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Fundamental questions on simple liquids

Hydrodynamics at the nanoscale

• What is the limit of validity of surface-tension driven hydrodynamics?

• How does the surface modes behave beyond that limit?

Surface tension and liquid surface at molecular scales

• How does the surface tension depends on the wavenumber γ(q) ?

• It is possible to define the rightful intrinsic surface of a liquid at the
molecular level?

2



Definition of the intrinsic surface and surface modes

• Capillary wave theory (CWT) assumes the existence of the intrinsic surface
of a liquid, z = ξ(R).
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– Intrinsic surface (IS): z = ξ(R)

– Fourier modes: ξ̂q

– The intrinsic surface described

through ξ̂q,

ξ(R) =
qu∑

|q|=ql

ξ̂qe
iq·R

• The intrinsic surface is an intuitive concept in the macroscopic world.

• However, at the nanoscale, it is not clear how to define it, from the
individual molecular positions.
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The structural approach to surface tension

• Effective surface Hamiltonian

H(q) =
A

2

∑
q

γ(q)|ξ̂2
q|q2

• Using the equipartition theorem one gets a structural measure of the surface
tension (A is the nominal area of the surface)

γs(q) =
kBT

q2〈|ξ̂q|2〉A
.

• Correct macroscopic limit γs(0) = γo

• But for qσ > 0.5 there is a strong dependence of γs(q) on the specific
proposal to get ξ̂q from the molecular positions
[Chacon et al. PRL 91 166103 (2003)]
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Methods to construct the intrinsic surface

〈|ξ̂q|2〉 =⇒ γs(q) =
kBT

〈|ξ̂q|2〉A

• Gibbs method

– Based on thermodynamic arguments.
– Gives correct macroscopic surface tension, γo.
– But it is not able to resolve bulk fluctuations from surface undulations.
– At finite q, it gives unphysical results γ(q) ∼ 1/q2. (e.g. fails to predict

the finite width of the surface ∆ =
∑

q |ξ̂2
q|)

• Percolation methods

– The intrinsic surface keeps information on the positional correlations
between the molecules at the surface.

– This information is required to resolve surface undulations from bulk mass
fluctuations.
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The Intrinsic Sampling Method (ISM)
Chacón and Tarazona, Phys. Rev. Lett. 91 166103 (2003); J. Phys.:Cond. Matter, 17, S3493

(2005)

Minimal area surface
 passing through 

the selected surface molecules (pivots)

The nearest molecule to the surface 
is selected  as a new pivot.

A new surface is reconstructed

The process is repeated 
untill one gets the specified 

number of pivots at the surface,
 NO = A nS
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nS is the surface density parameter

The parameter ns needs to be optimized to get the sharpest
molecular structure below the surface
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Structural criterium for the optimal surface density, ns

The intrinsic density profile: ρ̃(z) =
1
A
〈
∑

i

δ(z − zi + ξ(Ri)〉
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The hydrodynamic route.

• Molecular dynamics (MD) simulations of simple liquid slabs

• Intrinsic Sampling Method =⇒ Fourier modes time behaviour ξ̂q(t)

• Analyze ACF, 〈ξ̂q(t)ξ̂q(0)〉 =⇒ modes frequency and damping rate.

• Compare MD with Hydrodynamic theory + structural γs(q) predictions

• Obtain a dynamic measure of the surface tension γd(q).

• Physically coherent definition of the intrinsic surface? γd(q) = γs(q)
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 Mol. Phys. 92:5, 913 (1997)

Viscosity, Lennard-Jones liquid⊕ Note:

The wavenumber dependence of viscosity

η(q) has to be taken into account at the

nanoscale.
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The hydrodynamic theory
Dispersion relation for the surface modes

• Linearized Navier-Stokes. J. Chem. Phys. 94, 5208 (1991)
J. Phys.: Condens. Matter, 10, 4955 (1998).

• Linear response theory. J. Phys.: Condens. Matter, 7 4341, (1995).

D(q, ω̃) =
γq3

ρ
−

(
ω̃ + 2iνq2

)2 − 2ν2q4

[
1− iω̃

νq2

]1/2

liquid density ρ, kinematic viscosity ν = η/ρ.

