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An energy-biased method to evaluate ensemble averages requiring test-particle insertion is
presented. The method is based on biasing the sampling within the subdomains of the test-particle
configurational space with energies smaller than a given value freely assigned. These energy wells
are located via unbiased random insertion over the whole configurational space and are sampled
using the so-called Hit-and-Run algorithm, which uniformly samples compact regions of any shape
immersed in a space of arbitrary dimensions. Because the bias is defined in terms of the energy
landscape it can be exactly corrected to obtain the unbiased distribution. The test-particle energy
distribution is then combined with the Bennett relation for the evaluation of the chemical potential.
We apply this protocol to a system with relatively small probability of low-energy test-particle
insertion, liquid argon at high density and low temperature, and show that the energy-biased Bennett
method is around five times more efficient than the standard Bennett method. A similar performance
gain is observed in the reconstruction of the energy distribution. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2000244�

I. INTRODUCTION

The chemical potential is a central quantity underpinning
many physical and chemical processes, such as phase equi-
libria, osmosis, thermodynamic stability, binging affinity, and
so on.1 However, its evaluation by computer simulation is
more complicated and time consuming than for other inten-
sive thermodynamic quantities, such as the pressure P or
temperature T. While P and T can be evaluated from aver-
ages over mechanical properties of molecules �forces, veloci-
ties, and positions�, the chemical potential is a thermal aver-
age and therefore it requires sampling of the phase space of
the system. Indeed, computing the chemical potential is a
special case of the more general problem of computing a
free-energy difference A1−A0 between two states �labeled as
0 and 1�, a problem for which the inherent difficulty is well
understood.1–4 Free-energy perturbation �FEP� is an impor-
tant category of methods for free-energy calculation; we re-
fer to the recent works by Lu et al.1 and by Shirts and Pande5

for review and comparisons. As explained by Lu et al.,1 the
general working equation for FEP methods can be cast as

exp�− ��A1 − A0�� =
�w�u�exp�− �u/2��0

�w�u�exp�− �u/2��1
, �1�

with �=1/kBT and u�U1−U0 the energy difference be-
tween both systems; kB is the Boltzmann constant. The an-
gular brackets denote ensemble averages performed on the
system labeled by the subscript “0” or “1.” The weighting

function w�u� is arbitrary and differs for each method intro-
duced in the literature.

The chemical potential is the free-energy difference be-
tween two thermodynamic states differing by the presence of
a single molecule. In other words, the chemical potential is
A1−A0, where A1=A�N+1,V ,T� and A0=A�N ,V ,T�. Here
A�N ,V ,T� is the Helmholtz free energy of the system which
depends on the number of molecules N, the volume V, and
temperature of the system. In order to express the averages
of Eq. �1� in terms of one-dimensional integrals of the energy
difference u one can then introduce the following distribu-
tion functions.6

f�u� =� ���u − U1 + U0��0V−1dr , �2�

g�u� = ���u − U1 + U0��1, �3�

where ��.� is the Dirac delta function. In Eq. �2�, U1

=U1�RN ,r�, where RN is the configuration of the first N mol-
ecules and r denotes the configuration of the N+1 molecule.
Note that in Eq. �2� the N+1 molecule acts as a “test mol-
ecule” which probes the system 0 �i.e., the system with N
molecules�, but does not interact with it. Therefore f�u� is the
probability density of the N-molecule ensemble increasing in
potential energy by an amount u if this test molecule was
randomly inserted into the ensemble. Conversely, g�u� is the
probability density of the �N+1�-molecule ensemble de-
creasing in potential energy by an amount u if a randomly
selected real molecule was removed from the ensemble.
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From Eqs. �1�–�3� an expression for the excess chemical
potential �=A1−A0−�id �where �id is the ideal-gas chemical
potential3� can be derived in terms of the f and g
distributions,1,6,7

exp���� =
� w�u�g�u�du

� w�u�f�u�exp�− �u�du

. �4�

A good choice of the weighting function w�u� is a key for the
efficiency of the method. For instance, the Widom method2,3

�w�u�=1� is known to provide very poor convergence at
large densities. The Widom method is a single-stage FEP,
meaning that sampling is only performed in the reference
system 0 �i.e., in the f distribution, see Eq. �4��. As discussed
by Lu et al.,1 multiple staging provides much better effi-
ciency. The efficiency is generally defined as the reciprocal
of the product of the variance of the estimator multiplied by
its cost ncost �that is, the total number of energy evaluations
performed by the algorithm�

� = �ncostVar�����−1. �5�

Bennett8 showed that the variance of Eq. �4� is minimized if
the weighting function is w�u�=F���u−c��, where F�x�
=1/ �1+exp�x�� is the Fermi function and c is an arbitrary
constant. The Bennett estimator is then

�� = ln	 �F�− ��u − c���g

�F���u − c��� f

 + �c , �6�

where the subscripts g and f indicate �simple� averages over
the distributions g�u� and f�u�. The value of c providing the
minimum variance and maximum overlap is c=� and to
evaluate � using the optimum c�=�� one requires to use a
self-consistent procedure, iterating the value of c in Eq. �6�
and resetting c=� until �F�−��u−c���g= �F���u−c��� f. In
practice, this step only requires a small number of iterations.
Recent publications1,5 demonstrate that the Bennett method
remains the best general method to compute the chemical
potential for many applications.

