sigma} d r^{\prime} r^{\prime 2} \int_{-1}^{1} d\left(\cos \theta^{\prime}\right) \int_{0}^{2 \pi} d \phi^{\prime} f(r) f\left(r^{\prime}\right) f\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
\end{aligned}
$$

- place a sphere at the origin
- choose a location for a second sphere so that it overlaps with the first
- choose a location for a third sphere so that it overlaps with the first
- check whether the second and third spheres overlap, i.e. whether $f\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)=-1$ or 0

Then:

$$
B_{3}=\frac{1}{3} \times \frac{1}{M}[(\sigma) \times(2) \times(2 \pi)]^{2} \sum_{i=1}^{M} r_{i}^{2} r_{i}^{\prime 2} \xi_{i}=\frac{(4 \pi \sigma)^{2}}{3 M} \sum_{i=1}^{M} r_{i}^{2} r_{i}^{\prime 2} \xi_{i}
$$

M	$B_{3}^{\text {MC }}$	$B_{3}^{\text {MC }} / B_{3}^{\text {exacto }}$
10^{2}	2.51933	0.91894
10^{3}	2.65935	0.97002
10^{4}	2.77402	1.01184
10^{5}	2.74633	1.00174
10^{6}	2.74411	1.00093
10^{7}	2.74242	1.00032
10^{8}	2.74170	1.00005

```
001. !
002. ! Evaluation of B3 by Monte Carlo integration
003. ! hard-sphere diameter sigma=1
004. !
005. implicit real*8(a-h,o-z)
006. real*4 r,t,f
007. integer*8 M,i
008.
009. dseed=173211d0
010. pi=4.0d0*datan(1.0d0)
011. pi2=2*pi
012.
013. do mpot=2,8
014. M=10**mpot
015. sum=0
016. do i=1,M
017. call ggub (dseed, r)
018. call ggub (dseed, t)
019. call ggub (dseed, f)
020. cp=dcos(pi2*f)
021. sp=dsin(pi2*f)
022. ct=2*t-1
023. st=dsqrt(1-ct**2)
024. x=r*st*cp
025. y=r*st*sp
026. z=r*ct
027. r1a=x**2+y**2+z**2
028. call ggub (dseed, r)
029. call ggub (dseed, t)
030. call ggub (dseed, f)
```

```
031. \(\mathrm{cp}=\mathrm{d} \cos (\mathrm{pi} 2 * \mathrm{f})\)
032. \(\mathrm{sp}=\mathrm{d} \sin (\mathrm{pi} 2 * f)\)
033. ct=2*t-1
034. st=dsqrt(1-ct**2)
035. \(\mathrm{x} 1=\mathrm{r} * \mathrm{st} * \mathrm{cp}\)
036. \(\mathrm{y} 1=\mathrm{r} * \mathrm{st*sp}\)
037. \(z 1=r * c t\)
038. \(\mathrm{r} 1 \mathrm{~b}=\mathrm{x} 1 * * 2+\mathrm{y} 1 * * 2+\mathrm{z} 1 * * 2\)
039. \(\mathrm{r} 2=(\mathrm{x}-\mathrm{x} 1) * * 2+(\mathrm{y}-\mathrm{y} 1) * * 2+(\mathrm{z}-\mathrm{z} 1) * * 2\)
040. if(r2.lt.1.0d0) sum=sum+r1a*r1b
041. end do
042. vol=4*pi
043. B3=sum*vol \(* * 2 /(3 * M)\)
044. B3ex=5*pi**2/18
045. write(*,'(''M='',i9,'' B3='',f8.5,'' B3/B3ex='',f8.5)')
046. > M,B3,B3/B3ex
047. end do
048. end
```


Free-volume equation for the crystalline phase

The free-volume approximation assumes the neighbours of a given sphere to be fixed in their equilibrium positions. The central sphere moves in the 'cage' left by the neighbours, within a 'free volume' v_{f}.

$$
F=-k T \log Z=-N k T \log \left(\frac{v_{f}}{\Lambda^{3}}\right), \quad \frac{F}{N k T}=\log \left(\frac{\Lambda^{3}}{v_{f}^{3}}\right), \quad p=-\left(\frac{\partial F}{\partial V}\right)
$$

To calculate v_{f} we can use the Monte Carlo integration method:

$$
v_{f} \simeq \frac{W}{M} \sum_{m=1}^{M} \xi_{i}, \quad \xi_{i}= \begin{cases}1, & \text { no overlap } \\ 0 & \text { overlap }\end{cases}
$$


```
001. !
002. ! Free volume for the fcc lattice
003. !
004. implicit real*8(a-h,o-z)
005. dimension xx(12),yy(12),zz(12)
006. data xx/+0.0d0,+0.0d0,+0.0d0,+0.0d0,+0.5d0,-0.5d0,+0.5d0,
007. >-0.5d0,+0.5d0,-0.5d0,+0.5d0,-0.5d0/
008. data yy/+0.5d0,-0.5d0,+0.5d0,-0.5d0,+0.0d0,+0.0d0,+0.0d0,
009. >+0.0d0,+0.5d0,+0.5d0,-0.5d0,-0.5d0/
010. data zz/+0.5d0,+0.5d0,-0.5d0,-0.5d0,+0.5d0,+0.5d0,-0.5d0,
011. >-0.5d0,+0.0d0,+0.0d0,+0.0d0,+0.0d0/
012. real*4 r
013. pi=4d0*datan(1d0)
014. sq2=dsqrt(2d0)
015.
016. rho=1.3d0
017. a=(dsqrt(2d0)/rho)**(1d0/3d0)
018. eta=rho*pi/6
019. dseed=173211d0
020. M=2e7
021. sum=0
022.
023. do i=1,M
024. call ggub (dseed, r)
025. x=a/2*(2*r-1)
026. call ggub (dseed, r)
027. y=a/2*(2*r-1)
028. call ggub (dseed, r)
029. z=a/2*(2*r-1)
030.
```

