Multiscale simulation of complex fluid flow using coupled models

Rafael Delgado Buscalioni

Universidad de Educación a Distancia Madrid

collaboration with:

Gianni De Fabritiis (University College London) Jens Harting (Stuttgart University). HPC-Europa funding @ HLRS

1

Multiscale modelling: Motivation. Applications.

- Multiscale models: predicted as a scientific milestone in near future by the 2020 Science Group. [*Nature* **440** (7083): 383 (2006)]
- Complex fluids near interfaces: microfluidics, slip of liquid flow past surfaces.
- Fluid-fluid or soft interfaces (e.g., Rayleigh-Taylor instability, membrane's dynamics)
- Macromolecules-sound interaction (proteins) [Science, 309:1096, 2005.]
- Crystal growth from liquid phase.
- Wetting phenomena: microscopic treatment of the wetting front.
- Constant chemical potential simulations for confined systems: osmosis driven flows through membranes, thin films, water in clays,
- etc...

Mulstiscale techniques

the art of inventing a wise...

Trick Astuce Truco Scherzzo Zaubern $\tau \epsilon \chi \nu \alpha \sigma \mu \alpha = technasma$

Multiscale modelling

for different states of matter

	QM-MD	PRL 93 , 175503 (2004)		
SOLIDS	MD-FD	PRL 87(8),086104 (2001)		
	QM-MD-FD	Abraham		
GASES	DSMC-CFD	AMAR [A. Garcia]		
	MC-CFD	Depostion (crystal growth		
		from vapour phase) PRB, 64		
		035401.(2001)		
MEMBRANE	S MD-MPM	Ayton et al. J.CHem.Phys 122 ,		
		244716(2005)		
Domain decomposition: MD CED, MD EH				
	S Fulerian-Lagrangian: MD-LB MD-FH			
	Velocity-Stress coupling: MD-SMED_MD-ED			
	Particle particle: MD SRD: new method: IChemPhys			
	rarticle-particle. MD-SKD, new method. JChemiritys, 173 22/106 (2005)			
	123 224100 (2003)			
	Acronyms			
Particle methods		Continuum methods		
QM= Quantum mechanics		FD= finite difference		
MD= Molecular dynamics		CFD=Computational fluid dynamics		
MC=Monte Carlo		SMFD=Spectral methods for fluid dynamics		
DSMC= Direct simulation Monte Carlo		LB=Lattice Boltzmann		
		FH=Fluctuating hydrodynamics		
		SRD=Stochastic Rotation Dynamics		
		MPM=Mass point method		

Multiscale modelling: Complications with liquids

- Large intermolecular potential energy, cohesion.
- Large mobility. Open systems, particle insertion, etc...
- Fluctuations are important at molecular scales:
 - Fluctuating-deterministic coupling (how to reduce effect of particle fluctuations in the continuum region).
 - Use of stochastic fluid models: fluctuating hydrodynamics
- Soft matter: self-assembly process (eg,. water+surfactants)
- Wide gap between time-scales: time decoupling. Coarse-grained models with specific molecular properties.

Multiscale modelling of liquids: different scenarios.

Mulsticale models based on domain decompositon.

General issues concerning hybrid models

Hybrids based on domain decomposition

Model	Information exchanged	P: open or closed	Boundary conditions imposed to P	Continuity	C Deterministic or Stochastic	Steady or Unsteady
Schwartz	Variables:	closed:	Maxwell daemon	Variable (YES),	Deterministic	Steady
coupling	transversal velocity	shear,	to velocity	Fluxes (NO),		
	(shear)	incompressible		Fluctuations (NO)		
		fluids)				
Flux	Fluxes of	open:	External forces	Variables (YES)	Stochastic or	Unsteady
coulping	conserved	sound+energy		(via relaxation)	Deterministic	
	quantities (mass,			Fluxes (YES)		
	momentum,			Fluctuations (YES)		
	energy)			· · · ·		

The Schwartz algorithm Pros

Fast convergence to steady state.Continuity of variable ensured by constructionReduces fluctuations at the Continuum region

Cons

Conservation laws are not respected.Is not thermodynamically consistent.Maxwell daemon alters particle's collectivebehaviour (diffusion, transport coef..).Particledomainonly valid for incompressible flow withnomass exchange across the interface.

0) Solve C using an initial guess for $\phi_{\rm C}$ at $\delta({\rm C})$
loop
1) Solve P imposing ϕ_{C} at $\delta(P)$ Maxwell Daemon for velocity
2) Solve C imposing $\langle \phi_P \rangle$ at $\delta(C)$ Dirichlet B.C.
Check for convergence within POC

The Flux coupling scheme

The Flux coupling scheme

Present scheme (conceptually simpler)

Conservation laws apply for the total system: P+C

G. De Fabritiis, RDB, P. Coveney; PRL 97, 134501 (2006)

Flux coupling for unsteady flows.

