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We present a hybrid protocol designed to couple the dynamics of a nanoscopic region of liquid described at
atomistic level with a fluctuating hydrodynamics description of the surrounding liquid. The hybrid technique is
based on the exchange of fluxes and it is shown to respect the conservation laws of fluid mechanics. This fact
allows us to solve unsteady flows involving shear and sound waves crossing the interface of both domains. In
equilibrium we find perfect agreement with the grand-canonical ensemble at low and moderate densities, while
within the nanoscopic volumes considered, mass fluctuation �both in hybrid and full MD simulations� becomes
slightly larger than predicted by the thermodynamic limit. Stress fluctuations across the hybrid interface are
shown to have a seamless profile. Nonequilibrium scenarios involving shear �startup of Couette flow� and
longitudinal flow �sound waves� are also illustrated.
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I. INTRODUCTION

Multiscale modeling has been rapidly evolving during the
past decade, and it now constitutes a new paradigm in com-
puter simulation to resolve systems and processes compris-
ing different length scales. The essence of a multiscale, mul-
tiphysics approach consists of using different model descrip-
tions for each relevant scale. Importantly, information has to
be able to feed backward and forward between different
scales and models. In many instances, multiscale simulations
can be performed in a hierarchical way, i.e., by extracting
information from one scale as input parameters for the higher
level model. Relevant examples of this procedure are the
coarse-graining techniques which start from atomistic simu-
lations to produce simplified coarse-grained representations
of complex molecules used for the study of equilibrium
properties of complex fluids �1�. However, many processes
take place as a consequence of the continuous interaction
between elements pertaining to different spatiotemporal
scales. These sort of processes require another kind of mul-
tiscale approach in which the information required for each
model needs to be exchanged on-the-fly. In this case one can
talk about concurrent coupling �2,3� and hybrid models. Hy-
brid models are now deployed in many different disciplines,
such as quantum-classical treatment of solid fractures �4�,
plasma physics �5�, rarefied gases �6�, complex liquids �7–9�,
turbulence, and more. A list which cannot be exhaustive.

In this work, we focus on hybrid models for the liquid
phase coupling two domains described respectively by ato-
mistic and continuum descriptions �domain decomposition�.
In general, hybrid models in the liquid phase can be divided
in two groups: Either based on an Eulerian-Lagrangian de-
composition �8,9� or on domain decomposition �7,10�. The

Eulerian-Lagrangian approach consists in modeling solute
particles as Lagrangian objects moving in a Eulerian fluid
description and is useful for phenomena involving the bulk
flow of complex fluids. Domain decomposition is meant to
provide an accurate atomistic representation of a small rel-
evant region of the system, for instance at a molecular inter-
face or around a macromolecule, embedded into a coarser
mesoscopic description of matter �10�. This area has received
multiple contributions during the last decade or so �for a
recent review, we refer to Ref. �7��. In general terms, previ-
ous works on this subject have focused on how the mean
flow profiles at the bulk are affected by the discrete nature of
matter near boundary regions �e.g., near walls �11� or contact
lines �12��. Consequently, in these works accurate atomistic
representation of the particle system was not considered, and
particles were usually described using the standard coarse-
grained Lennard-Jones model. In these scenarios, flows are
driven by shear stress and the large time separation between
the molecular domain and the fluid bulk enables the assump-
tion of stationary process. In this sense, some groups have
used the Schwartz method �variable coupling� �7� as a fast
way to reach the stationary state, by consecutively imposing
the mean velocity field at the hybrid border �overlapping
region� toward and from the particle and continuum do-
mains. Being interested in mean flow features, fluctuations,
naturally arising from the particle system, have been usually
considered as a nuisance �with the exception, in gases, of the
works by Garcia’s group �13��. Methods to control the noise-
to-signal ratio have been consequently proposed in the litera-
ture �14,15�.

One important objective of the present hybrid model is to
enable the study of the effects of external flow in a nano-
scopic region and on its molecular structure. Such an objec-
tive required the inclusion of important features not readily
available in the literature. A coupling protocol for hybrid
molecular dynamics simulations, designed to bridge nano-
scopic and microscopic molecular scales �hybrid MD� was
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recently presented in Ref. �10�. In that work we also sketched
a study of the reflection of water sound waves against a lipid
monolayer �dimyristoylphosphatidylcholine �DMPC�� show-
ing that the hybrid code is able to capture small differences
in the bulk arising from a particular molecular structure, far
away, at the lipid interface. In the present work, we provide
a detailed explanation of the coupling protocol and focus on
the treatment of fluctuations of mass, momentum, and pres-
sure tensor. Instead of working with TIP3P water �as in �10��
which is restricted to ambient conditions �T=300 K and
1 atm�, we work here with argon, enabling us to study the
effect of the hybrid protocol on the density, as it
changes from gas to dense liquid phase, �=0.1 to
0.8 gr/ �mol Å3�. We also provide some extra tools, quite
useful for calibration purposes in the Appendixes. At these
small scales, time separation cannot be taken for granted and
thus the hybrid model needs to be able to solve nonstationary
flows, including transport of shear stress and sound waves.
To that end, we use a scheme based on the exchange of
fluxes, which correctly deals with nonstationary flows by re-
specting the conservation laws of fluid mechanics. Fluctua-
tions are relevant at these scales, being moreover responsible
for many different kinds of processes. In order to include
fluctuations into the coupled model, the continuum domain
has to be described, at least, by fluctuating hydrodynamics
�FH� �16�. A detailed account of the FH model used in this
work was recently presented �17�. An important point here is
that the inclusion of fluctuations in the hybrid description
requires thermodynamic consistency between both MD and
FH models. In this sense, the MD system is viewed here as
an open system which exchange mass, energy, and momen-
tum with the exterior world �18�.

In what follows we briefly present, in Sec. II, the fluctu-
ating hydrodynamics and the molecular dynamics models.
The core of the coupling method, both in space and in time,
are presented next in Secs. III and IV. The behavior of the
model at equilibrium is shown in Sec. V and nonequilibrium
flows are illustrated in Sec. VI. Finally, some conclusions are
given in Sec. VII.