Note that the Bennett method is a two-stage FEP and
therefore it also requires sampling of the system 1. In the
case of the determination of the chemical potential this sys-
tem has N+1 molecules and g�u� is obtained from its single-
molecule energy distribution. However this extra require-
ment is not really a drawback. Lu et al.1 showed that,
provided N�O�100�, the g average can be evaluated in the
same simulation as is used to sample the f distribution �sys-
tem 0� without any noticeable loss in accuracy. The g distri-
bution �constructed from the energy of the real particles� is
thus a by-product of the simulation so the average �F�g does
not demand any extra computational cost.

Another group of methods for the determination of the
chemical potential are based on biased instead of uniform
sampling. In particular, cavity-biased methods first select
spherical cavities of minimum radius Rc �a free parameter� in
which to insert the test molecule. This accelerates the evalu-
ation of the ensemble average in dense phases because the
low-energy configurations of the test molecule �with large

Boltzmann factors� are usually located in larger cavities with
less steric hindrance. Variations of this method have been
proposed by several authors; these include the cavity inser-
tion Widom method �CIW� by Jedlovszky and Mezei,9 the
excluded volume map sampling by Deitrick et al.,6 and the
method proposed by Pohorille and Wilson.10 The cavities are
located by a grid search over the whole simulation cell. A
cavity center is assigned at each grid point whose distance to
the closest particle is greater than Rc. In order to correct the
bias introduced in sampling only inside the cavities one also
has to calculate the probability of finding a cavity, which is
obtained in the same grid-search step. A drawback of the
cavity-biased method is that it is only indirectly related to the
test-particle energy via the excluded volume. This fact intro-
duces a certain inaccuracy in the estimation of the chemical
potential, as it can depend on the value of the cavity radius
Rc selected. For instance, the CIW has recently been used to
calculate the chemical potential of several species across a
lipid bilayer.9 As a test calculation the authors estimated the
chemical potential of water in water and reported variations
of about 1 Kcal/mol as Rc was varied from 2.6 to 2.8 Å.
Also, using Rc� �2.6,2.9� Å resulted in uncertainties of
about 2 Kcal/mol in estimates of the excess chemical poten-
tial of some species across the lipid layer. Note that the im-
portant region of the cavity-biased method is constructed
over the translational degrees of freedom of a “coarse-
grained” spherical molecule with an effective radius. This
means that it can only be applied to small solutes with
spherical or roughly spherical shapes.6

In this work we present an energy-biased method for the
estimation of the chemical potential and reconstruction of the
energy distribution f�u� in dense phases. The idea is to re-
strict the sample to an important region defined by the set of
bounded domains in the configurational space of the test
molecule where the energy u is smaller than a given free
parameter uw. We denote as an energy well each compact
subdomain within the test-molecule energy landscape for
which u�uw. Note that the present approach retains the main
benefit of the cavity-biased method, but provides an exact
evaluation of the energy distribution f�u� and the chemical
potential, because the energy wells are defined directly in
terms of the energy landscape. Moreover our energy-biased
method does not assume any particular molecular shape and
therefore it may be used for nonspherical molecules and can
coherently sample over rotational degrees of freedom as
well.

We also note that the number of stages are not limited to
two. When systems 0 and 1 are very different it may be
impossible within the simulation time to sample the impor-
tance region of the two systems. In this case it is more effi-
cient to compute the total free-energy difference by using a
set of intermediate states. The energy-biased method can be
applied on each of these intermediate state transitions at the
cost of performing independent simulations for each state.
Other approaches include, for instance, slow and fast growth
methods where the system is changed from one state to an-
other within a certain simulation time � �large for slow
growth�. The fast growth method consists of sampling rapid
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transformation from many simulations which are then com-
bined by using the Jarzynski nonequilibrium work relation11

to obtain the total free-energy difference.
The rest of the paper proceeds as follows. The energy-

biased method is explained in Sec. II, while in Sec. III we
derive an analytical expression for the efficiency of the
method and estimate the optimal parameter uw by maximiz-
ing the efficiency. In Sec. IV the method is tested in liquid
argon at high density �modeled as Lennard-Jones atoms�
where it is used to reconstruct the test-particle energy distri-
bution f�u� and the chemical potential. We also demonstrate
the gain in efficiency obtained with energy-biased sampling
with respect to uniform sampling. We conclude with a sum-
mary of our findings in Sec. V. Finally in Appendix A we
briefly explain the Hit-and-Run algorithm which efficiently
samples bounded regions of arbitrary shape immersed in an
arbitrary number of dimensions.