Flux coupling for unsteady flows.

Spatial Coupling

The particle buffer **B**

- **Objective**: Impose momentum and energy $(C \rightarrow P)$
- **Requirement**: Control the buffer's mass $M_B = m N_B$
- **Method:** The buffer is always filled with particles via a simple relaxation algorithm.

$$\frac{dN_B}{dt} = \frac{1}{\tau_B} \left(\alpha N_{CP} - N_B \right)$$

with $\tau_B \simeq [10 - 100] fs$ (faster than any hydrodynamic time) and $\alpha \simeq 0.75$.

• Particle evaporating out of the buffer B are removed. If $\Delta N_B > 0$, particles are inserted using the USHER **algorithm** (insertion energy equal to the mean energy/particle)

Fast particle insertion with controlled release of potential energy USHER J. Chem. Phys 119, 978 (2003); J. Chem. Phys. 121, 12139 (2004) (water)

Insertion process at constant energy per particle dashed line thermodynamic analytical solution (Lennard-Jones

USHER: New particles are placed at locations where the release of potential energy to the system takes the desired specified value. The USHER uses a variant of Newton-Raphson method to locate low-energy regions in the complex energy landscape.

G. De Fabritiis, RDB, P. Coveney, Energy controlled insertion of polar molecules in dense fluids, *J. Chem. Phys.* **121**, 12139 (2004)

Applications: Constant chemical potential simulations, unfolding of proteins via water insertion (Goodfellow), water insertion in confined systems (e.g. proteins).

On how micro talks to macro $P \rightarrow C$

Recall that all we need the flux across the hybrid interface H:

$$J_{\phi}^{H} = \left(J_{\phi}^{CP} + J_{\phi}^{PC}\right) / 2$$

Objetive. Evaluate J_{ϕ}^{PC} (with $\phi = \{\mathbf{p}, e\}$ average flux at the PC cell over Δt).

(1) Via **Kinetic Theory formulae** for pressure tensor and energy flux:

$$\langle \boldsymbol{J}_{\boldsymbol{p}}^{P} \rangle = \langle m_{i} \mathbf{v}_{i} \mathbf{v}_{i} - \frac{1}{2} \Sigma_{j}^{N} \mathbf{r}_{ij} \mathbf{F}_{ij} \rangle \\ \langle \boldsymbol{J}_{e}^{P} \rangle = \langle m_{i} \epsilon_{i} \mathbf{v}_{i} - \frac{1}{2} \Sigma_{j}^{N} \mathbf{r}_{ij} \mathbf{v}_{i} \mathbf{F}_{ij} \rangle$$

(2) Via the **constituve relations:** Newtonian fluid and Fourier law.

Using the averaged variables $\Phi_P = \sum_i \chi_P(\mathbf{r}_i)\phi_i$ (total ϕ at PC cell) where χ_P is the characteristic function of the cell P, i.e. $\chi_P(\mathbf{r}) = 1$ if $\mathbf{r} \in P$ and 0 otherwise.

On how macro talks to micro: $C \rightarrow P$

[Flekkoy, RDB, Coveney, Phys. Rev. E, 72, 026703 (2005)]

Objective: To impose into the P system the desired (exact) energy and momentum flux across the interface H: that is J_e^H and J_p^H , respectively.

Method: By adding an external force F_i to the particles at the B reservoir.

Momentum and energy added to P + B over one (long) time step $dt = \Delta t$

where A is the H-interface area and the index i' runs only over added/removed particles during Δt .

On how macro talks to micro: $C \rightarrow P$ (cont.)

Decomposition of the external particle force: $\mathbf{F}_i = \mathbf{F} + \mathbf{F}'_i$

The mean value $\langle F_i \rangle = F$ provides the desired **input of momentum**

$$\mathbf{F} = \frac{A}{N_B} \tilde{\mathbf{j}}_p \quad \text{where } \tilde{\mathbf{j}}_p \equiv \mathbf{J}_p - \frac{\sum_{i'} \Delta(m \mathbf{v}_{i'})}{A \, dt} \,. \tag{1}$$

The fluctuating part \mathbf{F}'_i provides the desired **energy input** via dissipative work (note that \mathbf{F}'_i gives no net momentum input because $\sum_{i=1}^{N_B} \mathbf{F}'_i = 0$).

$$\mathbf{F}'_{i} = \frac{A\mathbf{v}'_{i}}{\sum_{i=1}^{N_{B}}\mathbf{v}'^{2}_{i}} \left[\tilde{j}_{e} - \tilde{\mathbf{j}}_{p} \cdot \langle \mathbf{v} \rangle \right] \quad \text{with } \tilde{j}_{e} \equiv J_{e} - \frac{\sum_{i'} \Delta \epsilon_{i'}}{Adt}.$$
(2)

Under equilibrium, the second law of thermodynamics is respected and the particle system behaves like an open system at constant chemical potential, $\mu = \mu(P^C, T^C)$, given by the pressure P^C and temperature T^C imposed at the B reservoir.