31. do $\mathrm{k}=1,12$
32. $\mathrm{xk}=\mathrm{a} * \mathrm{xx}(\mathrm{k}) * \mathrm{sq} 2$
33. $\mathrm{yk}=\mathrm{a} * \mathrm{yy}(\mathrm{k}) * \mathrm{sq} 2$
34. $\mathrm{zk}=\mathrm{a} * \mathrm{zz}(\mathrm{k}) * \mathrm{sq} 2$
35. $\mathrm{r} 2=(\mathrm{xk}-\mathrm{x}) * * 2+(\mathrm{yk}-\mathrm{y}) * * 2+(\mathrm{zk}-\mathrm{z}) * * 2$
36. if(r2.lt.1d0) go to 1
37. end do
38. sum=sum+1
39. 1 end do
40.
41. vf=sum/M*a**3
42. write(*,'(''eta='',f10.5,'' vf='',f10.5,'' ff='',f12.7)')
43. >eta,vf,-rho*dlog(vf)
44.
45. end

Monte Carlo code for thermal simulation of hard spheres

We consider N hard spheres contained in a rectangular box.

A move consists of randomly moving a sphere and checking whether this displacement gives an overlap or not. If there is no overlap, the move is accepted; otherwise it is rejected:

$$
e^{-\beta \Delta E}= \begin{cases}0, & \text { there is at least one overlap } \\ 1, & \text { there are no overlaps }\end{cases}
$$

a. Periodic boundary conditions
b. Minimum image convention

c. Calculation of radial distribution function.
$g(r) d^{3} r=$ number of particles to be found in a differential volume element $d^{3} r$ a distance r from that sphere, with respect to number without interactions:

$$
g(r)=\frac{1}{N} \times \frac{\left\langle\sum_{i=1}^{N} n_{i}(r, \Delta r)\right\rangle}{4 \pi r^{2} \rho \Delta r}
$$

$\langle\ldots\rangle$ is average over different configurations of the spheres

- $n_{i}(r, \Delta r)$ is the number of particles within a spherical shell of width Δr, centred on the i-th particle, and at a distance r from this particle
$-4 \pi r^{2} \Delta r$ is the volume of the spherical shell:

$$
\frac{4 \pi}{3}\left[\left(r+\frac{\Delta r}{2}\right)^{3}-\left(r-\frac{\Delta r}{2}\right)^{3}\right]
$$

```
001. !
002. ! MC simulation of hard spheres
003. !
004. implicit real*8(a-h,o-z)
005. parameter (num=4000, ngrx=1000)
006.
007. real*4 rr
008. dimension r1x(num), r1y(num), r1z(num)
009.
010. common gr(ngrx)
011.
012. data dseed /1467383.d0/
013. data hr /0.05d0/
014. data pi /3.141592654d0/
015.
016. open (1, file = 'hs.par')
017. read (1,*) ini, lmn
018. read (1,*) nstepeq, nstep0, nblock0
019. read (1,*) dens, amp
020. close (1)
021.
022. if (lmn .gt. num) stop 'lmn .gt. num'
023.
024. open (2, file = 'hs.inp')
025. open (3, file = 'hs.out')
026. open (4, file = 'hs.gr')
027.
028. if (ini .eq. 0) then
029. call fcc (lmn, dens, r1x, r1y, r1z, xlx, yly, zlz) « particles on sites of fcc lattice
030. else
031. do i = 1, lmn
032. read(2,*) r1x(i), r1y(i), r1z(i)
033. end do
```

```
034. read(2,*) xlx,yly,zlz
035. end if
036.
037. xll = xlx/2
038. Yll = yly/2
039. zll = zlz/2
040.
041. volume = xlx*yly*zlz
042. ro = lmn/volume
043.
044. nox = xll/hr
045. if (nox .gt. ngrx) stop 'nox .gt. ngrx'
046.
047. do istage = 1, 2
048.
049. if (istage .eq. 1) then
050. nblock = nstepeq
051. nstep = nblock
052. else
053. nblock = nblock0
054. nstep = nstep0
055. end if
056.
057. do j = 1, lmn periodic boundary
058. call pbc (r1x(j),r1y(j),r1z(j),xlx,yly,zlz,xll,yll,zll)
059. end do
060.
061. do j = 1, ngrx
062. gr(j) = 0
063. end do
064.
065. naccept = 0
066. numgr = 0
```

67.
68. 69.
1. numgr $=$ numgr +1
2. call gdr
3.
4.

nacceptb $=0$
074.
075. do jj=1,nblock
076.
077. do $j=1$, 1 mn
078. call pbc
079. > (r1x $(j), r 1 y(j), r 1 z(j), x l x, y l y, z l z, x l l, y l l, z l l)$
080. end do
081.
082. do $\mathrm{k}=1$, lmn
083. call ggub(dseed, rr)
084. desx $=(r r-0.5) * a m p$
085. call ggub(dseed, rr)
086. desy $=(r r-0.5) * a m p$
087. call ggub(dseed, rr)
088. $\operatorname{desz}=(r r-0.5) * a m p$
089. $r 1 x k=r 1 x(k)$
090. $\quad \mathrm{r} 1 \mathrm{yk}=\mathrm{r} 1 \mathrm{y}(\mathrm{k})$
091. r1zk $=r 1 z(k)$
092. $r 3 x=r 1 x k+\operatorname{des} x$
093. r3y $=r 1 y k+$ desy
094. r3z = r1zk + desz
test position for k-th particle

```
```