II. OVERVIEW OF THE METHOD

As stated in the Introduction, energy-biased sampling
consists of uniform sampling of the importance region de-
fined by the set of subdomains in the test-molecule configu-
rational space where its potential energy is less than uw. The
probability density is therefore given by

h�u� = � f�u�/Fw u � uw

0 u � uw,
� �7�

where the normalization factor Fw�−	
uw f�u�du is the cumu-

lative probability of the unbiased distribution f�u� and uw is
an arbitrary energy �free parameter�.

Note that the energy-biased distribution of Eq. �7� can be
straightforwardly combined with any of the popular methods
to calculate the chemical potential from Eq. �4�. We shall use
the Bennett method due to its excellent performance. Intro-
ducing the weighting function w�u�=F���c−u�� in Eq. �6�
and using Eq. �7�, one obtains the energy-biased Bennett
estimator for ��,

�� = ln	 �Fc�g

Fw�Fc�h

 + �c , �8�

where we have introduced the notation Fc�F���u−c�� to
indicate that after the ensemble average we still have a func-
tion of c. As before, the subscript h indicates the average
over the biased distribution of Eq. �7�.

Sampling from the energy probability distribution h�u�
requires a more careful consideration of the energy landscape
of the system. We indicate by r a configuration of the �N
+1�th molecule and by R the configuration of the remaining
N molecules. For a simple argon fluid r�D where D�R3,
while for a three site flexible water model like TIP3P,
D�R9, which includes the three Euler angles determining
the molecule orientation, the H–O–H angle, and the two
H–O distances. As shown in Fig. 1, the region

Auw
= �r � D:u�r,R� � uw� �9�

is composed of many disconnected bounded regions of dif-
ferent sizes such that Auw

=�
Auw


 , where each Auw


 is now a
connected region. Of course, for uw→	 we have that all the

regions Auw


 connect and A	

 =D, the entire domain. The sam-

pling algorithm must reproduce a uniform probability distri-
bution,

puw
�r� =

1

��Auw
�

, �10�

where ��Auw
� is the volume of the region.

For a given energy bias uw, the algorithm for selecting
configurations r according to Eq. �10� can be described in
terms of two main steps which are applied iteratively:

�1� Locate a compact energy-well Auw


 in the configura-
tional space D, where u�uw.

�2� Sample the energy-well Auw


 with a uniform probability
density.

The simplest procedure for locating energy wells in step
�1� is to perform a random search over the whole configura-
tional space until a fixed number of cavities is found. This
procedure, however, does not avoid the probability of explor-
ing the same well more than once, and we observed that it
can easily lead to highly correlated data. Instead we perform
step �1� by choosing points on a grid within the whole con-
figurational space of the test molecule. In the case of the
Lennard-Jones fluid, the three-dimensional configurational
space is probed at the nodes of a Cartesian grid of size nx

�ny �nz, where n
 is the number of nodes along the coor-
dinate 
. We observed that the minimum distance between
nodes that guarantees statistically independent samples is
around 0.5.

An energy well is found at each node where the energy
of the test molecule is u�uw. Then, the locations of each of

FIG. 1. Energy landscape for the three-dimensional configurational space
generated by inserting an argon atom in a cube of side 16 Å of argon fluid.
The isosurfaces of regions Auw

are shown for uw equal to 1 �dark grey� and
to 10 Kcal/mol �light gray�.
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these nodes are used as starting configurations for indepen-
dent well samplings. In this way we ensure that we are sam-
pling different cavities for each explored configuration
�snapshot� of the system. Note that using grid sampling the
number of cavities found per snapshot is a fluctuating quan-
tity.

The search requires an average of n0=1/Fw energy
evaluations to locate one well �i.e., one configuration with
energy u�uw.� During this same step �1� one can calculate
the cumulative probability Fw from the estimator m /n0, with
n0 being the total number of samples �Bernoulli trials� and m
the number of successful trials with u�uw, i.e., the total
number of energy wells found. This number m /n0 converges
to Fw as n0→	 and, for a finite number of statistically inde-
pendent trials n0, its variance is �1−Fw�Fw /n0. In practice,
the estimation of Fw requires the number of unbiased
samples to be n0�1/Fw; this condition also ensures that a
significant number of energy wells �m�0� are to be found.