II. MESOSCOPIC AND MOLECULAR DESCRIPTIONS

A. Fluctuating hydrodynamics level

The hydrodynamic behavior of the mesoscale is described
by the fluctuating hydrodynamic �FH� equations �16,19�.
These are stochastic partial differential equations which re-
duce to the Navier-Stokes equations in the limit of large
volumes. Fluctuating hydrodynamics are based on conserva-
tion equations of the form �t��r , t�=−� ·J�, where � is the
density of any conserved quantity �mass, momentum, en-
ergy� and J� is the flux of the conserved quantity. In �17�, we
considered an isothermal fluid, so that the conserved quanti-
ties are reduced to mass and momentum, whose densities are
��r , t� and g�r , t�, respectively. The corresponding fluxes are

J� = gv , �1�

Jg = �gv + � + �̃� , �2�

where the velocity v field satisfies g=�v and J�, Jg are the
mass flux vector and the pressure tensor, respectively. The

pressure tensor in Eq. �2� contains the convection term gv
and the stress tensor, divided in a deterministic �mean� and a

fluctuating part: ��r , t� and �̃�r , t�, respectively. The deter-
ministic part of the stress tensor corresponds to that of a
Newtonian fluid,

� = �p + ��1 + �̄S, �3�

where p is the equilibrium thermodynamic pressure given by
the equation of state while the trace and traceless symmetric
part of the stress tensor are, respectively,

� = − ���v�, �4�

�̄��
S = − 	���v� + ��v� − 2D−1��v�
��� , �5�

where the convention of summation on repeated indexes is
used. The shear and bulk viscosities are 	 and �, respec-
tively, and D is the spatial dimensionality �in our case D

=3�. The fluctuating stress tensor �̃�� appearing in Eq. �2� is
a random Gaussian matrix with zero mean and correlations
�see Ref. �16��

��̃���r1,t1��̃
��r2,t2�� = 2kBTC���

�t1 − t2�
�r1 − r2� ,

�6�

where C���
= �	�
�

��+
��
�
+ (�− �2/D�	)�
��

��, kB

is the Boltzmann’s constant, and T is the temperature.
The discrete equations of the finite volume discretization

of FH of Ref. �17� are included here below for the sake of
completeness. The change of mass dMk

t and momentum dPk
t

in cell k at time t are given by

dMk
t = �

l

gkl · eklAkldt , �7�

dPk
t = �

l
�vklgkl +

�pl + �l�1 + �̄l
S

2
	 · eklAkldt + dP̃k

t , �8�

where Vk is the volume of cell k and ekl is the unit vector
perpendicular to the contact surface of area Akl from volume
k to volume l �in our regular lattice Akl=A is fixed�. Note that
summations in Eqs. �7� and �8� are done over all the 
l�
control cells that are in contact with cell k. In Eqs. �7� and �8�
one needs to use the discrete version of the pressure tensor
components introduced in Eqs. �4� and �5�; these are

�k =
�

Vk
�

l

Akl

2
ekl

�vl
�,

��̄k
S��� =

	

Vk
�

l
�Akl

2
�ekl

�vl
� + ekl

�vl
�� −


��

D
Aklekl

� vl
� . �9�

Finally, as shown in Refs. �20,21� the momentum contri-
bution of the fluctuating stress can be evaluated from
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dP̃k
t = �

l

Akl

2
�4kBT

	

Vl
dW̄l

S · ekl

+ �
l

Akl

2
�2DkBT

�

Vl

tr�dWl�
D

ekl, �10�

where dWl is a D�D matrix �D=3 in three dimensions� of
independent Wiener increments satisfying �dWk

�,�dWl
�,
�

=
k,l
�,�
�,
 dt and dW̄l
S is a traceless symmetric random

matrix defined as

dW̄l
S =

�dWl + dWl
T�

2
−

tr�dWl�
D

1 . �11�

For details on the imposition of boundary conditions for
the density and momentum we refer to Refs. �17,22�. As
explained below boundary conditions arising from the hybrid
coupling are of von Neuman type �for fluxes�. When re-
quired, solid walls interfacing the FH domain were modeled
assuming no-slip boundary condition.

B. Molecular dynamics level

The molecular description is based on classical molecular
dynamics. We use the CHARMM27 �23� forcefield incorpo-
rating the TIP3P parametrization, which specifies bond,
angle, dihedral, and improper bonded interactions and non-
bonded Lennard-Jones 6-12 and Coulomb interactions. The
code is derived from a stripped down version of the molecu-
lar dynamics software NAMD �24�. As long as we are work-
ing in an isothermal environment, thermostatting is needed in
the molecular domain. In order to preserve local momentum
conservation and the hydrodynamic modes within the mo-
lecular domain molecules are thermostated using a dissipa-
tive particle dynamics �DPD� thermostat �25�. The DPD ther-
mostat is the best suited for our purposes because it has a
negligible effect on the equation of state and the transport
coefficients of the fluid.

III. COUPLING METHOD

From a physical point of view, the objective of the hybrid
scheme is to couple two fluid descriptions which use quite
different amount of degrees of freedom, in such a way that
hydrodynamics and thermodynamics are consistently de-
scribed across their mutual interface �see Fig. 1�. Thus, the
first step is to ensure that the coarse grained fluid description
agrees with the molecular one. In other words, we need to
know the equation of state and transport coefficients of the
molecular model and plug this information into the fluctuat-
ing hydrodynamics model. In Appendix D we explain how to
deploy the hybrid code for these calibration purposes.

From a computational point of view the MD and FH do-
mains are solved by two independent binaries which are
coupled via a communication service which redirect mes-
sages and data between the two codes �2�. The coupling
scheme explained below takes place after a fixed time inter-
val �tc. In general, we set �tc=nMD
t=nFH�t, where nMD
and nFH are integers and 
t and �t are the time step of the

molecular and hydrodynamic models, respectively. Details of
the time stepping protocol are given in Sec. IV.

The MD and FH domains are separated by the hybrid
interface, which shall be called “H.” Figure 1 illustrates a
portion of this interface. The whole simulation volume is
divided into nonoverlapping control cells which are used in
the finite volume method for fluid dynamics. In Fig. 1 we
illustrate the control cells adjacent to the interface H. These
cells are called C and P to indicate that they are located at
the continuum and particle side of H, respectively. The re-
gion B in Fig. 1 is the particle buffer, which is part of the
particle region �the particle region is MD+B�. The buffer B
is used as a reservoir to impose momentum into the MD
domain. However, it is important to note that the total system
is just the sum of two regions �MD and FH� separated by one
single interface H. This provides a unique definition of the
global quantities �for instance, the overall momentum of the
system is Ptotal=PMD+PFH�. In this way, our method pro-
vides control of global mass and momentum conservation.
By contrast, the spatial decomposition used in previous hy-
brid schemes �7� lacks a proper definition of the overall sys-
tem. This is so because in previous works the particle and
continuum domains intertwine within a larger overlapping
region, preventing a clear definition of the system �see, for
instance, Refs. �7,26,27��.