• D(q, ω̃) = 0 =⇒ surface modes complex frequencies ω̃(q) = ω(q) + iΓ(q).

– Frequency, ω = ω(q; γ, η)

– Damping rate, Γ = Γ(q; γ, η)
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The hydrodynamic theory
Oscillatory and overdamped regimes
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MD simulations: time dependent analysis

• Simulations are done along the

liquid-vapor coexistence line

• NVE ensemble (also NVT with soft thermostat)

• Time step: ∆t = 0.005τ

• Transverse lenght, L = {10, 20}σ

• Slab thickness, δ ' 3 L

• Instantaneous surface modes ξ̂q(t), sampled

each 10∆t or 100∆t.

• Working fluids

– Lennard-Jones

– Soft alkali (SA) liquid model

[Chacon et al., PRL, 87, 166101, (2000)]
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MD results

The surface mode’s autocorrelation function (ACF)
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• MD+ISM =⇒ 〈ξ̂q(t)ξ̂∗q(0)〉

• Fits
〈|ξ̂q|2〉 exp(−Γdt) cos(ωdt)

⇓

– frequency ωd(q)
– damping rate Γd(q)

← Results from the soft alkali liquid model
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Hydrodynamics and MD results

The soft alkali liquid model

cross-over wavenumber at qcrσ ∼ 0.8
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The damping rate at the overdamped regime
Lennard-Jones liquid @ kT = 0.848ε

Full line: hydrodynamic result using the optimal surface density ns = 0.7σ−2
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The damping rate at the overdamped regime
Lennard-Jones liquid @ kT = 0.763ε

Hydrodynamic result (full line) using optimal surface density ns = 0.75σ−2
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The dynamic surface tension, γd(q)
• Dispersion relation, D(Γ, q) = 0 → Γ(q; γ) = Γd(q)

• Numerical inversion provides, γd(q) = γ(q; Γd)

• Only for optimal surface density γd(q)=γs(q)
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Critics to enhanced capillary waves

Contradictions in the
theoretical prediction of enhanced CW

several claims of 
experimental observation

Theoretical prediction:
Mecke and Dietrich, Phys. Rev. E 59, 6766 (1999)
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Pershan et al.Colloids Surf. A, 171 (2000)
Shpyrko et al. PRB, 69 (2004)

PRL, 99, 196101 (2007)
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The limit of surface-tension hydrodynamics
...extends up to surprisingly small wavelengths of about 4 molecule diameters.
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observed at molecular scales?
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Molecular diffusion decorrelation length

• Distance covered by surface molecular diffusion in out-of-plane direction, upon

the decorrelation time: ` =
(

D⊥

Γd

)1/2

• The diffusion coefficient for out-of-plane displacements D⊥ calculated by Duque
et al. J. Chem. Phys 128, 134704, (2008).

0 1 2 3 4
qσ

0

0.2

0.4

0.6

0.8

l/
σ

=
 (

D
⊥
/Γ

d)1/
2 LJ @ T=0.678, D⊥ = 0.10σ2/τ

LJ @ T=0.848, D⊥ = 0.16σ2/τ

SA@ T=0.212, D⊥ = 0.04σ2/τ

For qσ > 2

0.2σ

0.2 σ

19



Anisotropic diffusion at the interface.

Decorrelation distance and split lenght
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Figure from Duque et al. JCP 128 ,134704 (2008)
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Conclusions

• Hydrodynamics provides an estimation of the surface tension γd(q) which
is much more robust than the structural one γs(q).

• The optimal ISM surface provides a physically consistent liquid surface with

respect to structure and hydrodynamics: γd(q) = γs(q) .

• The surface tension increases monotonically with the wavenumber.
This result contradicts the existence of an enhanced capillary wave regime,
that would imply a decrease of γ(q) below the macroscopic value [Nature
403, (2000); PRL, 90 (2003)]; PRL, 94 (2004), PRE, 59 (1999)]

• Hydrodynamics remain valid up to nanometric scales (wavelengths of
about 4 molecule diameters)

• At smaller scales, surface modes are governed by molecular diffusion

• Diffusive mode dynamics are controlled by the anisotropy of molecular
diffusion at the surface
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