Step �2� of the loop mentioned above requires a proce-
dure to sample in an unbiased way the interior of each en-
ergy well. This is a delicate step because any bias incurred in
sampling the importance region will be transfered to the es-
timator for ��, resulting in inaccuracy of the method. To
tackle this problem we use the so-called Hit-and-Run
algorithm,12 which is explained in Appendix A.

III. EFFICIENCY AND OPTIMAL PARAMETERS
OF THE METHOD

We now calculate the efficiency of the method and pro-
vide a way of choosing the optimal value of the parameter uw

by maximizing the efficiency. We also compare the effi-
ciency of the estimator in Eq. �8� based on energy-biased
sampling with that of the standard Bennett algorithm of Eq.
�6�.

A. Energy-biased Bennett method

The variance of the Bennett method can be cast in terms
of the probability densities f�u� and g�u�. Starting from Eq.
�6�, after some algebra the variance of the Bennett method
assumes the form

VarB���� =
1

n0�F���u − c��� f
, �11�

where n0 is the number of insertions used to sample the
complete configurational space of the test particle. Note that
the computational cost of the standard Bennett method is n0,
so according to �5� and Eq. �11� its maximum efficiency is
given by

�B = �Fc� f . �12�

Let us now consider the variance of the estimator in Eq.
�8�, which is the sum of the variance of the estimator for Fw

and the estimator for the ensemble average,

VarEB���� = Var�ln Fw� +
1

nw�Fc�h
�

1

n0Fw
+

1

nw�Fc�h
,

�13�

where we have used the relation Var�ln�Fw���Var�Fw� /Fw
2

= �1−Fw� / �n0Fw��1/ �n0Fw�, for Fw�1. Here n0 is the num-
ber of random insertions in the entire configurational space
and nw is the number of independent samples within the
importance region u�uw.

The probability of finding an energy well with u�uw

using uniform sampling over the whole configurational space
is Fw, so the number of cavities found after n0 trials is m
=Fwn0. If the number of statistically independent samples
per well is s, the total number of independent samples within
the restricted configurational space u�uw is

nw = n0sFw. �14�

We note that the number of independent samples per well s
depends on the fluid considered and, of course, on the bias-
ing energy uw. In Appendix B we provide a way of estimat-
ing s from the outcome of the data obtained from the Hit-
and-Run sampling. Inserting Eq. �14� into Eq. �13� one
obtains for the energy-biased algorithm,

VarEB���� =
1

n0
	 1

Fw
+

1

s�Fc� f

 . �15�

In deriving Eq. �15� we used that �Fc� f =Fw�Fc�h up to a
negligible amount. This can be seen by noticing that the
function F���u−c�� in the integrand of �Fc� f

=−	
	 f�u�F���u−c��du decays exponentially for u�c.

Hence, in any practical case �uw�c� most of the integral
weight comes from u�uw, for which the energy-biased re-
construction of the energy profile f�u� is exact �see Fig. 3�.

We now evaluate the cost, which is given by the total
number of energy evaluations of the test molecule needed to
obtain nw samples,

ncost = n0 + nw/a, �16�

where a�1 is the acceptance ratio of the Hit-and-Run sam-
pling algorithm, defined in Appendix A. Introducing Eq. �14�
into Eq. �16� we obtain

ncost = n0	1 +
sFw

a

 . �17�

For the energy-biased algorithm the efficiency is �
= �ncostVarEB�����−1. Using Eq. �15� and Eq. �17� one ob-
tains

�EB
−1 =

1

Fw
+

1

s�Fc� f
+

s

a
+

Fw

a�Fc� f
. �18�

By maximizing the efficiency �=��Fw� in Eq. �18� with re-
spect to Fw, one obtains the optimal value Fw

opt and the maxi-
mum efficiency �EBmax

=�EB�Fw
opt�,

Fw
opt = �a�Fc� f �19�
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�EBmax

−1 = 2
1

�a�Fc� f

+
s

a
+

1

s�Fc� f
. �20�

Finally, we compare the efficiency of the energy-biased al-
gorithm with that provided by the Bennett algorithm, given
by �B= �Fc� f. According to Eq. �20� the ratio of efficiencies
is given by

�B

�EBmax

= 2��Fc� f

a
+

s�Fc� f

a
+

1

s
. �21�

Equation �21� yields the range of values of �Fc� f for which
the energy-biased Bennett estimator for �� method is more
efficient than the standard �unbiased� Bennett algorithm.
Note that for s=�a / �Fc� f the efficiency ratio given by Eq.
�21� reaches its minimum value, �B /�EBmax

=4��Fc� f / a, and
therefore �B��EB if �Fc� f �a /16. Hence the energy-biased
method is suited for fluids at high densities or low tempera-
tures or for molecular fluids with low insertion probability. In
this regime �Fc� f �a /16 and the dominant term in Eq. �21� is
1 /s, hence �EBmax

�s�B. In other words, the maximal effi-
ciency of the present energy-biased method is limited by the
average number s of independent samples that can be ob-
tained within one energy well. As shown in Appendix B, for
the Lennard-Jones fluid we have observed that in the most
unfavorable case �high density and low temperature� s��5
−10�.

