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1. Introduction

2. Monte Carlo (MC)

3. Molecular Dynamics (MD)

4. Langevin Dynamics (thermostats)

5. Brownian Dynamics (colloids, polymers in solvent)

6. Hydro-Dynamics at mesoscales 

Course material on the following web page:

http://www.uam.es/otros/fmcyn/MetodosComputacionales.html



  

Reference books

Molecular Dynamics
(Equlibrium and non-equilibrium)
Monte Carlo, Brownian Dynamics, etc.

Monte Carlo
Free Energy, etc..

Understanding Molecular Simulations
Daan Frenkel and Berend Smit
Academic Press (second Edition) (2002)

Computer simulations of Liquids
M.P Allen and D.J Tildesley
Oxford Science Publi. (1987)



  



  

Good

Bad...

...leads to Desperado Coding

How to start a code

Cool



  



  



  



  



  



  



  

distribution 
function...

... and its 
corresponding 
HISTOGRAM

The Monte Carlo Method



  



  



  

(IMPORTANCE SAMPLING)
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here  value of seed was x[0]=-1



  

The Metropolis Method

Objetive: sample a system whose probability of being in configuration “c” is N(c)

How:      Metropolis is based on an importance-weighted random walk:
Visited configurations: “c=o” means old config

 “c=n” means new config
Transition probability: T(o,n).

Along the walk(s) the number of times any “o” is visited is m(o).
Thus, we want: m(o) proportional to N(o)  

Detailed balance (sample without bias)  N(o) T(o,n)=N(n)T(n,o)

Construction of T.
Probability of trial from o to n: try(o,n)
Probability of accept that trial: acc(o,n)
Indeed, T(o,n)=try(o,n) acc(o,n)

Metropolis choice for try:      try(o,n)=try(n,o)   symmetric
Detailed balance: N(o) acc(o,n)=N(n) acc(n,o)
i.e, acc(o,n)/acc(n,o) = N(n)/N(o)

Metropolis choice for acc:     
acc(o,n)= N(n)/N(o) if  N(n)<N(o) (visiting less probable config.)
acc(o,n)= 1               if  N(n)>N(o) (accept if n is more populated) 



  

The Metropolis Method for statistical physics

N(c) is proportional to the Boltzman factor exp(-U(c)/kT)

(note: the normalization constant is the partition function, Z,
which is IMPOSIBLE to calculate in most cases) 

However, Z is not needed here!
 acc(o,n) = exp(-(U[n]-U[o])/kT) < 1

Transition probability
T(o,n) = acc(o,n)    if N(n) > N(o)

   =  acc(o,n) N(n)/N(o)   if N(n)< N(o)

T(o,o) = 1-         T(o,n)

n = o

It is important to also COUNT
not accepted moves for the
histogram normalization



  

INITIALIZE
  call histogram(0, h) 

M =    number of MC steps
nacc = 0,  number of accepted moves
amp = amplitude of jumps
x0 = initial configuration (value)

LOOP:   do i = 1, M
U = uniform in [-1,1]     !random uniform 
xnew = xold + U*amp   !trial move

  acc = f(xnew)/f(old)      !acceptance prob.
                                 !acceptance criterium

  r = uniform in [-1,1]
                                    if r <acc  then              !accept  move   : 

   xold=xnew
                     nacc=nacc+1
  end if 

 call histogram(1, xnew)                                  ! sample
k=nint(xnew/h)+1
his(k)=his(k)+1

end loop

NORMALIZE HISTOGRAM AND PRINT: call histogram(2,dummy)

Metropolis sampling



  



  



  

Some 
Monte Carlo Applications
In Statistical Physics of liquids
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B=0

B=0

B=0

B=0

Random
sampling

Importance
sampling



  



  



  

initial energy

MC steps: 1 step = 1 sweep over all spins

Here done in blocks of nblock steps

i,j: spin to be flipped

energy change



  

check for acceptance



  



  



  



  



  



  



