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The dynamics of nanoscopic capillary waves on simple liquid surfaces is analyzed using molecular

dynamics simulations. Each Fourier mode of the surface is obtained from the molecular positions, and its

time behavior compared with the hydrodynamic prediction. We trace the transition from propagating to

overdamped modes, at short wavelengths. The damping rate is in very good agreement with the

hydrodynamic theory up to surprisingly small wavelengths, of about four molecular diameters, but

only if the wave number dependent surface tension is considered. At shorter scales, surface tension

hydrodynamics break down and we find a transition to a molecular diffusion regime.

DOI: 10.1103/PhysRevLett.101.106102 PACS numbers: 68.03.Kn, 68.03.Cd, 68.03.Hj

Ripples at a fluid surface are dominated by gravity at
wavelengths at the scale of meters, while for wavelengths
� & 1 cm they become capillary waves (CW) dominated
by the surface tension. The hydrodynamic theory [1–3] for
CW predicts another crossover from the usual propagative
mode to an overdamped nonpropagative mode set by the
balance between the surface tension and viscous forces.
Such crossover has been experimentally observed at ��
0:1 mm, in gel and polymer systems [4], complex, very
viscous fluids [5], and ionic liquids [6]. In simple fluids, the
overdamped hydrodynamic regime is predicted for much
smaller wavelengths, �� 10� in terms of the molecular
diameter�. A fundamental question which remains open is
the validity of the hydrodynamic description at such a
nanometric scale, very close to the molecular discreteness
of the fluid.

The problem is closely related to the experimental and
theoretical [7,8] analysis of the thermally excited CW
fluctuations in liquid surfaces, usually described in terms
of �ðqÞ, the effective surface tension for CW with wave
vector q ¼ 2�=�. The deviation of this function from its
thermodynamic limit �ð0Þ ¼ �0 is a subject of contro-
versy, with claims of an enhanced CW regime at nano-
metric scale [7,9] characterized by �ðqÞ< �0. The
experimental evidence [10] and the theoretical basis for
that phenomena [8] have been recently criticized, but still
the problem of how to measure or calculate �ðqÞ is a
crucial question for the analysis of x-ray diffraction experi-
ments on liquid surfaces.

Molecular dynamics (MD) simulations allow the study
of these fundamental questions, connecting the molecular
structure of the fluid surface and its description as an

intrinsic surface (IS), z ¼ P
q�̂q expðiq �RÞ, that describes

the instantaneous shape of the fluctuating interface, with
thermal average parallel to the R ¼ ðx; yÞ plane. The
Capillary Wave Theory (CWT) [11] assumes that the IS

Fourier components �̂q may (somehow) be obtained from

the molecular positions, and it opens a direct structural
route to measure thewave vector dependent surface tension
from the mean square amplitude of the CW thermal fluc-
tuations over a transverse area A [12,13],

�sðqÞ ¼ kBT

q2hj�̂qj2iA
: (1)

This structural method gives the correct macroscopic limit
�sð0Þ ¼ �0, but for q� * 0:5, there is a strong dependence

of �sðqÞ on the specific proposals to get �̂q from the

molecular positions [12]. The simplest choice, based on a
local Gibbs dividing surface, gives an unphysical �sðqÞ �
1=q2 decay [14]. Recent developments have produced and
tested a specific proposal [13], known as the Intrinsic

Sampling Method (ISM), to obtain �̂q from a self consis-

tently defined surface layer, based upon the set of mole-
cules ascribed to the liquid boundary. The ISM main
parameter is the surface layer density ns, which has to be
optimized to get the sharpest molecular structure near the
interface. Still, ns and thus �sðqÞmay have significant error
bars due to the inherent uncertainty of what is the outmost
molecular layer in a disordered fluid surface. Therefore,
the use of the ISM has been restricted to relatively stiff
liquid surfaces, with �0�

2=ðkBTÞ * 0:4, or T=Tc & 0:85
for simple fluids (Tc is the critical temperature).
In this Letter, we compare structural and dynamical

analyses to find out that hydrodynamics provides a much
more robust physical route to the surface tension wave
vector dependence, �dðqÞ. Moreover, the optimal occupa-
tion density predicted from the ISM analysis precisely
provides �sðqÞ ¼ �dðqÞ, hence physically consistent struc-
ture and hydrodynamics. By comparing MD results with
the hydrodynamic prediction based on the optimal �sðqÞ,
we prove that CW hydrodynamics remain valid up to
surprisingly large wave numbers, q� & 2, well above the
validity of the macroscopic surface tension prediction
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(q� & 0:5). At even smaller scales (q� * 2), molecular
diffusion becomes the slowest mode and surface tension
hydrodynamics gradually break down.

