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Abstract
We study the dynamics of thermally excited capillary waves (CW) at molecular scales, using
molecular dynamics simulations of simple liquid slabs. The analysis is based on the Fourier
modes of the liquid surface, constructed via the intrinsic sampling method (Chacón and
Tarazona 2003 Phys. Rev. Lett. 91 166103). We obtain the time autocorrelation of the Fourier
modes to get the frequency and damping rate �d(q) of each mode, with wavenumber q .
Continuum hydrodynamics predicts �(q) ∝ qγ (q) and thus provides a dynamic measure of the
q-dependent surface tension, γd(q). The dynamical estimation is much more robust than the
structural prediction based on the amplitude of the Fourier mode, γs(q). Using the optimal
estimation of the intrinsic surface, we obtain quantitative agreement between the structural and
dynamic pictures. Quite surprisingly, the hydrodynamic prediction for CW remains valid up to
wavelengths of about four molecular diameters. Surface tension hydrodynamics break down at
shorter scales, whereby a transition to a molecular diffusion regime is observed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ripples we observe at a liquid surface, on the scale of
metres, are dominated by buoyancy forces and are called
gravity waves. As one scales down to wavelengths of
λ � 1 cm, ripples start to be governed by surface
tension and become capillary waves (CW). The hydrodynamic
theory [1–3] for CW still predicts another crossover from
the usual propagative (oscillatory) mode to an overdamped
non-propagative mode which is set by the balance between
the surface tension and the viscous forces. Such crossover
has been experimentally observed at λ ∼ 0.1 mm in fluids
with low surface tension and large viscosity, such as gels and
polymer systems [4], complex fluids [5] and ionic liquids [6].
However, in simple fluids the overdamped hydrodynamic
regime is predicted to occur quite close to molecular scales;
λ ∼ 10σ in terms of the molecular diameter σ . The validity of
the continuum hydrodynamics description at these molecular
lengths remains an open question and is one of the main topics
of the present work.

Surface tension γ is one of the key parameters in the
hydrodynamic description of CW; therefore this question
is closely related to the proper determination of the
surface tension wavenumber dependence. Experimental
and theoretical [7, 8] analysis of thermally excited CW
fluctuations in liquid surfaces have to be described in terms
of a wavenumber-dependent effective surface tension, γ (q),
where q = 2π/λ. The deviation of this function from its
thermodynamic limit γ (0) = γo is a subject of controversy,
with claims of an enhanced CW regime at nanometric
scale [7, 9] characterized by γ (q) < γo. The experimental
evidence [10], and the theoretical basis for that phenomena [8],
have been recently criticized, but still the problem of how to
measure or calculate γ (q) is a crucial question for the analysis
of x-ray diffraction experiments on liquid surfaces.

In this work we approach these fundamental questions
from molecular dynamic (MD) simulations of simple liquid
slabs. We use the intrinsic sampling method (ISM) [13, 14]
to obtain the instantaneous shape of the intrinsic liquid surface
and its associated Fourier modes. As explained in section 2,

0953-8984/08/494229+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/49/494229
mailto:rafael.delgado@uam.es
http://stacks.iop.org/JPhysCM/20/494229


J. Phys.: Condens. Matter 20 (2008) 494229 R Delgado-Buscalioni et al

the surface modes amplitude leads to a well-known route to
measure, from structural grounds, the wavenumber-dependent
surface tension γs(q), which however presents significant
uncertainties. Here we use the hydrodynamic theory for
capillary waves, presented in section 3, to pave a new dynamic
route to measure the surface tension, γq(q). Molecular
dynamics simulations, depicted in section 4, were used to
obtain the surface modes’ dynamics (via the ISM method)
with excellent agreement with the hydrodynamic predictions.
Moreover, as shown in section 5, the best ISM estimation to
the intrinsic surface precisely satisfies γs(q) = γd(q), hence
providing a physically consistent structure and hydrodynamics
(see also [11]). Using the best ISM estimate for γs(q), we
prove that CW hydrodynamics remain valid up to surprisingly
large wavenumbers, qσ � 2, well above the validity of the
macroscopic surface tension prediction (qσ � 0.5). Finally,
as demonstrated in section 6, at even smaller scales (qσ � 2)
surface modes are governed by molecular diffusion, as surface
tension hydrodynamics gradually break down. Concluding
remarks are given in section 7.