96. do j = 1, lmn
```
```

96. do j = 1, lmn
97. if (j .ne. k) then
98. if (j .ne. k) then
99. xi = r3x
100. xi = r3x
101. yi = r3y
102. yi = r3y
103. zi = r3z
104. zi = r3z
105. xx = xi - r1x(j)
106. xx = xi - r1x(j)
107. yy = yi - r1y(j)
108. yy = yi - r1y(j)
109. zz = zi - r1z(j)
110. zz = zi - r1z(j)
111. call mic (xx,yy,zz,xlx,yly,zlz,xll,yll,zll)
112. call mic (xx,yy,zz,xlx,yly,zlz,xll,yll,zll)
113. r = xx*xx + yy*yy + zz*zz
114. r = xx*xx + yy*yy + zz*zz
115. r = xx*xx + yy*yy + zz*zz
116. r = xx*xx + yy*yy + zz*zz
117. end if
118. end if
119. end do
120. end do
121.
122.
123. naccept = naccept + 1
124. naccept = naccept + 1
125. nacceptb = nacceptb + 1
126. nacceptb = nacceptb + 1
127. r1x(k) = r3x
128. r1x(k) = r3x
129. r1y(k) = r3y
130. r1y(k) = r3y
131. r1z(k) = r3z
132. r1z(k) = r3z
133.
134.
135. 1 end do
136. 1 end do
137. end do
138. end do
139.
140.
141. acceptratio = real(nacceptb)/(nblock*lmn)*100
142. acceptratio = real(nacceptb)/(nblock*lmn)*100
143. if (acceptratio .gt. 50.0) amp = amp * 1.05
144. if (acceptratio .gt. 50.0) amp = amp * 1.05
145. if (acceptratio .lt. 50.0) amp = amp * 0.95
146. if (acceptratio .lt. 50.0) amp = amp * 0.95
147. end do
```
```

122. end do
```
```


check overlap with other particles

```
\(\left\{\begin{array}{l}\text { check overlap with other } \\ \text { particles }\end{array}\right.\)
adjust acceptance ratio to 50\%
```

123.
124. do $\mathrm{i}=1, \operatorname{lmn}$
125. write(3,*) r1x(i),r1y(i),r1z(i)
126. end do
127. write(3,*) xlx,yly,zlz
```
```

99. yi = r3y
```
```

99. yi = r3y
```
128.
129.
130.
131. if (istage .eq. 2) then
132.
133. do i = 1, ngrx
134. \(r=(i-1+0.5 d 0) * \mathrm{hr}\)
135. dvol \(=4 * \mathrm{pi} / 3 \mathrm{~d} 0 *((\mathrm{r}+\mathrm{hr} / 2) * * 3-(\mathrm{r}-\mathrm{hr} / 2) * * 3)\) \(\operatorname{grr}=\operatorname{gr}(i) /(d v o l * l m n * n u m g r *(l m n-1) / v o l u m e)\) write(4,*) r,grr end do
end if
141.
142. end do
143.
144. end
```

145. !
146. ! Periodic boundary conditions
147. !
148. subroutine pbc (r1x,r1y,r1z,xlx,yly,zlz,xll,yll,zll)
149.
150. implicit real*8 (a-h,o-z)
151.
152. if (dabs(r1x-xll) .ge .xll) then
153. if (r1x .lt. OdO) then
154. r1x = r1x + xlx
155. else
156. r1x = r1x - xlx
157. end if
158. end if
159. if (dabs(r1y-yll) .ge. yll) then
160. if (r1y .lt. OdO) then
161. r1y = r1y + yly
162. else
163. r1y = r1y - yly
164. end if
165. end if
166. if (dabs(r1z-zll) .ge. zll) then
167. if (r1z .lt. OdO) then
168. r1z = r1z + zlz
169. else
170. r1z = r1z - zlz
171. end if
172. end if
173.
174. end
```
```

175. !
176. ! Minimum image convention
177. !
178. subroutine mic (xx,yy,zz,alx,aly,alz,alx2,aly2,alz2)
179. implicit real*8(a-h,o-z)
180.
181. if (dabs(dble(xx)) .ge. alx2) then
182. if (dble(xx) .lt. alx2) then
183. xx = xx + alx
184. else
185. xx = xx - alx
186. end if
187. end if
188.
189. if (dabs(dble(yy)) .ge. aly2) then
190. if (dble(yy) .lt. aly2) then
191. yy = yy + aly
192. else
193. yy = yy - aly
194. end if
195. end if
196.
197. if (dabs(dble(zz)) .ge. alz2) then
198. if(dble(zz) .lt. alz2) then
199. zz = zz + alz
200. else
201. zz = zz - alz
202. end if
203. end if
204.
205. end
```
```

