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Hybrid particule-continuum models
Forewords and applications

• Multiscale modeling: predicted as a scientific milestone in near future by the 2020

Science Group. [Nature 440 (7083): 383 (2006)]

• Phenomena involving a fine interplay between molecular and hydrodynamic scales.

– Complex fluids near interfaces: microfluidics, slip of liquid flow past surfaces

– Fluid-fluid or soft interfaces (Rayleigh-Taylor instability, membrane’s dynamics)

– Macromolecules-sound interaction (proteins) [Science, 309:1096, 2005]

– Crystal growth from liquid phase,

– Wetting phenomena: microscopic treatment of the wetting front,

– Constant chemical potential simulations for confined systems: osmosis driven flows

through membranes, thin films, water in clays,

– etc...
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Multiscale modelling
Embedding molecular dynamics within fluctuating hydrodynamics

water density profile

Hybrid MD-FH
setup

DMPC 
(lipid layer)

PRL, 97, 134501 (2006)

PRE, 76, 036709 (2007)
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Flux coupling enables to solve unsteady flows

Spatial Coupling

Local stress tensor at P cell is 
obtained from molecular dynamics
and used as boundary condition for FH.

At the particle buffer B the FH 
local fluxes are transfered to the 
particle system by imposing 
non-conservative forces Fi 
to the buffer particles

FH
B

Hhybrid interface

fluctuating  hydrodynamics 
region

MD

F
i

partices are removed / inserted to 
keep the buffer filled up

particle insertions 
done by  the USHER method:

molecular dynamics region

USHER:   J. Chem. Phys., 119, 978 (2003)

USHER for water: J.Chem.Phys.121, 12139 (2004)
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General flux boundary conditions for MD
PRE 72, 026703 (2005)

• Introduce external forces Fi at the particle buffer

• Objective: impose the desired energy flux Je and momentum flux Jp into MD.

• Momentum and energy input over ∆t (A is the area of the interfase H)

Momentum JpA∆t =
P

i∈B Fi∆t +
P

i′ ∆(mvi′)

Energy JeA∆t| {z }
Total input

=
X
i∈B

Fi · vi∆t| {z }
External force

+
X

i′
∆εi′| {z }

Particle insertion/removal

• External forces: Fi = F + F′
i (particle i ∈ B)

• Mean force 〈Fi〉 = F provides the desired input of momentum

F =
A

NB

j̃p where j̃p ≡ Jp −
P

i′ ∆(mvi′)

A dt
.

• Fluctuating part F′
i provides energy input via dissipative work, (it gives no momentum

PNB
i=1 F′

i = 0).

F′
i =

Av′
iPNB

i=1 v′2
i

h
j̃e − j̃p · 〈v〉

i
with j̃e ≡ Je −

P
i′ ∆εi′

Adt
.
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Molecular dynamics at various ensembles PRE, 72, 026703 (2005)

The amount of heat and work into the MD system is exactly

controlled

• This fact enables to work in:

– Grand-canonical ensemble. µVT, with µ = µ(pC, T C) chemical potential at

the reservoir B.

– Isobaric ensemble NPT. Jp = pn̂.

– Constant enthalpy HPT. JH
e = M〈v〉 · F and ∆N = 0. ∆E + p∆V =

∆H = 0. (Joule-Thompson)

– Constant heat flux. Je = cte. (growth of solid phase -ice-, heat exchange at

complex surfaces.)

• Further benefits

– The system comunicates with the exterior at its boundaries (B), as a real system

does.

– Dynamic properties are measurable. Inside the interest region, MD is not altered

by any artifact (thermostat, manostat, etc...).
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Grand Canonical result
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Soft-particles
DPD-like

Liquid argon Water (T=300 K)

pressure density cell-coordinate

Flux particle BC´s are thermodynamically consistent

GC

with the Grand Canonical ensemble

Grand Canonical ensemble:

Std[ρ] = [ρkbT/(V c2
T )]1/2, where c2

T = (∂P/∂ρ)T is the squared sound velocity.
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Non-equilibrium: unsteady shear flow
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Non-equilibrium: sound waves
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Collision of a water wave against a lipid monolayer (DMPC)
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Conclusions

• Hybrid scheme coupling molecular dynamics and fluctuating hydrodynamics.

• Chemical specificity (water solvating complex molecules), charmm27 force field.

• Shear and sound and heat.

The model

• Respects conservation laws by construction (flux-exchange).

• MD is an open system and its mass fluctuation is consistent with the grand canonical ensemble.

• MD velocity and pressure fluctuations are consitent with FH.
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