Molecular dynamics at various ensembles

[Flekkoy, RDB, Coveney, Phys. Rev. E, 72, 026703 (2005)]

Amount of heat and work into the MD system is exactly controlled.

Enabling

- Grand-canonical ensemble. μ VT. Where $\mu = \mu(p^C, T^C)$ is the chemical potential at the reservoir B.
- Isobaric ensemble NPT. $J_p = pn$.
- Constant enthalpy HPT. $\mathbf{J}_{e}^{H} = M \langle \mathbf{v} \rangle \cdot F$ and $\Delta N = 0$. $\Delta E + p \Delta V = \Delta H = 0$. (Joule-Thompson)
- Constant heat flux. $J_e = cte$. (growth of solid phase -ice-, heat exchange at complex surfaces.)

with further benefits

- The system comunicates with the exterior at its boundaries (B), as a real system does.
- Dynamic properties are measurable. Inside the interest region, MD is not altered by any artifact (thermostat, manostat, etc...).

Thermodynamic consistency: *Grand-Canonical ensemble*

Flux particle BC's are thermodynamically consistent with the Grand Canonical ensemble

Grand Canonical ensemble: $\operatorname{Std}[\rho] = [\rho k_b T / (V c_T^2)]^{1/2}$, where $c_T^2 = (\partial P / \partial \rho)_T$ is the squared sound velocity.

Variable continuity: On how macro and micro finally agree.

Important question: In case of disagreement, who is right, P or C?

	C is right	P is right
Authors	Nie <i>et al</i>	Present work (and Garcia DSMC-CFD)
velocity continuity:	(a) Contraint particle dynamics	(b) Relaxation term in NS eqs. for CP cell
mass flux	imposed by C to P	Given by the particle flux across H
		(ruled by pressure)

(a) Constrained dynamics: [Thompson and O'Connel, PRE, (1995); Nie et al. J. Fluid Mech. (2004)].

$$\frac{dx_i^2}{dt} = F_i/m + \frac{1}{\tau_r} \left(v_{CP}^C - \langle v \rangle_{CP}^P \right)$$

(b) Relaxation of first C cell: [RDB, Flekkoy, P.Coveney, EuroPhys. Lett. (2005)]

$$\frac{[\rho \mathbf{v}]_{CP}^{C}}{dt} = NS + \frac{1}{\tau_{r}} \left(\langle [\rho \mathbf{v}]^{P} \rangle_{CP} - [\rho \mathbf{v}]_{CP}^{C} \right)$$

Note: Constraining the particle dynamics affects the particle collective properties. It also destroys energy balance. Relaxation of the Continuum cell (CP) is simple and efficient, $\tau_r << \tau_{hydro}$.

Fluctuations are important at the nanometer and micron scales **MD Stress fluctuations are consistent with** *Landau Theory* for fluctuating hydrodynamics.

				Numerical	Theoretical
Fluid	V_{PC}	T	η	$\operatorname{Var}[j_{xy}^P]$	Landau theory or (Zwanzig and Mountain, 1965)
WCA	81	1	1.75	0.51	0.60
WCA	173	1	1.75	0.40	0.41
WCA	138	1	1.75	0.33	0.38
WCA	338	1	1.75	0.25	0.24
WCA	2778	1	1.75	0.08	0.06
WCA	2778	1	1.75	0.04	0.03
LJ	121.5	4.0	2.12	1.09	1.08 (1.19)
LJ	121.5	2.0	1.90	0.66	0.72 (0.71)
LJ	121.5	1.0	1.75	0.39	0.49 (0.43)

Density $\rho=0.8$ (all in LJ units)

Fluctuations are important at the nanometer and micron scales

Thus it is possible to couple molecular dynamics with fluctuating hydrodynamics MD-FH hybrid

For liquid phase: water, argon...

