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Effects of thermal boundary conditions and cavity tilt on hydrothermal waves:
Suppression of oscillations
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Departamento de Fı´sica Fundamental, UNED, Apartado 60141, Madrid 28080, Spain

~Received 10 October 2001; revised manuscript received 13 March 2002; published 12 July 2002!

Hydrothermal waves are longitudinal modes responsible for the onset of oscillations of low-Prandtl number
flows inside end-heated cavities. We consider the flow induced by the hydrothermal wave in a rectangular
enclosure whose differentially-heated side is tilteda degrees from the vertical position. An analytical approxi-
mation to the neutral curve and dispersion relation obtained by the Galerkin procedure is shown to quantita-
tively agree with the exact numerical solution of the stability problem. The analytical expressions are then used
to dissect the effect of the Prandtl and Biot numbers and the inclination on the wave stability. In conducting
walls the critical RayleighRcr and wave numbermcr tend to a constant value at low Pr, while the critical
frequencyf cr;Pr21/12. In adiabatic walls all these critical parameters increase like Pr1/2. The boundaries can be
considered to be poorly insulated if Bi.Pr, and in this case the critical parameters increase like Bi1/2. On the
other hand,Rcr and mcr reach a minimum value at intermediate inclinations, while the critical frequency
steadily increases witha. A closed equation for the frequency is also derived. This equation correctly forecasts
the critical frequency in the unbounded domain and also the fundamental frequency measured in confined
flows, as revealed by comparison with previous experiments and hereby presented numerical calculations for
varying a. An important conclusion of the study is that for any arbitrarily small value of Pr the hydrothermal
wave can be suppressed by heating the cavity above a theoretically predicted~Pr-dependent! angle. This
prediction is of great relevance in the application domain~viz. the crystal growth from melts by the Bridgman
technique!.

DOI: 10.1103/PhysRevE.66.016301 PACS number~s!: 47.15.Fe, 47.15.Rq, 47.20.Bp, 47.20.Ft
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I. INTRODUCTION

When a shallow cavity is filled with liquid metal and a
externally imposed horizontal temperature difference
gradually increased, the thus created steady circulation
develop an oscillation generated by a longitudinal instabil
commonly known as hydrothermal wave. This phenome
has been the subject of research over the past three dec
From a chronological standpoint, the active interest ari
because of the relevance of this flow on the horizontal Bri
man technique, which is one of the most efficient ways
growing relatively large, high quality, homogeneous pu
semiconductor crystals~see, e.g.,@1#!. Since the early experi
ments of Hurleet al. @2# it is known that the time-dependen
flow induces thermal oscillations which in turn are some
the main reasons for the occurrence of undesirable striati
i.e., layered variations of impurities in the crystal. The re
tion between flow oscillations and crystal structure is stil
subject of investigation~see, e.g.@3#!. This fact addresses th
necessity of a deeper understanding of the flow induced
the oscillatory longitudinal instability in order to eventual
find possible ways to avoid or completely suppress it. T
pioneer theoretical studies by Gill@4# and Hart @5,6# ex-
plained the basic physical origin of the oscillations show
that they occur in either gravitational and thermocapilla
driven flows, taking energy by a coupling between mom

*Present address: Center for Computational Science, Depart
of Chemistry, Queen Mary, University of London, London E1 4N
U.K. Email address: R.Delgado-Buscalioni@qmul.ack.uk; UR
www.fisfun.uned.es/;rafa
1063-651X/2002/66~1!/016301~14!/$20.00 66 0163
s
an
,
a
des.
s
-
r

f
s,

-

y

e

-

tum and temperature perturbations with the mean shear
the basic driving force. Both authors provided analytic
trends for the oscillation frequency in terms of the exter
and internal flow parameters. A point to be noted is th
although the assumptions made in both theoretical works
to different frequency relationships~see Refs.@4# and @6#!,
the validity limits of the two theoretical trends has be
scarcely further investigated in the literature. This point
revised in the present work.

Coming back to the problem addressed above, it sho
be mentioned that a common way to avoid the onset of
cillations is to apply a transversal magnetic field across
cavity. This fact also motivated a series of papers, star
from the pioneer experiments of Hurleet al. @2# to more
recent numerical studies in Refs.@7,8# and stability analyses
~see Ref.@9# and references therein!. By such a procedure i
is possible to delay the onset of oscillations towards lar
temperature differences but pay the price of a severe re
tion of the mean flow amplitude, and thus of the overall ma
transport and crystal growth rates. Benzet al. @10# proposed
another way for suppressing hydrothermal waves
thermocapillary-driven flows. Their method is based on he
ing troughs of low disturbance temperature~traced by a feed-
forward control scheme! with a sheet of infrared laser radia
tion.

Since the late 1980s, convection of low-Pr fluid in en
heated cavities was also thought to be a simple way for
vestigating possible routes to chaos in fluid dynamics. T
linear stability analysis of the basic plane-parallel flow in t
horizontal configuration was first studied by Hart@5,6#, and
then subsequently revised by Laureet al. @11# and by Kuo
and Korpela@12# ~insulated boundaries! and Wang and Kor-
pela @13# ~conducting walls!. These studies showed that fo

ent
,
:
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R. DELGADO-BUSCALIONI PHYSICAL REVIEW E66, 016301 ~2002!
the range Prandtl number characteristic of liquid metals
;1022, the oscillatory longitudinal instability is the mos
dangerous one, although its threshold is quite close to
onset of stationary transversal shear rolls~see@14# for a re-
cent review!. Several experiments were devoted to explor
the successive transitions towards aperiodic flow@15–17#
and to characterizing the secondary Hopf bifurcatio
@18,19#. Numerical calculations of the three-dimension
flow are relatively more recent. These comprise the work
Refs. @21,22#, concerning the flow at the transition to th
periodic regime for one of the cases considered in Ref.@16#;
and the study in Ref.@20#, concerning the onset of the se
ondary Hopf-Hopf bifurcation.