In order to guarantee mass and momentum conservation,
communications are based on flux balance: Both domains
receive equal �but opposite sign� mass and momentum cur-
rents across the hybrid interface H. As in Ref. �18�, in the
present scheme mass flux arises naturally from the imposi-
tion of the momentum flux �pressure�. Thus the flux of mo-
mentum across H is the central quantity of the coupling
method. We will first explain how this flux is calculated and
imposed into the MD system. Then, we comment on how
mass conservation and variable continuity are ensured and
conclude with the time stepping of the hybrid scheme.

A. Evaluation of the momentum flux across H

Let us now first concentrate on the evaluation of the mo-
mentum flux across the hybrid interface, JH

g . Using the same
approximation as in the finite volume scheme momentum
flux across H is thus calculated by interpolation from JC

g and
JP

g , the corresponding values at the adjacent C and P cells,
respectively. This gives

FIG. 1. �Color online� Geometry of the domain decomposition
used in the hybrid scheme. Fluctuating hydrodynamics and molecu-
lar dynamics domains, labeled as FH and MD, respectively, are
separated by the hybrid interface H. The shaded area corresponds to
the particle region MD+B, where B is the particle buffer. However,
the total system is uniquely determined by MD+FH.
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JH
g · e� =

JP
g + JC

g

2
· e�. �12�

According to the sense of the vector e� drawn in Fig. 1,
Eq. �12� provides the flux of momentum across H toward the
P cell. For conservation the flux toward C should be −JH

g . In
the most general case, JP

g and JC
g are obtained from time

averaging over the coupling time �tc; details of time average
requirements are explained in Appendix A. We now explain
how JC

g and JP
g are evaluated. The C cell belongs to the FH

domain so JC
g is directly obtained from Eq. �2�. There is,

however, a slight difference. The velocity gradient appearing
in the local mean stress �C in Eq. �9� for k=C requires the
local density and velocity of the neighboring l= P cell of the
MD domain. These quantities, �P and vP, are obtained from
the instantaneous mass and momentum at P,

MP = �
i�P

mi, �13�

PP = �
i�P

mivi, �14�

where the summation runs over those molecules at the P cell
�46�. Dividing by the volume of the P cell VP one gets the
local density �P=MP /VP; while, as shown in Ref. �28�, to
recover the correct statistics one needs to evaluate the
coarse-grained velocity as vP=PP /MP instead of from the
average of particle velocities.

The momentum flux tensor at P, JP
g can be evaluated by

two possible means. First JP
g can be obtained from the “mi-

croscopic” state using the Irving-Kirkwood formula,

JP
g =

1

VP
��

i�P

mivivi + Wi�
�
ts,�tc�

, �15�

where Wi= �1/2�� j�Prij · fij is the contribution of atom i to
the virial part of the stress tensor �29�. At any time t, the time
average in Eq. �15� is defined as follows:

����
ts,T� �
1

Ns
�
i=1

Ns

��t + 
tsi� with T = Ns
ts. �16�

As shown in Appendix A, samples of the microscopic stress
tensor should be taken each 
ts=2c, where c is the decor-
relation time of the stress tensor. This ensures that consecu-
tive samples are uncorrelated and also that the variance of
the momentum flux matches at the MD and FH sides.

On the other hand, it is also possible to use a “mesos-
copic” route to calculate JP

g . In this second approach the
momentum flux is evaluated by inserting the local coarse-
grained variables at l=P �vl=PP /MP and �l=MP /VP, where
MP and PP are given in Eqs. �13� and �14�� and neighboring
cells into Eqs. �2� and �9�. The fluctuating part of momentum
flux tensor is treated similarly to the other FH cells �Eq.
�10��. This “mesoscopic” approach is faster because it avoids
the costly computation of the virial term. In Sec. V B 4 we
show that both �“micro” and “meso”� approaches provide
similar results in terms of mean and variance of the pressure
tensor.

B. Flux boundary conditions

To guarantee momentum conservation after each coupling
time �tc we need to introduce JH

g ·e��tc momentum into the
MD domain and the opposite of this into the FH domain.
This momentum flux can be inserted into the FH domain
using standard techniques for the finite volume scheme
�17,22�. In our formulation one only needs the pressure ten-
sor Jg at neighboring cells to update the momentum in Eq.
�8�. In particular for k=C, one just needs JP

g from the MD
system to close the system of equations for FH cells.

By contrast, the imposition of the desired momentum flux
into the MD system is one of the delicate parts of the cou-
pling scheme. This task is equivalent to impose an external
force FH introducing the desired input of momentum
�AJH

g ·e��tc� into the MD region over the coupling time. To
impose this external force we use the particle buffer B �see
Fig. 1�. Particles are free to enter or leave this buffer across
H, but once inside B, each particle i�B feels an external
force fi

ex. The total external force is set to �i�Bfi
ex=FH, so

that the exact amount of pressure and stress is transferred to
the whole particle system, MD+B. There are several ways to
distribute the external force among the �variable� number of
particles within the buffer NB: From the simple equidistribu-
tion used in previous works �27� �fi

ex=FH /NB� to much more
involved choices considered in Ref. �30�. We discuss this
issue in more detail in Appendix B.

The role of the particle buffer is thus to transfer momen-
tum �and more generally energy; see Ref. �18�� into the MD
domain. Each buffer particle acts as a momentum carrier
which transfer a part of the force from the outer region.
Hence, an important issue is to ensure that there are enough
momentum carriers sharing the external force. Otherwise, in-
stabilities could arise due to large particle accelerations at B,
arising from large values fi

ex. On the other hand, for stability
sake and also to reduce the number of particle insertions, it is
desirable to control the fluctuations of the number of par-
ticles in B, NB. Both requirements are met by using a simple
relaxation algorithm

�NB = ��NB� − NB��t/B, �17�

with B�500 fs. The average number of particles at B, �NB�
is set proportional to the mass at the overlapping C cell
MC=mNC: �NB�=�NC. The value of � is not relevant pro-
vided that NB is reasonably large �a good range is �
= �0.5,0.8��.