206. !
207. ! Generation of fcc lattice
208. !
209. subroutine fcc (lmn, dens, r1x, r1y, r1z, xlx, yly, zlz)
210.
211. implicit real*8 (a-h, o-z)
212. parameter (num = 4000)
213.
214. dimension r1x(num), r1y(num), r1z(num)
215. dimension sx(4), sy(4), sz(4)
216.
217. data sx /0d0, 0.5d0, 0.5d0, 0d0/
218. data sy /0d0, 0.5d0, 0d0, 0.5d0/
219. data sz /0d0, 0d0, 0.5d0, 0.5d0/
220.
221. data sh /0.01d0/
222.
223. a = (4d0/dens)**(1d0/3d0)
224. n = (1mn/4)**(1d0/3d0) + 0.001
225.
226. xlx = n*a
227. yly = n*a
228. zlz = n*a
229.
230. m = 1
231. do i = 1, n
232. do j = 1, n
233. do k = 1, n 239. end do
234. do l = 1, 4
235. r1x(m) = (i - 1 + sx(l) + sh) * a
236. end do
237. r1y(m) = (j - 1 + sy(l) + sh) * a
238. end do
239. r1z(m) = (k - 1 + sz(l) + sh) * a
240. end do
241.
242. m=m+1
243. end
```
```