2. The structural determination of the surface
tension

In the study of capillary waves at nanoscopic scales, molecular
dynamics (MD) simulations can provide a way to connect
the molecular structure of the fluid surface and its description
as a continuum intrinsic surface. The intrinsic surface (IS),
usually described in terms of its Fourier components z =∑

q ξ̂q exp(iq · R), describes the instantaneous shape of the
fluctuating interface, with thermal average parallel to the R =
(x, y) plane. The capillary wave theory (CWT) [12] opens
a direct structural way to measure the wavevector-dependent
surface tension from the mean square amplitude of the CW
thermal fluctuations 〈|ξ̂q |2〉 over a transverse area A [13, 14]:

γs(q) = kBT

q2〈|ξ̂q |2〉A
. (1)

However, the CWT considers macroscopic surfaces and
it does not provide any procedure to obtain the Fourier
components of the IS, ξ̂q, from the molecular structure of
the fluid. Indeed, at molecular scales, the intrinsic surface
is a soft concept, because of the inherent uncertainty of
what is the outermost molecular layer in a disordered fluid
surface. Several methods have been proposed to solve this
task in a physically sound way (see [15] for a recent review)
and, although the structural approach (1) gives the correct
macroscopic limit γs(0) = γo, for qσ � 0.5 the shape
of γs(q) depends on the specific proposal used to measure
ξ̂q from the molecular positions of the fluid [13]. The
simplest method, based on a local Gibbs dividing surface,
applies thermodynamic arguments to molecular fluid volumes
(bins) and therefore it spuriously introduces the effect of mass
fluctuations coming from the bulk into the surface description.
As a consequence, at large q , it produces an unphysical decay
γs(q) ∼ 1/q2 [16]. Recent developments are based on
percolation procedures which reconstruct the IS from the local

(near-surface) molecular configuration. In this line, Chacón
and Tarazona [14, 15] have developed and tested a specific
proposal known as the intrinsic sampling method (ISM) which
solves the problem of determining ξ̂q through the intuitive
concept of the surface layer, describing the set of molecules
identified as the molecular boundary of the liquid. The method
was recently proposed [13] and refined [14] to get the self-
consistent identification of the surface layer and the intrinsic
surface Fourier components in computer simulations. It has
proved to be very useful in extracting the intrinsic profiles of
the fluid interfaces [15, 17] out of the CW blurred averages.
The ISM main input parameter is the surface layer density
ns, which has to be optimized to get the sharpest molecular
structure near the interface. Still, ns, and thus γs(q), may
have significant error bars, particularly as one approaches the
critical temperature, and one actually expects to consider the
increasing structural disorder of the fluid.

3. Hydrodynamic theory for capillary waves

We now briefly describe the hydrodynamic theory results
concerning short wavelength capillary waves. Hydrodynamic
analyses, either based on the linearized Navier–Stokes
equations [1, 2] or on linear response theory [3], predict the
following dispersion relation for surface modes:

D(q, ω̃) = γ q3

ρ
−(

ω̃ + 2iνq2
)2−2ν2q4

[

1 − iω̃

νq2

]1/2

, (2)

where ρ is the liquid density while ν = η/ρ and η are the
kinematic and dynamic shear viscosities. The solutions of
the characteristic equation D(q, ω̃) = 0 provide the complex
frequencies ω̃(q) = ω(q) + i�(q) which rule the temporal
behaviour of each surface mode ξ̂q(t). As the wavenumber is
increased, for q > qcr ∼ γρ/η2, the dispersion relation (2)
furnishes a transition from the usual propagative capillary
modes to overdamped waves. Above qcr, the viscous time
νq2 becomes faster than the restoring time of surface tension
(γ q3/ρ)1/2. As a consequence, the oscillatory part of the
complex frequency vanishes, ω = 0, and surface fluctuations
are exponentially damped at a rate given by � = iω̃.
Interestingly, in this overdamped regime, the damping rate
goes like � ∼ qγ /η [3]; a relationship which is quite useful
for our purposes because it opens a way to evaluate γ from the
surface dynamics, i.e. from the damping rate of overdamped
surface modes, �.

In order to attain the overdamped regime in simple liquids
one requires us to consider relatively small wavenumbers
qcrσ ∼ 0.3 and therefore one needs to take into account the
wavenumber dependence of the transport coefficients. We
shall use the q-dependent surface tension provided by the
optimum ISM estimate via equation (1). On the other hand,
the generalized shear viscosity η(q) of the LJ liquid, has
been evaluated in several works, either using the generalized
hydrodynamics theoretical framework [18, 19] or from non-
equilibrium MD simulations [20]. We measured η(q) from the
liquid velocity response to a sinusoidal spatial forcing and for
the LJ fluid we obtained similar values of η/ηo at different
temperatures, the best fit being η(q) � ηo(1 − 0.079q2 +
0.011q3).
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4. Capillary wave dynamics from MD simulations

Molecular dynamics simulations under periodic boundary
conditions were performed to record time series of molecular
configurations for each studied case. These configurations
were then analysed using the ISM in [14] to obtain the
instantaneous intrinsic surface Fourier components ξ̂q(t)
for each allowed wavevector in the periodic box (q =
2π(νx, νy)/L, with integer νx , νy). Molecular dynamics
simulations were performed in two different simulation boxes
with linear transverse size L = 9.025σ and L = 18.05σ . We
prepare the system with a liquid slab of thickness L liq ≈ 3L,
and set much larger periodic conditions on the z direction
(Lz = 90σ and 120σ , respectively) to get two independent
liquid surfaces, separated by a rarefied vapour phase. We
have tested that the slab thickness is large enough to avoid
the hydrodynamic coupling across the liquid bulk. Simulations
were done in the microcanonical ensemble NVE so as to ensure
local momentum conservation and proper hydrodynamics.
However, we obtained similar results in the isothermal (NV T )
ensemble, assuming a thermostat with large enough inertial
time (the limit being the slowest CW within the box). The time
step was �t = 0.005τ (with τ ≡ σ(ε/m)1/2 the usual LJ time
unit) and configurations were sampled each �tsamp = 0.05τ or
0.5τ , depending on the CW timescale to be analysed. The ISM
was used in post-processing to obtain ξ̂q(t).

In order to validate the hydrodynamic theory summarized
in equation (2), under our molecular set-up we decided to
observe the propagative–overdamped transition. To that end,
we considered a fluid model with a very stiff surface, thus
providing a large crossover wavenumber qcr ∼ γρ/η2. At
a temperature kT = 0.212ε, the soft-alkali (SA) cold-liquid
model [21] yields qcr = 0.8/σ and permits us to observe
the transition using manageable MD boxes of transverse size
L ≈ 20σ . In order to extract the angular frequency ωd and the
damping rate �d of each mode we fitted the autocorrelation
(ACF) function 〈ξ̂q(t)ξ̂∗

q (0)〉 to 〈|ξ̂q |2〉 exp(−�dt) cos(ωdt).
Results are shown in figure 1. The corresponding macroscopic
hydrodynamic predictions �o and ωo (obtained by inserting
the macroscopic surface tension γo and viscosity ηo in the
dispersion relation (2)) are indicated with dashed lines in
figure 1, while the use of our best ISM estimate for γs(q)

into equation (2) leads to �s and ωs, shown as full lines.
Hydrodynamic predictions correctly forecast the oscillatory
branch and the transition to the overdamped regime obtained
in MD simulations, thus confirming the validity of equation (2)
in the present context. In the case of the SA liquid the
macroscopic �o and q-dependent solution �s remain quite
similar up to qσ < 1.5. However, as shown soon below, this is
due to the peculiar properties of the SA liquid, whose transport
properties show little dependence on the wavenumber: γs(q) �
γo up to qσ � 1.0, while the viscosity η(q) � ηo for
qσ � 1.5.