Molecules leaving the buffer cell are simply removed and,
if from Eq. �17� �NB�0, then new molecules are placed in
B with a velocity taken from the Maxwellian distribution and
�v�=vC, where vC is the velocity in the C cell. The insertion
location is determined by the USHER algorithm �31,32�,
which efficiently finds new molecule configurations releas-
ing an energy equal to the mean energy per molecule. Due to
the efficiency of the USHER algorithm, the whole insertion
process requires less than a few percent of the overall com-
putational time.

In general, momentum exchange due to molecule inser-
tion or removal should be taken into account in the overall
momentum balance �18�. The amount of momenta that we
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want to introduce in the particle system after one MD time
step 
t is AJH

g ·e�
t. Thus we require that the sum of the
contribution of the external force FH and that of particle
insertion or removal satisfy,

AJH
g · e�
t = �Pin − �Pout + FH
t . �18�

The momentum introduced by incoming particles is �Pin
=�imivi �with i being inserted particles during time step 
t�.
In turn �Pout is the momentum of the particles removed dur-
ing 
t. Equation �18� provides the external force FH to be
imposed over each MD time step 
t. Thus, by construction,
over each coupling time interval, the exact amount of mo-
mentum AJH

g ·e��tc is transferred to the particle system.

C. Mass transfer and continuity

An important feature of the present scheme is that the
mass flux across the hybrid interface H is not imposed, but
arises naturally from the pressure gradient and convection
across the interface. We note that previous schemes �27,33�
did in fact directly impose mass injection into the MD sys-
tem. However, in fluid dynamics, mass flux is not an inde-
pendent quantity but instead it is controlled by the momen-
tum flux. To be consistent with this fact, we only impose the
momentum flux across the hybrid interface and calculate the
resulting molecular mass flux across H. Over the coupling
time �tc, the mass flowing toward C across H is obtained
simply by counting the number of molecules crossing the
interface. To ensure mass conservation, this amount of mass,
�MH

MD, is to be injected to the adjacent C cell of the FH
model. There is not an unique way to transfer this mass into
the C cell; we use the following relaxation equation,

�MC = �MH
FH +

�tc

M
��MH

MD − �MH
FH� , �19�

where M is a relaxation time �we use M =100nFH fs� and
�MH

FH=−A�HvH ·e��t is the mass crossing toward C accord-
ing to the local hydrodynamic prediction. Thus, in Eq. �19�,
the mass is relaxed to yield the MD prescription ��MH

MD�
starting from the hydrodynamic prediction ��MH

FH�. After re-
leasing the amount of mass �MC in Eq. �19�, one needs to
update �MH

MD→�MH
MD−�MC.

Another issue which should be taken into consideration
concerns the continuity of velocity across the interface H.
Consider a simple Couette flow in a cavity, where the veloc-
ity increases linearly with the coordinate normal to the cou-
pling interface. The mean stress tensor is proportional to the
velocity gradient which is constant along the cavity. Then it
is indeed possible to perfectly match the stress �i.e., the ve-
locity gradient� and still have a discontinuity in the velocity
at the H interface. This arises in schemes based on flux bal-
ance and can be solved in two different ways: Either adding
an extra forcing term in the particle dynamics to ensure that
the local mean particle velocity matches the continuum value
or vice versa. The first approach was used in the pioneer
work on hybrid coupling by Thomson and O’Connell �34�
and it was further modified by some authors �33�. The extra
force added to each particle is proportional to the difference

between the continuum velocity and the locally averaged
particle velocity. We believe that this method is not appro-
priate because it adds extra ad hoc modifications into the
molecular dynamics which alter the microscopic dynamic
properties.

Instead, as shown in a previous work �15�, a better solu-
tion is to introduce a relaxation term in the equation for the
first continuum cell “C” �see Fig. 1� which ensures that the
FH velocity matches the local MD value. We thus add a
small relaxation term proportional to �vH

MD��
t,�− �vH
FH���t,�

into the momentum equation for the C cell �see Ref. �15��.
The values of vH

MD and vH
FH are obtained from those at the

adjacent cells by linear extrapolation. The time averages, de-
fined in Eq. �16�, are made over a time  much smaller than
any hydrodynamic time and in these simulations we used 
=�tc. As demonstrated in Ref. �15�, the effect of this relaxing
term into the flux balance is negligible.

In summary, in obtaining the mass flux and velocity
across the hybrid interface, we assume that the molecular
region is the fundamental model from which these quantities
should be evaluated. Mass flux and velocity continuity are
thus imposed to the coarse grained fluid model. In this way,
we avoid the introduction of any extra ad hoc artifact into the
particle dynamics. In this issue we adhere to the philosophy
of Garcia et al., as stated in their elegant hybrid model for
gases �6�.

IV. COUPLING PROTOCOL IN TIME

We now briefly describe the logical flow for the commu-
nication process in time used in this implementation of the
hybrid model. To start the computational loop one needs the
value of the initial momentum flux JH

g �t0� and the velocity at
the interface vH, which are obtained either from the last step
of a previous simulation or from the field imposed as initial
condition in a new simulation. The time t1= t0+�tc is
reached upon performing the following steps.

Step 1. The MD subsystem is moved a number nMD of
time steps 
t toward t= t1. An external force FH is imposed at
the buffer region B according to what is described in Sec. III
�see Eq. �18��.

Step 2. The MD subsystem sends updated information to
the FH model. Namely, the momentum flux JP

g �t1�, the total
particle mass flowing across H towards C, �MH

MD�t1�, and
the �time averaged� local velocity �vH�t1��r.

Step 3. The FH subsystem advances nFH time steps toward
t= t1. A momentum flux −JH

g �t0� ·e� is imposed at the bound-
ary H and the mass �MH

MD�t1� is released into the C cell
according to Eq. �19�.

Step 4. The momentum flux JC
g �t1� is calculated from the

updated FH field. The momentum flux JH
g �t1� is updated us-

ing Eq. �12� and sent to the MD system. The local velocity
vC and mass MC are also sent towards the MD solver to deal
with the buffer dynamics, as explained in Sec. III B. Back to
step 1 with t0→ t1.

The present scheme yields serial coupling and although it
is possible to adapt the communications for concurrent cou-
pling �see, for instance, �3��; we note that for most applica-
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tions, the hybrid code will not be computationally balanced,
as the MD part takes most of the computational time.

The following sections present the results of tests to hy-
brid model which comprise the study of the equilibrium state
and several nonequilibrium unsteady states.