Fluctuating hydrodynamics solver based on Landau Theory

Conservative stochastic equations, solved using an Eulerian **Finite Volume method** with an explicit time integration scheme (Euler).

$$\frac{\partial}{\partial t} \begin{pmatrix} \text{Variables}, \Phi \\ \rho \\ \rho \mathbf{u} \\ \rho e \end{pmatrix} = -\nabla \begin{pmatrix} \text{Fluxes}, \mathbf{J} \\ \rho \mathbf{u} \\ \rho \mathbf{u} + \mathbf{\Pi} \\ \rho \mathbf{u} e + \mathbf{\Pi} : \mathbf{u} + \mathbf{Q} \end{pmatrix} - \nabla \begin{pmatrix} \text{Fluctuations}, \widetilde{J} \\ 0 \\ \widetilde{\Pi} \\ \widetilde{Q} \end{pmatrix} \quad \begin{array}{c} \text{mass} \\ \text{momentum} \\ \text{energy} \end{array}$$
(3)

Finite Volume: space is discretized using control cells of volume V_c

 $\frac{d}{dt}\int_{V_k}\phi(x,t)dx = \sum_l A_{kl}\mathbf{J}_{kl}^{\phi}\cdot\mathbf{e}_{kl},$

[G. De Fabritiis, RDB, preprint, 2006; GDF, Mar Serrano, RDB, preprint, 2006] The value of any quantity at the surface kl is approximated as $\phi_{kl} = (\phi_l + \phi_k)/2$. We then obtain the following formal stochastic equations,

$$dM_k^t = \sum_l \mathbf{g}_{kl} \cdot \mathbf{e}_{kl} A_{kl} dt, \tag{4}$$

$$d\mathbf{P}_{k}^{t} = \sum_{l} \left[\frac{\mathbf{\Pi}_{l}}{2} \cdot \mathbf{e}_{kl} + \mathbf{g}_{kl} \cdot \mathbf{e}_{kl} \mathbf{v}_{kl} \right] A_{kl} dt + d\widetilde{\mathbf{P}}_{k}^{t}, \tag{5}$$

where $\mathbf{g}_{kl} = \frac{1}{2}(\rho_k + \rho_l)\frac{1}{2}(\mathbf{v}_k + \mathbf{v}_l).$

Discretization of the gradients satisfying the fluctuation-dissipation theorem.

$$\Pi_{k}^{\alpha\beta} = \frac{\eta_{k}}{V_{k}} \sum_{l} \left[\frac{1}{2} A_{kl} (e_{kl}^{\alpha} v_{l}^{\beta} + e_{kl}^{\beta} v_{l}^{\alpha}) - \frac{\delta^{\alpha\beta}}{D} A_{kl} e_{kl}^{\gamma} v_{l}^{\gamma} \right],$$

$$\pi_{k} = \frac{\zeta_{k}}{V_{k}} \sum_{l} \frac{1}{2} A_{kl} e_{kl}^{\beta} v_{l}^{\beta}.$$
(6)

The fluctuating component of the momentum is

$$d\tilde{\mathbf{P}}_{k}^{t} = \sum_{l} \frac{1}{2} A_{kl} \left(4k_{b} T_{l} \frac{\eta_{l}}{V_{l}} \right)^{1/2} d\overline{W}_{l}^{S} \cdot \mathbf{e}_{kl} + \sum_{l} \frac{1}{2} A_{kl} \left(2Dk_{b} T_{l} \frac{\zeta_{l}}{V_{l}} \right)^{1/2} \frac{tr[d\mathbf{W}_{l}]}{D} \mathbf{e}_{kl}, \tag{7}$$

where $d\overline{W}_l^S = (d\mathbf{W}_l + d\mathbf{W}_l^T)/2 - tr[d\mathbf{W}_l]/D\mathbf{1}$ is a traceless symmetric random matrix and $d\mathbf{W}_l$ is a $D \times D$ matrix (D = 3 in three dimensions) of independent Wiener increments satisfying $< d\mathbf{W}_k^{\alpha,\beta} d\mathbf{W}_l^{\gamma,\delta} > = \delta_{k,l} \delta_{\alpha,\gamma} \delta_{\beta,\delta} \delta t$.

Hybrid MD-FH at equilibrium

isothermal simulations: DPD thermostat for MD [(Dünweg et al.)]

Hybrid MD-FH under non-equilibrium: unsteady shear flow

Hybrid MD-FH under non-equilibrium: sound waves of argon and water within a closed box

Water wave reflecting against a DMPC monolayer

Conclusions

- Overview of the multiscale methods for liquid phase.
- Previous hybrid models for liquid phase were not mature enough for many problems: restricted to shear flow, deterministic continuum and Lennard Jones atoms:
- In this work we generalize the hybrid scheme for liquids and include:
 - Sound and energy (mass transport)
 - fluctuating hydrodynamics (FH)
 - Realistic MD potentials: water as solvent, complex molecules as solutes (using MINDY).

The model

- Respect conservation laws by construction (flux-exchange).
- MD is an open system and its mass fluctuation is consistent with the Grand-Canonical ensemble.
- MD velocity and pressure fluctuations are consitent with FH.
- **Applied problem (1):** Slippage of water over hydrophobic surfaces (DMPC monolayer); effect of including small ammount of dissolved argon.
- **Applied problem (2):** Macromolecule sound interaction (resonance under high-frequency perturbation).