We now focus on more typical liquids with much higher
triple point temperature than the SA model, to analyse the
surface behaviour at larger q within the strong damping regime.
To avoid freezing, one has to work at higher temperatures,
meaning lower surface tension, and hence smaller crossover

Figure 1. The decay rate � and angular frequency ω wavenumber
dependence of capillary modes in a soft-alkali (SA) liquid model at
T = 0.212ε/k, density ρ = 1.17σ−3, surface tension
γoσ

2/(kT ) ≈ 8.23 and shear viscosity η = 1.5 ετ/σ 3. Symbols
correspond to �d (circles) and ωd (squares) obtained from MD
simulations of different box transversal sizes L . Lines are the
hydrodynamic predictions, using γs(q) (solid line) and γo (dashed
line). Standard Lennard-Jones units are used throughout: here
τ = σ(ε/m)1/2. The inset show normalized ACF (solid line) and
fitting functions (dashed lines) for a propagating (qσ = 0.35) and
one overdamped (qσ = 0.98) mode.

wavenumber. The results obtained for the Lennard-Jones (LJ)
liquid presented in figure 2 correspond to qcrσ = 0.32, so the
entire range of q allowed in our simulation box (size L =
10.46σ ) is now within the overdamped regime. In this case,
the damping rate �d, directly extracted from the exponential
decay of the ACF, starts to deviate from the macroscopic
hydrodynamic prediction �o above qσ � 0.5 and, around
qσ � 2, �d becomes five times larger than �o. This large
underestimation of the macroscopic limit �o is observed at all
the temperatures considered.

In order to understand such large discrepancy one needs
to consider the values of γs(q) extracted from equation (1).
As shown in figure 2, the damping rate �s obtained by
insertion of the optimal ISM estimate γs(q) and η(q) into
the hydrodynamic relation arising from equation (2) extends
the agreement with the exponential decay of the ACF �q ,
up to qσ � 2. It is most remarkable that the continuous
hydrodynamic description of the surface fluctuations may be
valid down to a wavelength of about three or four molecular
diameters, with the use of an independently obtained function
γs(q). Such agreement is kept at other temperatures in the LJ
fluid and also in the cold-liquid SA model (up to qσ � 1.5, see
figure 1). Figure 2(b) shows results for the LJ fluid at another
temperature, kT = 0.848ε, plotted against the wavelength
λ = 2π/q , to clearly illustrate the range of validity of the
(generalized) hydrodynamic trend �s. These results are strong
evidence for the validity of the hydrodynamic description of
CW fluctuations at the nanoscale [3, 1, 2], and they also
validate the ISM used to get the IS shape from the atomic
positions. However, in order to finally prove these claims, one
still needs to analyse to what extent do the values of �s and, in
particular �d, depend on the detailed procedure to get ξ̂q from
the molecular positions.
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Figure 2. The decay rate � of CWs in a Lennard-Jones liquid at (a) T = 0.763ε/k, density ρ = 0.782σ−3, viscosity ηo = 1.85 ετ/σ 3 and
surface tension γoσ

2/(kT ) = 0.93 and at (b) kT = 0.848ε, ρ = 0.738σ−3, ηo = 1.5ετ/σ 3 and γoσ
2/(kT ) = 0.653. Symbols are obtained

from MD simulations by fitting the surface mode ACF obtained for several surface density parameters ns to 〈|ξ̂q |2〉 exp(−�dt). The solid line
corresponds to the hydrodynamic prediction using the optimal γs(q) (at (a) ns = (0.75 ± 0.05)σ−2 and (b) 0.70 ± 0.05). The dashed line is
the macroscopic trend, using γo and ηo.