V. RESULTS AT EQUILIBRIUM

A. Mass and momentum conservation

An important first test is to verify mass and momentum
conservation. To that end, we consider an isolated system in
equilibrium, with total mass M =MMD+MFH and zero mo-
mentum PMD+PFH=0. As stated in Sec. III, the coupling
scheme conserves mass by construction. However, as long as
the external force is introduced in the buffer B of the particle
system, total momentum is exactly conserved in the extended
system �MD+FD+B�. As the buffer volume is small the mo-
mentum unbalance is a small bounded quantity of size �PB�.
For instance in an isolated system one shall get PMD+PFH
=−PB. We checked that after about 1 ps, the time average of
the overall momentum unbalance per unit mass becomes
smaller than the corresponding momentum arising from the
thermal noise �see Ref. �10��. Such times are faster than any
relevant hydrodynamic time scale and thus momentum un-
balance has little effect on the mean and variance of hydro-
dynamic fields considered. In any case, if required, it is pos-
sible to add a slight modification in the coupling scheme
which enables exact momentum conservation in MD+FH.
This is explained in Appendix C.

B. Equilibrium state

1. Temperature

By analyzing the behavior of the hybrid setup in equilib-
rium state one can validate the thermodynamic consistency
of the coupling method. One first requires a correct tempera-
ture imposition because temperature determines momentum
fluctuations. The usual way to check the correct thermal be-
havior of the model is to evaluate the “numerical” tempera-
ture via the equipartition theorem, which relates T to the
momentum variance ��P�2 /Mc�=3kBT and compare it with
the imposed temperature. Here the cell’s mass is given by
Mc=�Vc and �P�2 is the squared momentum within one cell.
As shown in Fig. 2 momentum fluctuations at both FH and
MD and cells are in good agreement with the equipartition
theorem at the imposed temperature. Momentum fluctuations
at the MD cells are consistently controlled by the DPD ther-
mostat, while in the FH domain these are controlled via the
fluctuation-dissipation balance �44,45,47�. As stated above,
in the MD region we used a DPD thermostat �25� to ensure
local momentum conservation and maintain the hydrody-
namic modes within the molecular region. As an aside,
Lowe’s thermostat �35� was also tested as it also conserves
local momentum. However, we observed that for a fixed
pressure at the reservoir Lowe’s thermostat induces a signifi-
cant increase in density of the MD domain �about 20%� with
respect to the MD value �obtained in equilibrium simulations
within periodic boundaries�. By contrast the DPD thermostat

is more robust in the sense that it does not alter the equation
of state and also has little effect on the fluid viscosity.

2. Thermodynamic pressure

Thermodynamic and hydrodynamic consistency between
the molecular and mesoscopic liquid descriptions requires an
accurate evaluation of the equation of state. We have mea-
sured the pressure relation p= p�� ,T� for argon and water.
Details are given in Appendix D �see also �17��. Figure 3
shows the pressure at MD and FH for argon at different
densities and T=300 K; differences are negligible �less than
0.1%�.

3. Density fluctuations

Density fluctuations provide a more difficult test for ther-
modynamic consistency. Each cell can be considered as an
open system with �variable� mass Mc and fixed volume Vc
exchanging mass and energy with the rest of the system,
which acts as a reservoir at fixed temperature T and pressure
P. In the thermodynamic limit, the fluctuation of mass at
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FIG. 2. �Color online� Standard deviation of the three compo-
nents of the local cell velocity along the coupling direction �z�. The
fluid is argon at mass density �=0.6 gr/ �mol Å3�. The horizontal
dashed line is the theoretical value at the input temperature T
=300 K, given by �kBT / �Vc���1/2, where the volume of one cell is
Vc=37500 Å3. The MD region is shown between vertical dashed
lines.
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FIG. 3. �Color online� The mean pressure versus the mean mass
density � for argon. The equation of state is that of Johnson et al.
�36� corrected for the contribution of the switched potential
added in MD code �Pswitch=−250.8�2 bar�. Density is given in
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each cell at equilibrium should behave according to the
grand-canonical �GC� ensemble �VcT, where the chemical
potential � is fixed by the reservoir’s value �=��T , P�. Ac-
cording to standard thermodynamics �37�, the mass density
variance at one cell is given by ��=���kBT� / �VccT

2�, where
cT

2 ���P /���T is the sound velocity at constant temperature.
Figure 4 compares the theoretical thermodynamic result for
the standard deviation of density with numerical results ob-
tained at MD and FH cells, as a function of the mean density.
While at the FH cells the standard deviation of density ��

agrees with the GC value, at the MD cells we observed a
deviation which grows with increasing densities. For in-
stance, in the case of argon, we find an excellent agreement
between ��

MD and the GC value, for ��0.5 but at larger
densities ��

MD start to become larger than the GC result �up to
about 20% at �=0.8 gr/mol/Å3�. In order to assess whether
such discrepancy arises from the mass coupling method or
from the intrinsic behavior of the molecular dynamics, we
performed a set of standard MD simulations used as tests. In
these tests we used rather long periodic boxes �about 17 nm�
with lateral dimensions �5�5 nm2� similar to those used in

the hybrid simulations. The large MD box is sliced in smaller
cells with sizes similar to those used in the hybrid simulation
�1.5 nm�. We then measured the variance of mass within
each slice. Results, in Fig. 4, show similar deviations from
the GC limit, indicating that the deviations observed in the
hybrid MD cells are probably intrinsic to the molecular be-
havior at such small portions of fluid. The behavior of mass
fluctuations in small dense systems is actually the origin of
an interesting debate in the literature �38,39�, which suggest
some kind of reformulation of the FH equations for the
nanoscale. Here we note that further research on this issue is
also relevant for the fine-tuning of the hybrid methodology.

4. Stress fluctuations

As stated in Sec. III, in order to evaluate the MD part of
the stress tensor in Eq. �12�, JP

g , one can either introduce the
coarse-grained MD variables �density and velocity� into the
discretized Newtonian constitutive relations �Eqs. �2� and
�9�� or evaluate the MD stress from its microstate using the
kinetic theory formula given in Eq. �15�. The first, “mesos-
copic,” approach is faster and could be useful for many prob-
lems where a mesoscopic description of stress fluctuations is
valid enough. This mesoscopic approach provides similar
values of the variance of stress fluctuations at the MD and
FH domains. This fact is illustrated in Fig. 5�a� where we
show the standard deviation of the shear stress arising from
this “mesoscopic” sort of coupling.