Hydrodynamic analysis, either based on the linearized
Navier-Stokes equations [1,2] or on linear response theory
[3], gives the dispersion relation for surface modes,

Dðq; ~!Þ ¼ �q3

�
� ð ~!þ 2i�q2Þ2 � 2�2q4

�
1� i ~!

�q2

�
1=2

;

(2)

where � is the liquid density while � ¼ �=� and � are the
kinematic and dynamic shear viscosities. The mode com-
plex frequency ~!ðqÞ ¼ !ðqÞ þ i�ðqÞ, which determines

the temporal behavior of the surface �̂qðtÞ, is given by

the solutions of Dðq; ~!Þ ¼ 0. Above a certain wave num-
ber, q > qcr � ��=�2, the dispersion relation (2) predicts a
transition from the usual propagative capillary modes to
overdamped waves. The damping rate by viscous forces
�q2 overpowers the restoring frequency of surface tension

ð�q3=�Þ1=2, and the real part of the complex frequency
vanishes ! ¼ 0. Surface fluctuations then become expo-
nentially damped at a rate given by � ¼ i ~!, which goes
roughly like �� q�=� [3]. In simple liquids, this cross-
over takes place at qcr�� 0:3; therefore, the analysis of
the overdamped regime, at larger q, requires to take into
account the dependence of the transport coefficients on the
wave number. While �sðqÞmay be provided by Eq. (1), the
generalized shear viscosity �ðqÞ of the LJ liquid, has been
evaluated in several works, either using the generalized
hydrodynamics theoretical framework [15,16] or from
nonequilibrium MD simulations [17,18].

In order to observe the propagative-overdamped transi-
tion in MD simulations of simple liquids, we start with the
soft-alkali (SA) cold-liquid model [19]. At a temperature
kT ¼ 0:212	, the SA liquid has a very stiff surface and a
reasonably high qcr ¼ 0:8=�, which permits us to observe
the transition using simulation boxes of transverse size
L � 20� (i.e., q � 2�=L � 0:3=�). MD simulations
were done within periodic boundary conditions, in two
different simulations boxes with linear transverse size L ¼
9:025� and L ¼ 18:05�. We prepare the system with a
liquid slab of thickness 
 � 3L (thick enough to avoid the
hydrodynamic coupling across the liquid bulk) and set
much larger periodic conditions on the z direction (Lz ¼
90� and 120�, respectively) to get two independent liquid
surfaces, separated by a rarefied vapor phase. Simulations
were done in the microcanonical ensemble, although simi-
lar results were obtained in the NVT ensemble, provided a
thermostat with large enough inertial time. The time step

was 
t ¼ 0:005� [with � � �ð	=mÞ1=2 the usual LJ time
unit] and configurations were sampled each �tsamp ¼
0:05� or 0:5� (depending on the CW time scale).
Configurations were analyzed using the method given in
Ref. [13], to obtain the instantaneous intrinsic surface

Fourier components �̂qðtÞ for each allowed wave vector

[q ¼ 2�ð�x; �yÞ=L, with integer �x, �y]. Figure 1

shows the angular frequency !d and the damping rate
�d extracted from MD, by fitting the surface modes auto-

correlation function (ACF) h�̂qðtÞ�̂�
qð0Þi to hj�̂qj2i�

expð��dtÞ cosð!dtÞ (see insets). The corresponding hy-
drodynamic predictions �o and !o, obtained by inserting
the macroscopic surface tension �0 and viscosity �0 in the
dispersion relation (2), are indicated with dashed lines in
Fig. 1, while the use of our best ISM estimate for �sðqÞ into
Eq. (2) leads to �s and !s, shown in solid lines. Both
theoretical predictions correctly forecast the loci of the
oscillatory branch and the transition to the overdamped
regime obtained in MD simulations. This excellent agree-
ment confirms the validity of Eq. (2) in the present context.
Notice that the transport properties of the SA liquid show
little dependence on the wave number: �sðqÞ ’ �0 up to
q� & 1:0 while the shear viscosity �ðqÞ ’ �0 for q� &
1:5. We will now focus on ‘‘more typical’’ liquids to
analyze the surface behavior at larger q, within the strong
damping regime.
Typical liquids have much higher triple point tempera-

ture than the SA model. Therefore, they have to be studied
at higher temperatures, lower surface tension, and hence,
smaller crossover wave number. The results obtained for
the Lennard-Jones (LJ) liquid presented in Fig. 2 corre-
spond to qcr� ¼ 0:32, so the entire range of q allowed in
our simulation box (size L ¼ 10:46�), is now within the
overdamped regime. In this case, the damping rate �d,
directly extracted from the exponential decay of the ACF,
starts to deviate from the macroscopic hydrodynamic pre-
diction �o above q� * 0:5 and, around q� ’ 2, �d is 5
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FIG. 1 (color online). The decay rate � and angular frequency
! wave number dependence of capillary modes in a soft alkali
(SA) liquid model at T ¼ 0:212	=k, density � ¼ 1:17��3,
surface tension �0�

2=ðkTÞ � 8:23, and shear viscosity � ¼
1:5	�=�3. Symbols correspond to �d (circles) and !d (squares)
obtained from MD simulations of different box transversal sizes
L. Lines are the hydrodynamic predictions, using �sðqÞ (solid
line) and �0 (dashed line). Standard Lennard-Jones units are
used throughout, here � ¼ �ð	=mÞ1=2. Insets show normalized
ACF and fitting functions.
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times larger than �o. In the LJ case, �o severely under-
estimates the damping rate obtained from MD simulations
at all the temperatures considered (e.g., by a factor 6 at
kT ¼ 0:933	 and q� ’ 2).

The clue to understand this discrepancy comes from the
values of �sðqÞ extracted from (1). As shown in Fig. 2, the
damping rate �s obtained from the optimal ISM choice
extends the agreement with the exponential decay of the
ACF up to q� & 2. It is most remarkable that the continu-
ous hydrodynamic description of the surface fluctuations
may be valid down to wavelength of about three molecular
diameters, with the use of an independently obtained func-
tion �sðqÞ. Such agreement is kept at other temperatures in
the LJ fluid, and also in the cold-liquid SA model (up to
q� & 1:5, see Fig. 1). These results are a strong evidence
for the validity of the hydrodynamic description of CW
fluctuations at the nanoscale [1–3], and they also validate
the ISM used to get the IS shape from the atomic positions.
To confirm these claims, we still have to analyze the

dependence of �d on the detailed procedure to get �̂q

from the molecular positions.
The ISM [12,13] has proven to be very useful in extract-

ing the intrinsic density profiles of the fluid interfaces [20]
out of the CW blurred averages. The results for atomic,
molecular and metallic fluids have shown that the optimal
ns, providing the sharpest view of the molecular layering,
can be satisfactorily determined, and that it contains a
physically relevant information on the interfacial structure.
However, particularly near the critical point, it still
presents relatively large error bars, thus making the deter-
mination of �sðqÞ a much delicate matter. In the case of the

LJ liquid at kT ¼ 0:736	, the optimal choice [13] is to take
ns ¼ 0:75	 0:05 atoms per �2 area. The dashed lines in
Fig. 3 show the resulting �sðqÞ if we exaggerate that
incertitude taking surface layer densities between ns ¼
0:6=�2 and ns ¼ 1:0=�2. Notice that, for the same atomic
configuration, the choice of the ns parameter leads to a
different IS shape. Clearly, if the surface dynamics were
also to depend on the choice of ns, then it will not be
possible to infer the existence of the proper definition of
the intrinsic surface.
Fortunately, as illustrated in Fig. 2, we observe that the

value of �d extracted from the time ACF of the surface
modes is very insensitive to the value of ns. A definite
proof requires a dynamical measure of the q-dependent
surface tension �dðqÞ. The result of such evaluation, done
via the numerical inversion of the hydrodynamic relation
for the damping rate � ¼ i ~!ðq;�;�Þ arising from
Dðq; ~!Þ ¼ 0 in Eq. (2), is shown in Fig. 3. It enables us
to draw two interesting conclusions. First, unlike the struc-
tural �sðqÞ, the dynamic prediction �dðqÞ is practically
independent of the first liquid layer density ns. Thus, the
collective dynamics of the molecules near the surface
furnish a more robust determination of the surface tension,
compared with that emerging from its structure. Second,
the values of �dðqÞ are quite close to the optimal structural
estimation �sðqÞ, which, as stated, corresponds to the value
of the surface density ns providing the sharpest view of the
intrinsic density profile [13]. Results, such as those shown
in Figs. 2 and 3, clearly support the ISM definition of the
intrinsic surface, providing a consistent link between the
structural and dynamical roles of the surface tension; in
other words, �sðqÞ ¼ �dðqÞ.