  



  



  



  



  



  



  

a. Periodic boundary conditions

b. Minimum image convention



  



  



  

particles on sites of fcc lattice



  

periodic boundary 
conditions applied



  

histogram for g(r) accumulated

test position for k-th particle



  

check overlap with other 
particles

adjust 
acceptance ratio 

to 50%



  

normalisation of g(r)



  



  



  



  



  

THE METHOD OF MOLECULAR DYNAMICS

The equations of motion of a system of N interacting particles are solved 
numerically

The system is classical, and can be described by means of the potential energy
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The equations of motion are:
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Since the energy is conserved, the system evolution can be visualised as a 
trajectory on a hypersurface in phase space,

where T is the kinetic energy
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Integration methods

Based on finite difference schemes, in which time t is discretised using a time 
interval h

Knowing the coordinates and the forces at time t, the state at a later time t+h is 
obtained

The simplest (but still powerful!) algorithm is the Verlet algorithm

VERLET ALGORITHM

We write the following Taylor expansions:
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Adding, neglecting terms of order O(h4) , and rearranging:



  

The kinetic energy at time t can now be obtained as

)()()(2)(
2

tF
m

h
htrtrhtr iiii

 +−−=+

This is a recurrence formula, allowing to obtain the coordinates at time t+h 
knowing the coordinates at times t and t-h

It is a formula of third order (the new positions contain errors of order h4)

The velocities can be obtained from the expansion:
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Using the equipartition theorem, the temperature can be obtained as
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where

α = arbitrary degree of freedom

Nf = number of degrees of freedom



  

LEAP-FROG VERSION

Numerically more stable version than standard algorithm. We define:
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Positions are updated according to
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Therefore leap-frog version or Hamiltonian version is






 ++=+

2
)()(

h
tvhtrhtr iii



)(
2

 
2

tF
m

hh
tv

h
tv iii

 +




 −=





 +

2
22

)(





 −+





 +

=

h
tv

h
tv

tv
ii

i




The velocities are obtained as



  

Stability of trajectories

Systems with many degrees of freedom have a tendency to be unstable

If δ is the distance in phase space between two trajectories that initially are 
very close, and write

then the system is

tCet λδ =)(

• STABLE if δ < 0 or decreases faster than exponentially

• UNSTABLE if δ > 0; the system is said to be chaotic

λ = Lyapounov coefficient

Lyapounov instability is important because:

1. it limits the time beyond which an accurate trajectory can be found

2. to reach high accuracy after time t we need too many accurate decimal 
digits in the initial condition
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Since systems with many degrees of freedom are intrinsically unstable, very 
accurate integration algorithms are useless

The basic requirements that an algorithm should satisfy are:  

1. Time reversibility:
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transformations  
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The Verlet algorithm is time reversible

Irreversibility in some algorithms induces 
intrinsic energy dissipation so that energy is 
not conserved
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2.   Symplecticity:

The probability distribution { } { }( )tvrf ii ,,


evolves like an incompressible

fluid, which implies 0=f

A symplectic algorithm conserves the volume of phase space



  



  



  

A molecular-dynamics FORTRAN code

• declare variables
• starting positions and velocities

• initialise parameters

M
D

 lo
op

• update positions and velocities (leap frog)

lo
op

 o
ve

r 
pa

irs
 o

f 
p

ar
tic

le
s

• averages and print out

• calculate relative position (using 
minimum image convention)

• accumulate forces
• accumulate energies, virial, etc. 

• apply periodic boundary conditions



  

Maxwell-Boltzmann 
distribution for velocities

Particles initially on nodes 
of a fcc lattice



  

periodic boundary conditions



  

FORCE 
calculation

minimum image 
convention

add up forces to each 
member of ij pair



  

update velocities and 
positions

histogram for g(r)



  

normalise radial 
distribution function



  



  



  

 FIN



  

 FIN



  



  

/m

T({vk }) es la energía cinética



  



  

O(h2)
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