However, if one needs to capture the real stress fluctua-
tions from the MD side one should use the “microscopic”
formulation for the momentum flux tensor JP

g appearing in
Eq. �12�. This could be necessary in those phenomena driven
by stress fluctuations, such as nucleation, interface instabili-
ties, etc. When using the microscopic stress, one needs to be
sure that the transport coefficients arising from the Green-
Kubo expressions coincide at the molecular and fluctuating
hydrodynamics domains. This issue is explained in Appendix
A and we defer a more detailed discussion for a forthcoming
work. Figure 5�b� shows the standard deviation of the shear
stress and the normal stress for each cell of a hybrid simula-
tion in which the microscopic stress tensor has been coupled
at the interface H. In this case �argon at �=0.6 gr/mol/Å3 at
T=300 K� we choose �tc=250 fs, which is roughly equal to
twice the decorrelation time of the stress tensor 2c �see Ap-
pendix A�.

VI. NONEQUILIBRIUM SIMULATIONS

A. Transversal momentum: Startup of Couette flow

We performed several tests under nonequilibrium un-
steady states which comprise transport of transversal mo-
mentum �shear� and longitudinal momentum �sound�. Figure
6 illustrates a simulation of the startup of a Couette flow in
argon at �=0.6 gr/mol/Å3 and T=300 K. Figure 6 shows
the transversal velocity isocontours of a spatiotemporal dia-
gram �space in coordinates and time in abscissas�. Compari-
son is made between the purely fluctuating hydrodynamic
solution �called “Hydro” in Fig. 6� and the hybrid MD-FH
solver �“Hybrid”�. For this comparison, in Fig. 6, we used
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FIG. 4. �Color online� �a� Standard deviation of the mass density
versus the mean mass density for argon. The result for the grand-
canonical ensemble is ��kbT / �VccT

2��1/2, where cT
2 = ��P /���T is the

squared isothermal sound velocity. Results at FH and MD cells are
shown. �b� Results obtained in full MD simulations using large
simulation boxes �see text�. The argon model used in �b� �simple LJ
�36�� has a lower compressibility with respect to �a� arising from a
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p���=250�2 bar; see Fig. 3. Density is given in
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the same sequence of random numbers for feeding the fluc-
tuating stress in the hydro and hybrid FH cells. We also
checked that, in terms of second order statistics, both solu-
tions are indistinguishable.

Figure 7 shows the final steady state of the Couette flow.
The velocity profile perfectly matches the expected linear
profile. As an aside, the reader might be interested in com-
paring Fig. 7 with Fig. 10, where the viscosity at the FH side
is not correctly calibrated with the molecular one. As long as
our scheme conserves momentum, in this latter case a zigzag
velocity profile is produced, whose slopes can be used for
measuring the proper molecular viscosity �see Appendix D
2�.

B. Longitudinal momentum: Sound waves

One of the important novelties of the present hybrid
scheme is its ability to solve sound waves. In a previous
work, we presented some stringent tests to the hybrid scheme
by considering sound waves of water colliding against a lipid
monolayer. Fully fledged MD results were shown to agree
with those obtained by the hybrid code. Interestingly, far
away from the wall, the reflecting wave still differed from
that reflected against a purely reflecting wall �solved by fluc-
tuating hydrodynamics�. This fact indicates that the model is

able to capture fine differences arising from the molecular
structure near an interface. In this work we show another test
which intends to illustrate the time resolution of the model.

We consider a closed box with rigid, reflecting walls and
introduce a density perturbation near one of the walls of the
box. The box is periodic in x and y direction and walls are
located at z=z0 and z=z1. In this simulation, the MD region
is located at the bulk of the fluid �center region of the box�
and it is surrounded by the FH model. As a consequence of
the initial perturbation two sound waves start to travel in
opposite directions. But as the initial density perturbation is
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FIG. 5. �Color online� The standard deviation of the pressure
tensor components at different cell locations. Results correspond to
argon at �=0.6 gr/mol/Å3 and T=300 K. Cells pertaining to the
MD domain are located between dashed lines. Coupling time is
�tc=250 fs and nFH=5 and nMD=25. �a� Results for the off-
diagonal components of the pressure tensor using the mesoscopic
approach for the pressure tensor within the MD domain �see text�.
�b� Results for diagonal and off diagonal components of the stress
tensor obtained when the microscopic stress tensor �Eq. �15�� is
used at the MD domain.

FIG. 6. �Color online� Spatiotemporal diagram showing the star-
tup of a Couette flow. “Hydro” denotes results from the fluctuating
hydrodynamic model �FH� and “Hybrid” from the hybrid MD-FH
simulation �the MD region is indicated between the horizontal
dashed lines�. The velocity imposed at the upper wall is 1 Å/ps and
the bottom wall is at rest.

0 5 10 15 20
z (nm)

0

50

100

x-
ve

lo
ci

ty
(n

m
/n

s)

FH cells
MD cells

FIG. 7. Steady solution of the Couette flow velocity. Error bars
indicate the standard deviation of the velocity within each cell,
which corresponds to that of argon at �=0.6 gr/mol/Å3 and tem-
perature T=300 K. The viscosity, 	=7.50�10−5 Pa s was previ-
ously calibrated using the hybrid setup �see Appendix D 2�.
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maxima near one of the walls, one of the sound waves is
soon reflected by the wall, changing its sense of propagation.
The result is two density peaks moving at the speed of sound
in the same direction. These two peaks can be seen in Fig. 8,
where a spatiotemporal diagram of such wave is shown. A
quite good agreement is found between hybrid hydrodynam-
ics and purely fluctuating hydrodynamic results. The main
conclusion is that the hybrid algorithm is able to correctly
resolve flow features separated by quite small time delays. In
the simulation of Fig. 8, the time delay of both density peaks
is 0.02 ns.

Figure 9 shows the time evolution of the density at the
center MD cell, corresponding to the same wave as in Fig. 8.
Comparison with deterministic and purely fluctuating hydro-
dynamics is made. A quite good agreement is observed. We
note that fluctuations around the deterministic solution have
higher frequency components for the MD cells of the hybrid
case �see Fig. 9�. This is due to the fact that density fluctua-
tions with wavelengths smaller than a few cells cannot be
transferred to the FH domain and dissipate within the MD
domain. Further study on this high frequency fluctuation is
deferred for future work.

VII. SUMMARY AND CONCLUSIONS

We have presented a detailed account of the multiscale
model for hybrid particle-continuum simulations �10�. Our

formalism is based on conservation laws �exchange of fluxes
of conserved quantities across the interface dividing both
subdomains�. The present code includes important features
so far lacking in the literature, which we now briefly sum-
marize.