B. Reconstruction of the energy distribution

We now show that the reconstruction of f�u� using the
energy-biased procedure �EB� is faster and more efficient
than that obtained using any unbiased sampler which uni-
formly explores the whole configurational space. To that end
we consider the evaluation of the cumulative probability
F�u�=−	

u f�u��du for u�uw �i.e., for F�u��Fw�. We shall
compare the variance of two estimators for F: one based on
uniform insertion over the whole domain and the other based
on the energy-biased procedure. The variance of the unbiased
estimator is simply Var�F�=F�1−F� /n0 and for low energies
�F�1� its efficiency is 1 /F. The expected value of the
energy-biased estimator is HFw, where H�u�=−	

u h�u��du� is
the cumulative probability of the biased distribution in Eq.
�7�. This estimator is constructed as a product of two statis-
tically independent fluctuating variables and its variance is13

VarEB�F� = Var�HFw�

= Fw
2 Var�H� + H2Var�Fw� + Var�Fw�Var�H� .

�22�

Using Var�H�=H�1−H� /nw and Var�Fw�=Fw�Fw−1� /n0 one
obtains

VarEB =
Fw�Fw − 1�H2

n0
+

H�1 − H�Fw
2

nw
+

FwH�1 − H�
n0nw

.

�23�

Note that, as expected, for H�1 one recovers the variance of
the unbiased insertion method. The interesting part of the
energy distribution is the importance region, located in the

low-energy range, where H�1. In this regime one can make
the approximation 1−H�1. Using F=HFw and nw=n0sFw,
one gets

VarEB =
F

n0
	 F

Fw
+

1

s
+

1

n0sFw

 . �24�

Note that the term in brackets is the reduction in variance
with respect to uniform-unbiased sampling. Because Fw is
evaluated from n0 probes, this means that necessarily n0

�1/Fw so the third term inside the brackets is much smaller
than unity. On the other hand, for the low energy range con-
sidered F�Fw and one finally concludes that VarEB

�Var�F� /s, where Var�F��F /n0 is the variance obtained in
the unbiased uniform sampling of the whole domain.

The cost associated with the energy-biased procedure is
ncost=n0�1+sFw / a�. In the case of a Lennard-Jones liquid we
have found that a�0.17 and s�O�10�, while the optimal
cumulative probability is Fw�10−3. This means that, in prac-
tical situations, sFw / a�1 and ncost�n0. Thus, according to
Eq. �24� the energy-biased sampling procedure is around s

FIG. 2. �Top� The estimation of the chemical potential plotted against the
overall number of energy probes �ncost�. We compare the standard �uniform
sampling� Bennett and Widom methods with the corresponding energy-
biased versions of these methods. The calculations correspond to a Lennard-
Jones fluid with �=0.0236 Å−3 and T=84 K ��=0.923 and T=0.7� /kB in
reduced LJ units�; the energy-biased sampling was done using uw

=14.19 Kcal/mol and d=15 samples per well. �Bottom� The convergence
measured as the squared difference between consecutive estimations with
increasing cost ��n=105�. In the energy-biased method the cost is given by
ncost=n0�1+dFw / a�, where n0 is the number of random probes used to evalu-
ate Fw�=F�uw�=0.001 22� and a=0.165 is the acceptance ratio of the Hit-
and-Run sampler. The circles are the successive values of ��n−�n+�n�2

�shown only for the energy-biased case� and the solid lines are the average
over 20 consecutive differences.

054105-5 Determination of the chemical potential J. Chem. Phys. 123, 054105 �2005�

Downloaded 10 Apr 2006 to 62.204.197.244. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



times faster than a uniform-unbiased �grid or random� sam-
pler in reconstructing the low-energy range of f�u�. As be-
fore, s is the average number of independent samples taken
per well.

IV. RESULTS

In order to confirm the foregoing theoretical relations
about efficiency and variance reduction, we performed mo-
lecular dynamics simulations of a Lennard-Jones liquid at
high density and low temperature ��=0.0236 Å−3 and T
=84 K�. These simulations were performed in a cubic peri-
odic box of side L=10. We used the standard Verlet
method2 to integrate Newton’s equations of motion, incorpo-
rating a Langevin thermostat14 to keep the system in the NVT
ensemble.