5. A dynamic route to the surface tension

As stated in section 2, the determination of γs(q) from the
ISM values for 〈|ξ̂q |2〉 and equation (1) is a rather delicate
matter. The ISM result depends on the surface layer density
ns, which is the main control parameter of the method, and it
has to be optimized to get the sharpest view of the molecular
layering [14]. The results for atomic, molecular and metallic
fluids have shown that the optimal ns can be satisfactorily
determined and that it contains physically relevant information
on the interfacial structure, but still has relatively large error
bars, particularly as one increases the temperature towards the
critical one, T = Tc. For instance, in the case of the LJ liquid
at kT = 0.933ε (T/Tc = 0.77), the optimal choice [14] is
to take ns = 0.65 ± 0.05 atoms per σ 2 area. The dashed
lines in figure 3 show that the resulting γs(q) greatly varies
as one changes the surface layer density parameter between
ns = 0.5/σ 2 and ns = 1.0/σ 2. We stress that, for the same
atomic configuration, the choice of the ns parameter leads to
a different IS shape. This issue is rather important because if
the surface dynamics were also to depend on the choice of ns,
then it will not be clear how to get a precise definition of the
intrinsic surface.

Luckily, as illustrated in figure 2, the value of �d extracted
from the time ACF of the surface modes is very insensitive
to the value of ns. This is probably due to the fact that
the hydrodynamic collective behaviour of the atoms nearby
the surface is more robust than its intrinsic structure, which
depends to a greater extent on the precise location of the atomic
positions. The result in figure 2 indicates that it is possible to
obtain a parameter-independent dynamical measure of the q-
dependent surface tension, γd(q). Such evaluation is done via
the numerical inversion of the hydrodynamic relation for the
damping rate � = iω̃(q; γ, η) (arising from D(q, ω̃) = 0 in
equation (2)). The results illustrated in figure 3 confirm our
expectation and enable us to conclude two important points.

(i) The dynamic prediction γd(q) is practically independent
of the first liquid layer density ns, in clear contrast with
the structural one, γs(q).

Figure 3. The surface tension γ of a Lennard-Jones liquid at
T = 0.933ε/k, density ρ = 0.688σ−3, ηo = 1.18ετ/σ 3 and
γ σ 2/(kT ) = 0.5. Values of γd (symbols) come from the numerical
inversion of the hydrodynamic relation �d = �(q, γd, η) at the MD
decay rate �d. Lines correspond to the ISM structural predictions,
equation (1). Results for values of the first layer density ns are
compared. The optimal ns predicted by the structural analysis
ns = (0.65 ± 0.05)σ−2, is indicated with the solid line.

(ii) The surface tension γs(q) obtained for the optimal surface
density ns is the only structural estimation which coincides
with the dynamical one: γs(q) = γd(q).

As stated, the optimal ns furnishes the intrinsic surface,
providing the sharpest view of the intrinsic density profile [14].
This fact highlights the relevance of the second conclusion (ii)
as it supports the existence of an intrinsic surface definition
which consistently links the structural and dynamical roles of
the surface tension.

6. Beyond the hydrodynamic regime: molecular
diffusion

As shown in figures 1 and 2, above a certain wavenumber
q > qu , the damping rate �d obtained from 〈ξq(t)ξq(0)〉
gradually deviates from the hydrodynamic trend and saturates
to a constant (q-independent) value, �u . This limiting
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Figure 4. The distance � travelled by a molecule by diffusion in a normal-to-surface direction, over the decorrelation time 1/�d(q), against
the wavenumber q. For qσ > 2, � converges to a constant value � � 0.2σ which is almost independent of the fluid considered. (b) An
example of two decorrelated configurations of a mode with wavelength λ = 4σ , which differ by an average molecular displacement of 0.2σ .