245.
246. ! Histogram for g(r)
247. !
248. subroutine gdr(lmn,r1x,r1y,r1z,xlx,yly,zlz,xll,yll,zll)
249.
250. implicit real*8(A-H,O-Z)
251. parameter (num=4000, ngrx=1000)
252.
253. dimension r1x(num), r1y(num), r1z(num)
254. common gr(ngrx)
255. data hr /0.05d0/
256.
257. do i = 1, lmn-1
258. do j = i + 1,lmn
259. xx = r1x(i) - r1x(j)
260. yy = r1y(i) - r1y(j)
261. zz = r1z(i) - r1z(j)
262. call mic (xx,yy,zz,xlx,yly,zlz,xll,yll,zll)
263. r = xx*xx + yy*yy + zz*zz
264. rr = dsqrt(r)
265. if (rr .lt. xll) then
266. k = rr/hr + 1
267. gr (k) = gr (k) + 2
268. end if
269. end do
270. end do
271.
272. end
```

\section*{THE METHOD OF MOLECULAR DYNAMICS}

The equations of motion of a system of N interacting particles are solved numerically

The system is classical, and can be described by means of the potential energy
\[
U=U\left(\left\{\stackrel{\mathrm{e}}{r}_{k}\right\}\right)
\]

The equations of motion are:
\[
\left\{\begin{array}{l}
\frac{d r_{i}}{d t}=v_{i} \\
\frac{d v_{i}}{d t}=-\frac{\nabla_{i} U}{m}
\end{array}\right.
\]

Since the energy is conserved, the system evolution can be visualised as a trajectory on a hypersurface in phase space,
\[
H\left(\left\{r_{k}\right\},\left\{v_{k}\right\}\right)=T\left(\left\{v_{k}\right\}\right)+U\left(\left\{r_{k}\right\}\right)=\text { const } .
\]
where \(T\) is the kinetic energy

\section*{Integration methods}

Based on finite difference schemes, in which time \(t\) is discretised using a time interval \(h\)

Knowing the coordinates and the forces at time \(t\), the state at a later time \(t+h\) is obtained

The simplest (but still powerful!) algorithm is the Verlet algorithm
VERLET ALGORITHM
We write the following Taylor expansions:
\[
\begin{aligned}
& r_{i}(t+h)=r_{i}(t)+h v_{i}(t)+\frac{h^{2}}{2 m} F_{i}(t)+\frac{h^{3}}{6} V_{i}(t)+\mathrm{e} \\
& r_{i}(t-h)=r_{i}(t)-h v_{i}(t)+\frac{h^{2}}{2 m} F_{i}(t)-\frac{h^{3}}{6}(t)+\mathrm{e}
\end{aligned}
\]

Adding, neglecting terms of order \(O\left(h^{4}\right)\), and rearranging:
\[
r_{i}(t+h)=2 r_{i}(t)-r_{i}(t-h)+\frac{h^{2}}{m} F_{i}(t)
\]

This is a recurrence formula, allowing to obtain the coordinates at time \(t+h\) knowing the coordinates at times \(t\) and \(t-h\)

It is a formula of third order (the new positions contain errors of order \(h^{4}\) )
The velocities can be obtained from the expansion:
\[
r_{i}(t+h)=r_{i}(t-h)+2 h \stackrel{\mathrm{e}}{i}^{\mathrm{e}}(t)+O\left(h^{2}\right)
\]
as
\[
v_{i}(t)=\frac{r_{i}(t+h)-\stackrel{\Gamma}{r}_{i}(t-h)}{2 h} \quad\left(\text { which contains errors of order } h^{2}\right)
\]

The kinetic energy at time \(t\) can now be obtained as
\[
E_{c}(t)=\sum_{i=1}^{N} \frac{1}{2} m\left|\stackrel{\mathrm{v}}{i}^{\mathrm{e}}(t)\right|^{2}
\]

Using the equipartition theorem, the temperature can be obtained as
\[
\left.\left\langle\frac{1}{2} m v_{\alpha}^{2}\right\rangle=\frac{k T}{2} \longrightarrow T=\left.\frac{m}{N_{f} k}\left\langle\sum_{i=1}^{N}\right| v_{i}\right|^{2}\right\rangle=\frac{2}{N_{f} k}\left\langle E_{c}\right\rangle
\]
where
\[
\begin{aligned}
& \alpha=\text { arbitrary degree of freedom } \\
& N_{f}=\text { number of degrees of freedom }
\end{aligned}
\]

\section*{LEAP-FROG VERSION}

Numerically more stable version than standard algorithm. We define:
\[
v_{i}\left(t-\frac{h}{2}\right)=\frac{r_{i}(t)-r_{i}(t-h)}{h}, v_{i}\left(t+\frac{h}{2}\right)=\frac{r_{i}(t+h)-\stackrel{\mathrm{e}}{r_{i}}(t)}{h}
\]

Positions are updated according to
\[
r_{i}(t+h)=r_{i}(t)+h v_{i}\left(t+\frac{h}{2}\right)
\]

Using the Verlet algorithm,
\[
r_{i}(t+h)-r_{i}(t)=r_{i}(t)-r_{i}(t-h)+\frac{h^{2}}{m} \stackrel{\mathrm{e}}{F_{i}}(t)
\]
so that
\[
v_{i}\left(t+\frac{h}{2}\right)=v_{i}\left(t-\frac{h}{2}\right)+\frac{h}{m} \stackrel{\mathrm{e}}{F_{i}}(t)
\]

Therefore leap-frog version or Hamiltonian version is
\[
\left\{\begin{array}{l}
v_{i}\left(t+\frac{h}{2}\right)=v_{i}\left(t-\frac{h}{2}\right)+\frac{h}{m} F_{i}(t) \\
r_{i}(t+h)=r_{i}(t)+h v_{i}\left(t+\frac{h}{2}\right)
\end{array}\right.
\]

The velocities are obtained as
\[
v_{i}(t)=\frac{v_{i}\left(t+\frac{h}{2}\right)+v_{i}\left(t-\frac{h}{2}\right)}{2}
\]

\section*{Stability of trajectories}

Systems with many degrees of freedom have a tendency to be unstable
If \(\delta\) is the distance in phase space between two trajectories that initially are very close, and write
\[
\delta(t)=C e^{\lambda t} \quad \lambda=\text { Lyapounov coefficient }
\]
then the system is
- STABLE if \(\delta<0\) or decreases faster than exponentially
- UNSTABLE if \(\delta>0\); the system is said to be chaotic

Lyapounov instability is important because:

1. it limits the time beyond which an accurate trajectory can be found
2. to reach high accuracy after time \(t\) we need too many accurate decimal digits in the initial condition
\[
e^{\lambda t}=c_{0} 10^{-\varepsilon} \longrightarrow \varepsilon=\frac{\log c_{0}-\lambda t}{\log 10}
\]

Since systems with many degrees of freedom are intrinsically unstable, very accurate integration algorithms are useless

The basic requirements that an algorithm should satisfy are:
1. Time reversibility:
\[
\left\{\begin{array}{l}
\frac{d r_{i}}{d t}=v_{i} \\
m \frac{d v_{i}}{d t}=\nabla_{i} U
\end{array}\right.
\]

The equations are invariant under the transformations
\[
\begin{aligned}
t & \rightarrow-t \\
v_{i} & \rightarrow-v_{i}
\end{aligned}
\]

The Verlet algorithm is time reversible
\(r_{i}(t+h)=2 r_{i}(t)-r_{i}(t-h)+\frac{h^{2}}{m} \stackrel{\mathrm{e}}{F_{i}}(t) \xrightarrow{h \rightarrow-h} r_{i}(t-h)=2 r_{i}(t)-r_{i}(t+h)+\frac{h^{2}}{m} \stackrel{\mathrm{e}}{F_{i}}(t)\)
Irreversibility in some algorithms induces intrinsic energy dissipation so that energy is not conserved
\[
r_{i}(t+h)=2 r_{i}(t)-r_{i}(t-h)+\frac{h^{2}}{m} F_{i}(t)
\]

\section*{2. Symplecticity:}

The probability distribution \(f\left(\left\{r_{i}\right\},\left\{\begin{array}{l}\mathrm{e} \\ v_{i}\end{array}\right\}, t\right)\) evolves like an incompressible fluid, which implies \(\rho=0\)

A symplectic algorithm conserves the volume of phase space

\section*{The Lennard-Jones potential}

The Lennard-Jones potential, \(\phi_{\mathrm{LJ}}(r)\), is a pair potential that depends on the distance \(r\) between two particles:
\[
\phi_{\mathrm{LJ}}(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
\]
- \(\epsilon\), energy parameter
- \(\sigma\), zero of the potential (roughly the diameter of the particles)

The central problem of Molecular Dynamics is the calculation of forces. In this case the forces can be calculated analytically by differentiation of the potential.


Let \(N\) be the number of particles in the system. The potential energy of the system is:
\[
U\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \phi_{\mathrm{LJ}}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right)=\sum_{i=1}^{N} \sum_{j<i}^{N} \phi_{\mathrm{LJ}}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right)
\]

The first version includes a \(1 / 2\) prefactor in order not to count the same pair of particles twice. The force on particle \(i\) is:
\[
\mathbf{F}_{i}=-\nabla_{\mathbf{r}_{i}} U=-\sum_{j \neq i} \nabla_{\mathbf{r}_{i}} \phi_{\mathrm{LJ}}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right) \equiv \sum_{j \neq i} \mathbf{F}_{i j}
\]

Note that \(\mathbf{F}_{i j}=-\nabla_{\mathbf{r}_{i}} \phi_{\mathrm{LJ}}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right)\) is the contribution of particle \(j\) to the force on particle \(i\), and that, by Newton's third law, \(\mathbf{F}_{i j}=-\mathbf{F}_{j i}\); this property helps save valuable computer time. Now:
\[
\nabla_{\mathbf{r}_{i}} \phi_{\mathrm{LJ}}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right)=\phi_{\mathrm{LJ}}^{\prime}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right) \nabla_{\mathbf{r}_{i}}\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|=\phi_{\mathrm{LJ}}^{\prime}\left(\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|\right) \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{j}-\mathbf{r}_{i}\right|}
\]

Since
\[
\phi_{\mathrm{LJ}}^{\prime}(r)=-\frac{48 \epsilon}{\sigma^{2}}\left[\left(\frac{\sigma}{r}\right)^{13}-\left(\frac{\sigma}{r}\right)^{7}\right]
\]
we finally have
\[
\mathbf{F}_{i}=\frac{48 \epsilon}{\sigma^{2}} \sum_{j \neq i}\left[\left(\frac{\sigma}{r}\right)^{14}-\left(\frac{\sigma}{r}\right)^{8}\right]\left(\mathbf{r}_{j}-\mathbf{r}_{i}\right)
\]

\section*{A molecular-dynamics FORTRAN code}
- declare variables
- starting positions and velocities
- initialise parameters

- averages and print out
```