The molecular region is described by an all purpose ato-
mistic model which enables to treat the interaction of com-
plex molecules with fluid flow, such as biological macromol-
ecules in aqueous solvent and external hydrodynamic fields
�40�. Also, proper consideration of fluctuations is made. Al-
though fluctuations play an important role in many different
processes, most previous hybrid particle-continuum models
do actually try to suppress the effect of fluctuations coming
from the MD domain �the problem of noise reduction�. Here
we consider fluctuations as an important part of the hybrid
coupling and we consistently treat the coarse-grained solvent
region via fluctuating hydrodynamics �FH�. The FH equa-
tions �for water and argon� were solved by an Eulerian ref-
erence using the finite volume method. For details of this FH
code we refer to �17�. Mean values and variances of hydro-
dynamic variables were shown to agree at both sides of the
hybrid interface. We found however that at liquid densities
���0.5 gr/mol/Å3, in argon� the fluctuation of mass in the
MD domain slightly deviates from the thermodynamic limit
established by the grand-canonical ensemble. Similar devia-
tions were found to occur in standard MD simulations, so
these are probably intrinsic to the fluid behavior at small
scales.

Concerning nonequilibrium states, a relevant ability of the
scheme is to resolve sound. The scheme provides an exact
balance of mass transfer across the interface which permits
to transfer high frequency sound waves across the interface.
We note that the present version of the hybrid model does
not consider energy transport and we worked in isothermal
environment. Thus we worked with high frequency isother-
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mal waves, for which the thermal diffusion time is of the
same order of the sound period �10�. For a general descrip-
tion of sound one would need to include the energy equation
in the hybrid coupling. The work by Flekkøy et al. �18�
actually provides a one-way energy coupling; a two-way en-
ergy coupling will be considered in future work.

Some final general remarks on the hybrid methodology
are now made. We believe that the present work is an rel-
evant step towards the completion of the physical formalism
for multiscale schemes in domain decomposition. However,
the hybrid methodology still requires to consider several
computational issues to become a standard tool in molecular
simulations. In particular, parallelization of the hybrid setup
is needed �both within the MD domain and also the commu-
nications with the continuum domain�. The hybrid model
will also benefit from new ideas from both computational
and simulation fields: faster molecular dynamics codes based
on new processor architectures like the Cell processor �41�
will reduce the computational burden of the MD from re-
spect the continuum model of at least one order of magni-
tude; innovative solutions to switch from the atomistic to
coarse-graining models �42� may help to transfer complex
molecules across the interface; and finally research on “hy-
bridization” of complex 3D geometries will enable more
flexibility in the hybrid setup.
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APPENDIX A: TIME AVERAGING AND STRESS
TENSOR FLUCTUATIONS

We now explain how to perform local time averages of
the pressure tensor exchanged between the two models �MD
and FH� at the P and C cells �JP

g and JC
g , respectively; see

Eq. �12��. In doing so one needs to take into account the
following constraints: First, the amplitude of stress fluctua-
tions should coincide at the MD and FH sides ��
JMD

g �2�
= ��
JFH

g �2� and, second, the dissipation rates associated to
the Green-Kubo relations should agree at both sides.

In the following, we consider the equilibrium state ��J�
=0 and 
J=J� and work with the Green-Kubo relation in-
volving the off diagonal part of the pressure tensor, J=Jxy

g �a
similar conclusion is obtained using any other component�.
In general, the Greek-Kubo relation can be cast in the form

�J�0�2� =
	kBT

Vc
, �A1�

where we have defined the decorrelation time

c �
�

0

�

�J�t�J�0��dt

�J�0�2�
. �A2�

From the MD side one gets that for simple liquids c
�100 fs. At the FH side Eq. �A1� provides �16,17�, �JC

2 �

=2	kBT / �V�t�. Thus, for the FH model, the decorrelation
time is �t /2.

Now, if the variance of stress fluctuations at MD and FH
sides should be equal ��JP

2 �= �JC
2 �� and still consistent with

the Green-Kubo formula in Eq. �A1�, then their decorrelation
times should also coincide, i.e., �t=2c. This means that the
time interval 2c is actually the smallest possible coupling
time �tc. In fact, smaller values of �tc would not be consis-
tent with the Markovian assumption, implicit in the FH
model. One can of course use larger coupling times. In gen-
eral, we set �tc=nFH�t=Ns
ts, where the MD sampling time

ts is made equal to 
ts=2c. At the MD side, the stress
tensor is evaluated according to Eq. �15�, while at the FH
side one needs to average the stress tensor as �JC���t,�tc�.
From the Green-Kubo expressions it is not difficult to show
that the variance of both averages �JP��
ts,�tc� and �JC���t,�tc�
coincide, both being proportional to 1/�tc.

In the present simulations, we have used �tc=2c, for
which Ns=1, so the time average in Eq. �15� reduces to the
instantaneous value at t+�tc. At the FH side we used values
of nFH ranging from 3 to 5.

APPENDIX B: THE BUFFER DYNAMICS

In this appendix we comment on the choice of the distri-
bution of the external force FH over the particles at the buffer
B. As stated, each particle at the buffer feels a force fi

ex such
that �i�Bfi

ex=FH. In principle, the force per particle fi
ex may

be distributed according to any distribution gi, such that

fi
ex =

giFH

�
i�B

gi

. �B1�

Several values of gi have been proposed in the literature. For
instance, Flekkøy et al. �26� proposed gi=g�ri

�� where ri
�

=ri ·e� is the coordinate normal to H. In order to prevent
particles from escaping out from the particle system they
chose a function g�r�� diverging at a certain distance from H
and tending to zero at H. Werder and Koutmoutsakos �30�
showed that an evaluation of g�r�� from a previous calcula-
tion of the particle distribution function in the r� coordinate,
enables to maintain a constant density profile across the
whole buffer �a comparison between several choices of gi
was also provided�. In a previous work �27� we used gi=1 in
order to keep under control the average energy dissipated by
the external force. Note that energy dissipation increases like
fi

exvi so any increasing function g�r� will substantially in-
crease energy production �27�. This dilemma was solved in a
subsequent work �18�, where an elegant method for momen-
tum and energy flux boundary conditions was derived. This
method introduces a fluctuating force which depends on the
particle velocities. In other words, gi=1+gi��
vi�� where gi�
provides the fluctuating component of the external force
��i�Bgi��
vi��=0� and ensures that the exact amount of en-
ergy is released into the system �not only in average�.