During the simulation, the iterative loop �1�+ �2� ex-
plained in Sec. II was performed m times per time interval
�tsamp=0.5�, which corresponds to about three times the col-
lision time. The search for wells performed in step �1� was
done by probing at the nodes of a Cartesian grid comprising
153 nodes. This ensured that the explored cavities are inde-
pendent. All the cavities found in step �1� were sampled us-
ing the Hit-and-Run algorithm �see Appendix A�.

A. Estimation of the chemical potential

One way to measure the efficiency of the method is to
evaluate the convergence of the estimated value of the
chemical potential for an increasing number of test-particle
probes ncost. Convergence can be calculated from the differ-
ence between successive values of �n, where n�=ncost� indi-
cates the total number of evaluations of the test-particle en-
ergy. Figure 2 shows how this difference decreases in
calculations based on both the energy-biased and the unbi-
ased samples. These calculations correspond to liquid argon
with number density of �=0.0236 Å−3 and temperature of
T=84 K �these values correspond to �=0.923 and T=0.7 in
Lennard-Jones units�, for which the average of the Fermi
function is �Fc� f =8.9�10−6. According to Eq. �19� the op-
timum value of Fw is 0.0012, which corresponds to uw

�14.19 Kcal/mol. We selected the predicted optimum pa-
rameter �uw=14.19 Kcal/mol� and performed d=15 samples
per well. As can be seen in Fig. 2, for equal numbers of
energy probes �n=ncost�, the average difference between suc-
cessive estimates of the chemical potential via the energy-
biased method is about five times smaller than that obtained
with the unbiased sampler. As predicted by Eq. �21�, such a

gain in efficiency is consistent with the average number s of
independent samples per well �see Table II�, which for this
simulation was s�5.

Evaluations of the chemical potential for Lennard-Jones
�LJ� fluids are shown in Table I together with the estimated
efficiency of each calculation. For a LJ fluid with �
=0.023 60 Å−3 and T=84 K the numerically obtained net
gain is around 7, which coincides with the prediction in Eq.
�21� using s=7. For illustrative purposes we also analyzed a
case for which the efficiency of our implementation of the
energy-biased sampling is similar to the uniform-unbiased
Bennett method. For instance, �Fc� f =0.0102 for �
=0.017 55 Å−3 and T=178.5 K. Using a=0.165 and the �op-
timum� number of samples s=�a / �Fc� f �4 in Eq. �21� one
obtains �B /�EBmax

�1; our numerical calculations, with uw

=7.33 and d=8, confirmed this conclusion. We note that for
any value of uw considered the energy-biased estimation of
the chemical potential � agrees within about 0.01 Kcal/mol
with the unbiased Bennett result. This is illustrated in Table
II where we show the estimated � for the higher-density
liquid, using several values of uw.

B. Reconstruction of the energy distribution f„u…

In Fig. 3 we compare the reconstructed energy distribu-
tion f�u� at energies u�uw with that computed from an un-
biased method, which consists of a large number of random
insertions within the entire configurational space. Figure 3
clearly illustrates that the energy-biased method exactly re-
produces the unbiased distribution f�u� for energies smaller
that uw. This attractive feature is a consequence of the fact
that it is easy to exactly correct for the bias in terms of the
cavity energies. This is not true for the accessible volume of
the molecule, as in cavity-biased procedures.6,9

In order to illustrate the above conclusion we show in
Fig. 4 the estimation of the cumulative probability F�u� ver-
sus the total number of test-particle energy probes used for
the evaluation. The particular case shown corresponds to u
=5 Kcal/mol, for a LJ liquid at �=0.0236 Å−3 and T
=84 K. The energy-biased sampling was done using uw

=14.19 Kcal/mol and d=15 samples per well, and for this
calculation we obtained s�5 �see Appendix B and Table II�.
Compared with the unbiased procedure, the reduction of
variance provided by the energy-biased sampler is immedi-
ately apparent on inspection of Fig. 4. A numerical evalua-
tion of the variance of each data set in Fig. 4 provides:
VarEB=4.14�10−5 /n0, while the �best� result for the algo-

TABLE I. Comparison of the chemical potential �in Kcal/mol� calculated via the standard Bennett method �i.e.,
using uniform-unbiased sampling� and the energy-biased Bennett �subscript EB�. The inefficiency of both
methods �reciprocal of efficiency� is also shown. In the case of the standard Bennett method we write the
minimum inefficiency ��B

−1= �F�� f� while the inefficiency of the energy-biased method was obtained from
numerical calculation of the variance of ��, using block analysis �see Appendix B or, e.g., Refs. 2 and 3� and
agrees within error bars with the theoretical expression of Eq. �18� �see text�. The error in �EB/�B comes mainly
from the uncertainty in the numerical calculation of VarEB.