damping rate of modes with very short wavelength is also
illustrated in figure 2(b). Both qu and �u depend on the
liquid considered and typically quσ ∈ [1.5–2.0]. It is
surprising the hydrodynamic regime reaches so far within
the nanometric scale but what is the physical origin of the
timescale �−1

u arising at even shorter wavelengths? These
nanometre ‘waves’, with λ � 4σ , involve very few surface
molecules, softly linked together by interatomic forces. Their
decorrelation time �−1

u should then be of the same order as
the diffusion time required for one molecule to move a small
(molecular) distance � in the out-of-plane direction. Following
this argument we define � ∼ √

D⊥/�d, where D⊥ is the
local coefficient for out-of-plane molecular diffusion, recently
calculated in [22] via a Smoluchovsky-type equation to fit the
spatiotemporal distribution of molecules nearby the intrinsic
surface. Figure 4(a) shows how � depends on the wavenumber
for the LJ fluid at different temperatures and the cold SA
model. Values of D⊥ from [22] are indicated in the legend.
Interestingly enough, � converges to a constant value at large
q: we get � = (0.19 ± 0.01)σ for all the LJ cases considered
and � = (0.18±0.01)σ for the SA case. Such a nice agreement
indicates that the surface dynamics at q > qu are governed
by single molecule diffusion. In any case, the crossover from
surface-tension-driven CWs to (Brownian) diffusive motion is
gradual, as molecular diffusion becomes the slowest ‘mode’
(i.e. for �(q) > D⊥/�2). The small value of the decorrelation
distance (� � 0.2σ ) seems to arise from a general feature,
related to geometrical aspects of the molecular arrangement.
In fact, figure 4(b) illustrates that it is quite possible to obtain
two decorrelated configurations of a mode with λ = 4σ ,
by displacing the (spherical) particles a fraction of its radius.
Following the clues in [22], it is possible to provide a finer
connection with surface structure dynamics. The value of the
‘decorrelation length’ deduced here (� � 0.2σ ) agrees with the
so-called ‘split’ displacement �xs defined in [22]. The value of
�xs is the molecular mean square displacement (MSD) above
which in-plane displacement (MSD‖) becomes larger than out-
of-plane displacement (MSD⊥). Note that MDS⊥ has to
saturate to reach the width of the surface [∑q〈|ξ̂q |2〉]1/2, while
MSD‖ grows following a classic diffusion law. Therefore, the
‘split’ time ts ≡ �x2

s /D⊥ after which MSD‖ > MSD⊥, is
also the time required for an instantaneous surface molecular

configuration to decorrelate to a new one, i.e. �u � 1/ts.
Or, in other words, the typical time needed to pass from two
configurations similar to those illustrated in figure 4(b).

7. Concluding remarks

To conclude, we have shown that capillary waves in simple
liquids are governed by hydrodynamics up to nanometric
scales, while molecular diffusion becomes the dominant
mode for wavelengths below a few particle diameters. In
the hydrodynamic regime, the estimation of the surface
tension based on its dynamic role γd(d) is quite robust with
respect to the detailed definition of the intrinsic surface.
The optimal surface predicted by the implicit sampling
method [14, 15] provides physically consistent structural and
dynamical definitions, i.e. γs(q) = γd(q). Finally, the
monotonic increase of γ (q) disclaims the existence of an
enhanced CW regime [9] that would imply a decrease of the
surface tension (and damping rate) below the macroscopic
prediction.

The robust character of the collective dynamics near a
simple liquid surface, as observed in this work, opens up the
challenge to extend the ISM to other interesting scenarios.
In particular those involving significant surface fluctuations,
like simple liquids near the critical region, and the surface
of viscoelastic or complex fluids, such as polymer–colloid
mixtures with very low surface tension. These complex
mixtures exhibit exotic phenomena such as the possibility
of suppressing thermally excited capillary waves by shear
flows [23], which may also be considered in other fluids.
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