1. !
2. ! MD for Lennard-Jones particles
3. !
4. implicit real*8(a-h,o-z)
5. parameter (}\textrm{n}=256\mathrm{)
6. dimension x(n),y(n),z(n)
7. dimension vx(n),vy(n),vz(n)
8. dimension fx(n),fy(n),fz(n)
9. dimension ig(1000)
10. real*4 r
11. common//hgr,cutr2,ngr
12.
13. rho=0.8
14. T=2
15. npasos=2000
16.
17. dum = 17367d0
18. pi = 4d0 * datan(1d0)
19. call init (n, rho, T, x, y, z, aL)
20. do i=1,n
21. vr = dsqrt(}3*T\mathrm{)
22. call ggub(dum,r)
23. cost = 2*r-1
24. sint = dsqrt(1-cost**2)
25. call ggub(dum,r)
26. fi = r*2*pi
27. vx(i) = vr*sint*dcos(fi)
28. vy(i) = vr*sint*dsin(fi)
29. vz(i) = vr*cost
30. end do
Maxwell-Boltzmann
```
```

32. aL2 = aL/2dO
33. cut2 = (2.5d0)**2
34. cutr2 = (aL/2)**2
35. ngr = 100
36. hgr = aL2/ngr
37. dt = 0.01d0
38.
39. ec = 0
40. u = 0
41. ap = 0
42.
43. do i = 1,1000
44. ig(i) = 0
45. end do
46.
47. do k = 1,npasos
48.
49. do i = 1, n
50. call pbc (x,y,z,aL,aL,aL,aL2,aL2,aL2) «_ periodic boundary conditions
51. end do
52. do i = 1, n
53. fx(i) = 0
54. fy(i) = 0
55. fz(i) = 0
56. end do
57. epot=0
```
058. do i \(=1, \mathrm{n}-1\)
059. \(x i=x(i)\)
060. yi \(=\mathrm{y}(\mathrm{i})\)
061. zi = z(i)
062. do \(j=i+1, n\)
063. \(x x=x i-x(j)\)
064. yy = yi-y(j)
065. \(z z=z i-z(j) \quad\) minimum image
066. call mic ( \(x x, y y, z z, a L, a L, a L, a L 2, a L 2, a L 2\) ) \(\qquad\) convention
067. \(\mathrm{r} 2=\mathrm{xx} * * 2+\mathrm{yy} * * 2+\mathrm{zz} * * 2\)
068. if (r2 .lt. cut2) then
069. \(r 1=1 / r 2\)
070. \(r 6=r 1 * * 3\)
071. pot=4*r6*(r6-1)
072. u = u+pot
073. epot=epot+pot
074. \(r r=48 * r 6 * r 1 *(r 6-0.5 d 0)\)
075. fxx = rr*xx
076. fyy = rr*yy
077. fzz = rr*zz
078. ap = ap+rr*r2
079. \(f x(i)=f x(i)+f x x\)
080. fy(i) \(=f y(i)+f y y\)
081. \(f z(i)=f z(i)+f z z \quad\) add up forces to each
082. \(f x(j)=f x(j)-f x x \quad\} \quad\) member of ij pair
083. \(f y(j)=f y(j)-f y y\)
084. \(f z(j)=f z(j)-f z z)\)
085. end if
086. end do
087. end do

FORCE calculation
088.
```