�
�Å−3�

T
�K� �EB �B �B

−1 �EB
−1 �EB/�B Fw d

0.023 60 84 −0.336 −0.323 0.9�105 �1.2±0.1��104 7±1 0.001 22 15
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rithm based on uniform-unbiased sampling is Var�F�=F /n0

=1.9�10−4 /n0. Hence the net gain in efficiency is about 4.6,
in agreement with the value of s=5 obtained from the inde-
pendent correlation analysis explained in Appendix B. As
shown in Table I, the estimated net gain in the evaluation of
the chemical potential compared with the unbiased Bennett
method is 7±1, which is close to the estimate s�5 obtained
from the analysis of the cumulative probability.

V. CONCLUSION

We have presented a new method for sampling the en-
ergy of a test molecule in order to calculate single-particle
ensemble averages and, in particular, the chemical potential.
The method, called energy-biased sampling, restricts the im-
portant region to the bounded domains in the test-molecule
energy landscape where the test-molecule energy u is smaller
than a given free parameter uw. This energy-biased sampling
retains the principal benefit of cavity-biased methods6,9 in the
sense that, by sampling only within regions with a significant

Boltzmann factor, convergence is greatly accelerated with
respect to uniform sampling. Furthermore, because the
energy-biased sampling is accurately defined in terms of the
test-particle energy it has some important benefits: first, it
allows accurate reproduction of the test-particle energy dis-
tribution f�u� and the chemical potential; second, it is pos-
sible to sample cavities of arbitrary shape �not only spherical
ones� and to generalize the cavity dimensionality to include
the rotational degrees of freedom in the energy-well recon-
struction; and finally, and rather importantly, it enables one
to combine the sampling results with standard free-energy
perturbation �FEP� formulas. In particular, we combined it
with the Bennett method8 which minimizes the variance of
the estimator and has proved to be the best method in the
literature.1,5 Energy-biased sampling is a general protocol to
bias the sampling and consists of two sequential steps: �1�
searching and �2� sampling the interior of energy wells. In
this work we have implemented these two steps using rela-

TABLE II. Details of the energy-biased calculations in a Lennard-Jones �LJ� liquid at density �=0.0236 Å−3 and temperature T=84 K ��=0.92 and T=0.7 in
LJ units�. We compare the results for varying values of the energy parameter uw, samples per cavity d, and varying number n0 of energy probes within the
unbiased distribution. The cumulative probabilities of the unbiased distribution �Fw=F�uw�=−	

uw f�u�du� are Fw�165.53�=0.0704, Fw�28.38�=0.004 58,
Fw�14.19�=0.001 22. The average of the Fermi function in the biased distribution �Fc�h is defined in Eq. �8�. The average number of independent samples per
cavity s is obtained from s=d /�c, where the correlation number �c is calculated from the correlation between the whole chain of data. The overall number of
energy probes in the energy-biased method is ncost=n0�1+dFw / a�, where a is the acceptance ratio obtained for the Hit-and-Run sampler, a�0.17. The
estimation of the chemical potential using the standard �unbiased� Bennett method with 1.1�107-energy samples is �=−0.323 Kcal/mol.

uw

�Kcal/mol� d n0 �Fc�h s ncost /n0

�
�Kcal/mol�

28.38 20 4.2�105 1.1�10−3 7 1.5 −0.32
28.38 100 2.95�106 1.08�10−3 7 3.8 −0.353
14.19 100 4.3�106 2.66�10−3 12 1.7 −0.335
14.19 15 1.0�107 2.77�10−3 5 1.1 −0.334

165.53 200 2.76�105 1.3�10−5 25 85.8 −0.357

FIG. 3. The energy distribution f�u� obtained from 4�106 random inser-
tions over the whole configurational domain is compared with energy-biased
sampling in the restricted configurational space u�uw. The calculations
correspond to the same case as in Fig. 2. The energy cavities are sampled
using the Hit-and-Run algorithm, which provides an unbiased reconstruction
of the energy distribution for any value of uw chosen.