0 0.5 1 1.5 2 2.5
qσ

0

1

2

3

4

γ(q
)σ

2 /ε

n
s
=0.8σ −2

n
s
=0.6σ −2

n
s
=1.0σ−2

0.6 0.7

0.8

1.0

FIG. 3 (color online). The surface tension � of a Lennard-
Jones liquid at T ¼ 0:763	=k, density � ¼ 0:782��3, and �0 ¼
1:85	�=�3. Symbols are obtained from MD simulations, by
numerical inversion of the hydrodynamic relation for the decay
rate �d ¼ �ðq; �d; �Þ. Lines corresponds to the ISM structural
predictions Eq. (1) for the indicated values of the first layer
density ns. The optimal ns from the structural analysis ns ¼
ð0:75	 0:05Þ��2 is shown in solid line (dotted lines indicates
the 0:05��2 uncertainty.)
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FIG. 2 (color online). The decay rate � of CW’s in a Lennard-
Jones liquid at T ¼ 0:848	=k, density � ¼ 0:738��3, viscosity
�0 ¼ 1:5	�=�3 [23], and surface tension �0�

2=ðkTÞ ¼ 0:653.
Symbols are obtained from MD simulations by fitting the ACF
h�̂qðtÞ�̂�

qð0Þi to hj�̂qj2i expð��dtÞ. Values of the first layer occu-
pation parameter ns are indicated. Solid line is the hydrodynamic
prediction using the optimal �sðqÞ [which corresponds to ns ¼
ð0:70	 0:05Þ��2] and dashed line to the macroscopic limit,
using �0. Simulations were done within a box with transverse
size L ¼ 10:46� and liquid slab of width 
 ¼ 30� (filled
symbols) and 
 ¼ 70� (open symbols).
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The present dynamical analysis also draws interesting
information about the upper wave number qu above which
surface fluctuations are no longer controlled by surface
tension. As shown in Figs. 1 and 2, for q > qu, the damping
rate �d obtained from h�qðtÞ�qð0Þi gradually deviates from
the hydrodynamic trend and saturates to a constant
(q-independent) value, �u. Both qu and �u depend on the
liquid considered and typically qu� 2 ½1:5–2:0
. What is
the origin of such a time scale arising at wavelengths of
molecular scale? These very short ‘‘waves,’’ with � & 4�,
involve very few surface molecules, softly linked together
by interatomic forces. Their decorrelation time ��1

u should
then be of the same order of the diffusion time required for
one molecule to move a small (molecular) distance ‘ in the

out-of-plane direction. Following this argument, ‘�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D?=�u

p
, where D? is the local coefficient for out-of-

plane molecular diffusion, recently calculated in
Ref. [21]. Inserting the values of D? and �u into this
estimation, we get ‘ ¼ ð0:19	 0:01Þ� for all the LJ cases
considered and ‘ ¼ ð0:18	 0:01Þ� for the SA case. This
nice agreement indicates that the surface dynamics at q >
qu are governed by single molecule diffusion. The cross-
over from surface tension driven CWs to (Brownian) dif-
fusive motion takes place gradually, as molecular diffusion
becomes the slowest ‘‘mode’’ [i.e., for �ðqÞ>D?=‘2]. A
finer connection with the dynamic structure of the surface
can be still made by noting that the ‘‘decorrelation length’’
deduced here ‘ ’ 0:2�, coincides with the so called
‘‘split’’ displacement �xs defined in Ref. [21]. For mole-
cule displacements larger than �xs, the mean square dis-
placement in out-of-plane direction (MSD?) starts to
deviate from the corresponding in-plane displacements
(MSDjj). At larger times,MSD? saturates (up to the width

of the surface), while MSDjj follows a classic diffusion

law. In the light of the present findings, the ‘‘split’’ time
ts � �x2s=D? required for in-plane molecular displace-
ments to become larger than out-of-plane excursions, is
also the time needed for an instantaneous molecular con-
figuration to decorrelate to a new one, i.e., �u ’ 1=ts.

To conclude, we have shown that capillary waves in
simple liquids are governed by hydrodynamics up to nano-
metric scales, while molecular diffusion becomes the
dominant mode for wavelengths below few particle diam-
eters. In the hydrodynamic regime, the estimation of the
surface tension based on its dynamic role �dðdÞ is quite
robust with respect to the detailed definition of the intrinsic
surface. The optimal surface predicted by the Implicit
Sampling Method [13] provides physically consistent
structural and dynamical definitions, i.e., �sðqÞ ¼ �dðqÞ.
Finally, the monotonic increase of �ðqÞ disclaims the ex-
istence of an enhanced CW regime [9], that would imply a
decrease of the surface tension (and damping rate) below
the macroscopic prediction.

The robust hydrodynamic behavior found here up to
T=Tc � 0:85 opens the challenge to extend the ISM to

other interesting scenarios, particularly the critical region
of simple liquids, and the surface of viscoelastic or com-
plex fluids, such as polymer-colloid mixtures, with very
low surface tension and exotic phenomena, like suppres-
sion of thermally excited capillary waves by shear flows
[22].
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