89. ekin=0
90. do i=1,n
91. vxi = vx(i)+dt*fx(i)
92. vyi = vy(i)+dt*fy(i)
93. vzi = vz(i)+dt*fz(i)
94. vxx = 0.5d0*(vxi+vx(i))
95. vyy = 0.5d0*(vyi+vy(i))
96. vzz = 0.5d0*(vzi+vz(i))
97. en = vxx**2+vyy**2+vzz**2
98. ekin = ekin+en
99. ec = ec+en
100. vx(i) = vxi
101. vy(i) = vyi
102. vz(i) = vzi
103. }x(i)=x(i)+dt*vx(i
104. y(i) = y(i)+dt*vy(i)
105. z(i) = z(i)+dt*vz(i)
106. end do
107.
108.
109.
110. end do
111.
112. temp =ec/((3*n-3)*npasos)
113. u = u/(n*npasos)
114. ap = rho*temp+ap/(3*aL**3*npasos)
115.
116. write(*,*) 'temperature=',temp
117. write(*,*) 'energy=',u
118. write(*,*) 'pressure=',ap
119.
```
120. do \(\mathrm{k}=1\), ngr
121. \(\mathrm{r}=(\mathrm{k}-1) * \mathrm{hgr}+\mathrm{hgr} / 2 \mathrm{~d} 0\)
122. \(\mathrm{vol}=4 * \mathrm{pi} / 3 *((\mathrm{r}+\mathrm{hgr} / 2 \mathrm{~d} 0) * * 3-(\mathrm{r}-\mathrm{hgr} / 2 \mathrm{~d} 0) * * 3)\)
123. \(\mathrm{gdr}=2 * \operatorname{ig}(\mathrm{k}) /(\mathrm{n} *(\mathrm{n}-1) / a \mathrm{~L} * * 3 * \mathrm{npasos} * \mathrm{vol})\)
124. write(1,*) r,gdr
125. end do
126.
127. end




\section*{FIN}

\title{
MÉTODOS COMPUTACIONALES EN FíSICA DE LA MATERIA CONDENSADA
}

Curso de doctorado del programa de Física de la Materia Condensada

Curso 2006-2007

\author{
E. Velasco \\ Departamento de Física Teórica de la Materia Condensada \\ Facultad de Ciencias \\ Universidad Autónoma de Madrid
}

CONTENTS
1. A brief introduction to computation in Condensed Matter Physics
2. The Monte Carlo method
3. The method of Molecular Dynamics

\section*{EL MÉTODO DE DINÁMICA MOLECULAR}

Se resuelven numéricamente las ecuaciones de movimiento de un sistema de \(N\) partículas interactuantes que, clásicamente, se pueden escribir en términos de la energía potencial
\[
U=U\left(\left\{\mathbf{r}_{k}\right\}\right), \quad q \equiv\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right\}
\]
como
\[
\left\{\begin{array}{l}
\frac{d \mathbf{r}_{i}}{d t}=\mathbf{v}_{i} \\
\frac{d \mathbf{v}_{i}}{d t}=-\nabla_{i} U\left(\left\{\mathbf{r}_{k}\right\}\right) / m
\end{array}\right.
\]

Con una dinámica que conserva la energía, la evolución del sistema se puede visualizar como una trayectoria sobre una hipersuperficie
\[
H\left(\left\{\mathbf{r}_{k}\right\},\left\{\mathbf{v}_{k}\right\}\right)=T\left(\left\{\mathbf{r}_{k}\right\}\right)+U\left(\left\{\mathbf{r}_{k}\right\}\right)=\text { const. }
\]
en el espacio de fases, donde \(T\left(\left\{\mathbf{v}_{k}\right\}\right)\) es la energía cinética

\section*{Métodos de integración}

Se basan en esquemas en diferencias finitas, en los que el tiempo \(t\) se discretiza a través de un intervalo \(h\)

Sabiendo las coordenadas en \(t\) y las fuerzas \(\mathrm{F}_{i}(t)\) se trata de obtener el estado en el instante posterior \(t+h\)

El algortimo más simple es el algoritmo de Verlet:
- Algoritmo de Verlet. Hacemos los siguientes desarrollos de Taylor:
\[
\begin{aligned}
& \mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t)+h \mathbf{v}_{i}(t)+\frac{h^{2}}{2 m} \mathbf{F}_{i}(t)+\frac{h^{3}}{6} \ddot{\mathbf{v}}_{i}(t)+\ldots \\
& \mathbf{r}_{i}(t-h)=\mathbf{r}_{i}(t)-h \mathbf{v}_{i}(t)+\frac{h^{2}}{2 m} \mathbf{F}_{i}(t)-\frac{h^{3}}{6} \ddot{\mathbf{v}}_{i}(t)+\ldots
\end{aligned}
\]

Sumando, despreciando términos \(O\left(h^{4}\right)\), y reorganizando los términos que quedan:
\[
\mathbf{r}_{i}(t+h)=2 \mathbf{r}_{i}(t)-\mathbf{r}_{i}(t-h)+\frac{h^{2}}{m} \mathbf{F}_{i}(t)
\]

Esta fórmula de recurrencia nos permite, conociendo \(\mathbf{r}_{i}(t)\) y \(\mathbf{r}_{i}(t-h)\), obtener la nueva posición \(\mathbf{r}_{i}(t+h)\). Se trata de un algoritmo de \(O\left(h^{3}\right)\) [es decir, la nueva posición contiene errores de \(O\left(h^{4}\right)\) ].

La velocidad se puede obtener del desarrollo
\[
\mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t-h)+2 h \mathbf{v}_{i}(t)+O\left(h^{2}\right)
\]
de donde
\[
\mathbf{v}_{i}(t)=\frac{\mathbf{r}_{i}(t+h)-\mathbf{r}_{i}(t-h)}{2 h}
\]
que contiene errores de \(O\left(h^{2}\right)\). La energía cinética, en el instante \(t\), se puede calcular de
\[
E_{c}(t)=\sum_{i=1}^{N} \frac{1}{2} m\left|\mathbf{v}_{i}(t)\right|^{2}
\]
y la temperatura, utilizando el teorema de equipartición:
\[