FIG. 4. The cumulative probability F�u�=−	
u f�u��du� for u=5 Kcal/mol vs

the total number of energy evaluations of the test particle ncost. The liquid is
the same as in Fig. 2. We compare the estimations of F�u� for grid sampling
�with a regular mesh of 363 nodes� and for energy-biased samplings within
u�uw=14.19 Kcal/mol, performing d=15 samples per well. The cumula-
tive probability at uw is Fw=F�uw�=0.001 22.
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tively simple algorithms: uniform-unbiased search and Hit-
and-Run sampling. However, we note that other solutions are
also possible. For instance, nonuniform sampling of the im-
portance region may surely increase the efficiency of the
present method. In dense systems, the searching step be-
comes the most difficult one and a more effective extension
of this method could be to perform a biased search �using,
for instance, some variation of the USHER algorithm15,16� so
as to significantly increase the probability of finding favor-
able cavities for insertion of the test particle. These exten-
sions are left for future studies.
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APPENDIX A: SAMPLING BOUNDED REGIONS
WITH THE HIT AND RUN ALGORITHM

There exists a relatively large literature on sampling a
bounded connected region �see, for instance, Ref. 17 and
references therein�. In this work we have used the so-called
Hit-and-Run algorithm for its simplicity and good
performance.17 The Hit-and-Run sampler is a special Markov
chain Monte Carlo which draws numbers from an assigned
distribution12,17 p�r�, where r�A lies within a bounded con-
nected region of an n-dimensional space A�Rn. In our case,
p�r� is a uniform probability density over the region Auw




such that

p�r� =
1

��Auw


 �
. �A1�

The Hit-and-Run algorithm starts from a point r0 within
the bounded region A and performs the following steps:

�i� Choose a random direction e and find the intersections
of the cavity border with the line r���=r0+�e, where
� is a real number. As the cavity A is bounded the
intersection is composed by two points r��+� and
r��−� �here �+�0 and �−�0�.

�ii� Select a point r1 within the segment �r��+� ,r��−��,
i.e.,

r1 = r��−� + ��r��+� − r��−�� , �A2�

where �� �0,1� is a uniformly distributed random
number.

�iii� Sample at r1, set r1→r0 as the new starting point and
go to �i�.

The above procedure is repeated to obtain the desired
number of samples d. In our case the starting point for the
sample chain r0 is the test-particle configuration returned by
the algorithm for energy-well searching �U�r0 ,R��uw�. In
order to locate the borders of the energy well r��+� and r��−�

we use the following procedure. Starting from r0 we cross
the well along the line defined by the random unit vector e
moving in steps of size �s, i.e., according to

r�k� = r0 + k�se , �A3�

with k being an integer starting from k= ±1. The energy is
computed at each point r�k� until one crosses the edges of
the well at k=k+ and k=k− �for which u�r�k±� ,R��uw�. An
approximate location of the cavity borders is provided by
setting �±=k±. We used typically �s�0.3 Å and required, on
average, about five iterations to cross the well in one random
direction �this value depends on the density and uw�. Note
that the acceptance ratio is a= �k+−k−�−1 and for the high-
density cases considered here a�0.17.

APPENDIX B: OPTIMAL NUMBER OF SAMPLING
DIRECTIONS

It is possible to reduce the cost without increasing the
variance by setting the number of samples per cavity d equal
to or somewhat larger than s, the average number of inde-
pendent samples per cavity. Note that the number of statisti-
cally independent samples within one cavity is s=d /�c,
where �c is an empirically estimated autocorrelation length
of the whole chain of data. This number �c can be estimated
from the large m limit of the quantity mVar�F�m�� /Var�F�,
where Fc=F���u−c�� is the Fermi function evaluated at a
single energy u and F�m� denotes the mean of m consecutive
F values.

The value of s can be estimated by performing several
Hit-and-Run samplings with an increasing number of direc-
tions per cavity d�s, then computing �c for the chain of
samples and evaluating d /�c, which should be nearly inde-
pendent of d. We carried out this evaluation of s for varying
values of uw within the same system and for fixed uw and
varying density. The results of this study, reported in Table
II, clearly indicate that s does not greatly vary for a broad
range of values of the cavity-border energy uw. In fact, at low
and moderate values of uw the energy cavities are isolated
and their average size �in Å� grows quite slowly with uw.
This is due to the steepness of the hard-core part of the
Lennard-Jones potential. Above a certain energy uw the cavi-
ties become connected and a steep rise in the average size of
the energy cavities is observed. This is reflected in the value
of s. As shown in Table II for uw=14.19 Kcal/mol we ob-
tained s�4.5 and s�11 for two calculations using d=15
and d=100, respectively. We obtained a relatively close
value s�7 for twice as large an energy limit uw

=28.38 Kcal/mol. However, using uw=165.53 Kcal/mol the
average number of independent samples increased up to 25,
reflecting the more complex shape and larger volume of
these energy cavities. In summary, for the optimum range of
values of uw��10–30� Kcal/mol we find s��5–10� in the
case of the Lennard-Jones liquid.
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