Based on our experience, the most important issue in de-
ciding the shape of the distribution gi is to ensure a flat
density profile ��r�� around the interface H, at least over
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distances of several cutoff radius �O���. This requirement is
particularly important when dealing with longitudinal flow
�like sound waves� because density gradients generate longi-
tudinal currents. Using the information from previous works
we used

gi = g�ri
�� = �0 if �ri

� − rH
�� � 
 ,

1 if �ri
� − rH

�� � 
 ,
	 �B2�

where rH is the position of the H interface and 
 is a distance
of several particle radius 
�3� �in particular 
=9 Å�. The
total length of the buffer in the r� direction was set to 15 Å
�about 4 particle radius�.

The resulting density profile ��r�� is illustrated in Ref.
�10� in the case of �TIP3P� water. Within the buffer, the
density profile is flat over a distance of about 3� which
proves to be sufficiently large to avoid spurious longitudinal
currents at the interface H. By constraining g=1 only to the
outer part of the buffer while making g=0 near the interface
H, we could avoid fluid layering �wavy density profile�
around H. Moreover, using g=1 the heat produced by the
external force was easily thermalized.

APPENDIX C: EXACT MASS AND
MOMENTUM CONSERVATION

This section provides a modification of the scheme which
enables one to achieve an exact momentum conservation.
The idea is to adjust the momentum transfer towards each C
cell so as to ensure global conservation along the interface
contour. The method is general and can be applied to any
conserved scalar quantity �in particular to any component of
the momentum�. Let � be this conserved quantity and ��MD
its net change within the MD system over the time interval
�t0 , t1� with t1= t0+�tc. As explained in Sec. IV the MD
model is the first to be moved from t0 to t1, so ��MD
=�MD�t1�−�MD�t0� is known before the FH field is updated.
Local conservation implies that the amount of � crossing the
hybrid interface towards the FH domain is −��MD. In a gen-
eral setup �see Fig. 1�b��, the interface H is divided in h
= 
1, . . . ,NH� surface portions. Each portion h is facing a
different Ch cell. Thus conservation implies

�
h�H


�h = − ��MD, �C1�

where 
�h is the amount of � crossing the portion h of the
interface H towards the corresponding Ch cell. The hydrody-
namic prediction for 
�h is


�h
pred = − AhJh

� · e��tc, �C2�

where Ah is the area of the h portion of H and Jh
� the local

flux �as in Fig. 1 e� points to MD�. However, particle fluc-
tuations will induce a slight disagreement between the mo-
lecular flux of � and the continuum prescription. The overall
disagreement is

E��pred� = ��− ��MD� − �
h�H


�h
pred . �C3�

In order to fulfill the conservation constraint in Eq. �C1� the
amount of � crossing the portion h of the interface can fi-
nally be set to


�h = 
�h
pred +

1

NH
E��pred� . �C4�

Equation �C4� provides the set 

�h� that should be injected
into the corresponding Ch cells as a �Dirichlet� boundary
condition along the time interval �t0 , t1�. In this way an exact
conservation of � across the hybrid interface is ensured. The
present correction might be useful when dealing with com-
plicated hybrid domains in 2D or 3D, composed by many
interfacing cells.

APPENDIX D: THERMODYNAMICS AND
TRANSPORT PROPERTIES OF THE FLUID

Thermodynamic and hydrodynamic consistency between
the molecular and mesoscopic liquid descriptions requires an
accurate evaluation of the equation of state p= p�� ,T� and
the transport coefficients �viscosities� of the fluid, from mo-
lecular dynamics. There are several ways to obtain the fluid
properties; in particular the equation of state might be ob-
tained from equilibrium MD simulations within a periodic
domain, either in the isothermal NVT or isobaric NpT en-
sembles. Also, the fluid viscosity can be measured in equi-
librium simulations via the Green-Kubo relation, or from the
relation between the stress and the velocity gradient in non-
equilibrium simulations �e.g., from a Couette flow�.

In this section we show that the present hybrid protocol
can be used as an efficient tool for these calibration purposes.

1. Equation of state

In order to evaluate the equation of state we simplify the
hybrid scheme in what we called the “open MD” setup. This
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FIG. 10. �Color online� Calculation of the shear viscosity of
argon at �=0.6 gr/mol/Å3 and T=300 K using the hybrid code.
The guess value for the viscosity at the FH domain is 	FH=5.31
�10−5 Pa s; the slopes �shear rates� at the MD and FH domain
�indicated in the figure� provide 	MD= ��̇FH/ �̇MD�	FH=7.50
�10−5 Pa s.
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setup consists on reducing the mesoscopic domain to a
simple fluid reservoir which imposes a constant pressure p to
the molecular domain. As explained in Sec. III, this pressure
is imposed at the buffer B and, as long as the MD system is
open, it regulates the density at the MD region towards me-
chanical equilibrium. In fact, open MD consists on an open
flux boundary condition for the MD domain. The methodol-
ogy shares the essential features of the method in Ref. �18�,
where it was shown that the resulting ensemble is grand ca-
nonical.

We compared the pressure equation of stated obtained
from isothermal, isobaric �NpT�, and canonical �NVT� en-
sembles in periodic boxes �using a Berendsen thermostat�
with those obtained using the open MD simulation �using a
DPD thermostat�. Argon and the TIP3P model of water were
considered, obtaining a perfect agreement with standard MD
simulations in closed �periodic� systems �17�. In summary,
the open MD setup can be used to extract the equation of
state of the fluid.

2. Transport coefficients: Shear viscosity

The hybrid scheme can also be used as a rheometer. Con-
sider a liquid for which the shear viscosity is unknown. To
accurately calibrate the fluid shear viscosity 	 we impose a
Couette flow in a hybrid simulation whereby the MD region
is placed at the center of a domain �see Fig. 10�. Once the
steady state is reached the balance of momentum flux estab-
lishes that, at the hybrid interface, �̇MD	MD= �̇FH	FH. Here
the shear rate is �̇���vx /�y� and subscripts MD and FH
denote local values at the MD and FH domains. Using a
guess value at the FH region 	FH, this relation enables to
accurately determine the shear viscosity at the molecular re-
gion 	MD from the slopes of the velocity profiles at MD and
FH, �̇MD and �̇FH. Figure 10 shows an example of this rhe-
ology measurement for argon at �=0.6 gr/mol/Å3 and T
=300 K, which yields 	MD= �7.50±0.05��10−5 Pa s. This
value coincides with that reported in the literature �43�.
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