\left\langle\frac{1}{2} m v_{\alpha}^{2}\right\rangle=\frac{k T}{2} \quad \rightarrow \quad T=\left\langle\sum_{i=1}^{N} \frac{m\left|\mathbf{v}_{i}(t)\right|^{2}}{k N_{f}}\right\rangle
\]
\(\alpha=\) grado de libertad cualquiera, y \(N_{f}=\) número de grados de libertad del sistema
- Versión de leap-frog. Es una versión numéricamente más estable que el algoritmo de Verlet. Se definen:
\[
\mathbf{v}_{i}\left(t-\frac{h}{2}\right)=\frac{\mathbf{r}_{i}(t)-\mathbf{r}_{i}(t-h)}{h}, \quad \mathbf{v}_{i}\left(t+\frac{h}{2}\right)=\frac{\mathbf{r}_{i}(t+h)-\mathbf{r}_{i}(t)}{h}
\]

Las posiciones se actualizan con la expresión
\[
\mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t)+h \mathbf{v}_{i}\left(t+\frac{h}{2}\right)
\]

Usando el algoritmo de Verlet,
\[
\mathbf{r}_{i}(t+h)-\mathbf{r}_{i}(t)=\mathbf{r}_{i}(t)-\mathbf{r}_{i}(t-h)+\frac{h^{2}}{m} \mathbf{F}_{i}(t)
\]
de donde
\[
\mathbf{v}_{i}\left(t+\frac{h}{2}\right)=\mathbf{v}_{i}\left(t-\frac{h}{2}\right)+\frac{h}{m} \mathbf{F}_{i}(t)
\]

De aquí obtenemos la versión hamiltoniana del algoritmo de Verlet:
\[
\left\{\begin{array}{l}
\mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t)+h \mathbf{v}_{i}\left(t+\frac{h}{2}\right) \\
\mathbf{v}_{i}\left(t+\frac{h}{2}\right)=\mathbf{v}_{i}\left(t-\frac{h}{2}\right)+\frac{h}{m} \mathbf{F}_{i}(t) \\
\mathbf{v}_{i}(t)=\frac{\mathbf{v}_{i}\left(t+\frac{h}{2}\right)+\mathbf{v}_{i}\left(t-\frac{h}{2}\right)}{2}
\end{array}\right.
\]

\section*{Estabilidad de las trayectorias}

Los sistemas de muchos grados de libertad tienen una tendencia a ser inestables

Si escribimos la distancia entre dos trayectorias que empezaron muy juntas como \(\delta(t) \sim e^{\lambda t}\), el sistema decimos que es:
- ESTABLE si \(\lambda<0\) ó \(\delta\) decrece más lentamente que una exponencial
- INESTABLE si \(\lambda>0\); en esta situación el sistema se dice caótico


El coeficiente \(\lambda\) se conoce como coeficiente de Lyapunov

La inestabilidad de Lyapunov, que se da cuando \(\lambda>0\), es importante por dos razones íntimamente relacionadas:
- limita el tiempo en el que se puede encontrar una solución numérica precisa, en la que podamos confiar
- para alcanzar una precisión alta en la trayectoria, tras un tiempo \(t\), se necesita un número de dígitos desproporcionadamente alto en la condición inicial; en concreto, este número crece linealmente con el tiempo: si \(\epsilon\) es el número de dígitos,
\[
e^{\lambda t} \sim 10^{-\epsilon} \quad \rightarrow \quad \epsilon \sim \frac{\lambda t}{\log 10}
\]

Los sistemas de muchos grados de libertad son intrínsecamente inestables y, por tanto, intrínsecamente caóticos. Los algoritmos numéricos de integración muy precisos son inútiles

Las propiedades básicas exigibles a un algoritmo de integración son:
1. Que sea reversible en el tiempo
\[
\left\{\begin{array}{l}
\frac{d \mathbf{r}_{i}}{d t}=\mathbf{v}_{i} \\
m \frac{d \mathbf{v}_{i}}{d t}=-\nabla_{i} U
\end{array}\right.
\]

Si hacemos la transformación \(t \rightarrow-t, \mathbf{v}_{i} \rightarrow-\mathbf{v}_{i}\) las ecuaciones no cambian de forma El algoritmo de Verlet, al hacer \(h \rightarrow-h\), respeta esta propiedad:
\[
\begin{aligned}
\mathbf{r}_{i}(t+h) & =2 \mathbf{r}_{i}(t)-\mathbf{r}_{i}(t-h)+\frac{h^{2}}{m} \mathbf{F}_{i}(t) \\
\longrightarrow \quad \mathbf{r}_{i}(t-h) & =2 \mathbf{r}_{i}(t)-\mathbf{r}_{i}(t+h)+\frac{h^{2}}{m} \mathbf{F}_{i}(t)
\end{aligned}
\]

La irreversibilidad de algunos algoritmos de integración introduce una disipación de energía intrínseca que provoca que la energía del sistema no se conserve.
2. Que sea simpléctico

Esto quiere que la función de probabilidad del sistema, \(f\left(\left\{\mathbf{r}_{k}\right\},\left\{\mathbf{v}_{i}\right\}, t\right)\) evoluciona en el espacio de fases como un fluido incompresible, lo cual implica que \(\dot{f}=0\)

Un esquema numérico simpléctico conserva el volumen del e.snacio de fases.
020. do \(\mathrm{n}=1\), Ntot
021. call ran (dseed,r)
022. \(\mathrm{k}=4 * \mathrm{r}+1\)
023. \(x=x+i(k)\)
024. \(y=y+j(k)\)
025. end do
026. \(\mathrm{r} 2=\mathrm{x} * * 2+\mathrm{y} * * 2\)
027. ar2=ar2+r2
028. end do
039. write(*,'(''N, M, <r2>='', \(2 \mathrm{i} 8, \mathrm{f} 12.5\) )') Ntot, \(M, \operatorname{ar} 2 / \mathrm{M}\)
030. end do
031.
032. end```