In the case of upper free boundaries and Marango
driven flows, the analysis of Ref.@23# showed that the sta
bility properties of the hydrothermal wave are rather sens
to the thermal behavior of the wall. Nevertheless, althoug
is not a simple task to achieve a perfectly insulating bou
ary under experimental conditions~see Ref.@16#!, in the case
of buoyancy-driven flows within rigid boundaries a simil
investigation is not to be found in the literature. This inve
tigation is part of the present work.

The inclination plays a crucial role on the mean flo
structure@24#. For instance, it is known that extremely sma
unavoidable inclinations (;0.5°) can alter the crysta
growth dynamics in the vertical Bridgman technique@25#.
On the other hand, optimum tilting has been addressed
feasible way to enhance the mass@26# and heat@24# transport
rates, with direct application to the crystal growth techniq
@27#. Nevertheless, the effect of tilted boundaries on e
heated-enclosures flow instabilities received much less a
tion in the literature. A rather complete panorama of the ad
batic case can be found in Ref.@14#, showing that the
inclined setup makes feasible the study of several type
instabilities and their interactions or, alternatively, tilt may
used to suppress flow disturbances. In particular, this pa
shows that a relatively easy way to suppress the oscillat
induced by a hydrothermal wave is to tilt the cavity above
certain predicted inclination.

The rest of the paper can be summarized as follows
Sec. II, the mean flow profiles are derived and Sec. III c
siders their stability with respect to oscillatory longitudin
modes. An equation for frequency is deduced in Sec. IV
used to dissect the relevance of the several processes a
ing the oscillation for different external parameters. Sect
V discusses the effect of inclination and the effect of co
finement is studied in Sec. VI by comparison with numeri
calculations of the flow for varying Ra and inclination. Sum
mary and concluding remarks are presented in Sec. VII.

II. GOVERNING EQUATIONS AND THE BASIC
FLOW PROFILES

Let us consider the flow on the rectangular cavity of F
1, whose dimensions alongx, y, and z directions ~width,
depth, and length! are respectivelyH52h, D, andL. The z
axis is inclined an anglea with respect to the gravity vector
g5geg , with eg5sin(a)i2cos(a)k, and a temperature differ
enceDT is imposed along thez axis. An incompressible fluid
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(“•v50) with thermal expansion coefficientb, kinematic
viscosityn, and thermal diffusivityk fills the cavity and its
motion is governed by the Navier-Stokes and heat trans
equations with the Boussinesq approximation. The flow
determined by the following set of nondimensional para
eters: the inclination,a, the aspect ratios,Az5H/L and Ay
5H/D, the Rayleigh and Prandtl numbers, R
5gbDTh4/Lnk and Pr5n/k, and the Biot number Bi
which determines the thermal behavior of the lateral wa
@see Eq.~3! below#. The Navier-Stokes and energy equatio
have been nondimensionalized by using Rak/h,
Rah(DT/L), andh2/(nk)1/2 as scales for velocity, tempera
ture, and time, androgb(DT/L)h2k1/2/n1/2 for the pressure,

]v

]t
1Ra Pr21/2v•¹v52“P1Pr1/2

“

2v22Az
21RaPr1/2Teg ,

~1!

Pr1/2
]T

]t
1Rav•“T5“

2T. ~2!

The walls are rigid and the nonslip condition is assum
The thermal boundary conditions at thex56H/2 andy5
6D/2 walls are the following ones,

“T•n1Bi~T2Twall!50, ~3!

wheren is the unit vector normal to the surface of the wa
andTwall is the external temperature of the wall, decreas
linearly with thez coordinate. The Biot number appearing
Eq. ~3! ranges from adiabatic, Bi50, to perfectly conducting
walls, Bi5`.

For any not vertical position the mechanical equilibriu
is not possible and any externally imposed temperature
ference leads to a clockwise unicellular steady circulat
illustrated in Fig. 1. The flow at the core region is nea
plane parallel and turns around at the end regions placed
distance of orderO(Az) adjacent to thez5$0,2Az

21% walls.
The lateral walls aty56Ay

21 impose an even modulation i
the flow amplitude which is only relevant at diffusive laye
of thicknessO(Ay). In wide enough cavities (Ay,1) and
away from these layers, one can neglect the flowy depen-
dence and describe the basic circulation as a two dimensi
steady flow in thex2z plane. At the core region it is as
sumed that the basic flow can be described by a pla
parallel solution with the following structure,

v5Kwb~x!k, T5
KAz

2
„z1ub~x!1b…, ~4!

FIG. 1. Geometry of the problem and the basic mean station
flow.
1-2
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EFFECTS OF THERMAL BOUNDARY CONDITIONS AND . . . PHYSICAL REVIEW E66, 016301 ~2002!
where K is the ratio between the streamwise temperat
gradient at the core and the externally imposed tempera
gradient. By inserting Eq.~4! into the curl of Eq.~1! and into
Eq. ~2! one obtains a set of ordinary differential equations
the axial velocity and temperaturex profiles. Their explicit
analytical expressions depend on the local Rayleigh num
at the core,R5KRa, and are shown in Table I.

The interested reader is referred to Ref.@24# for a com-
prehensive study of the steady flow and heat transfer regi
in the tilted configuration. Briefly, the profiles in Table I a
valid in the conductive and transition regime, i.e., at low a
moderate Rayleigh number. At larger Ra the structure of
steady flow is transformed owing to the development of
boundary layer regime~BLR!. Anyhow, the frontier of the
BLR is far above the range of values of Ra at which t
hydrothermal wave appears~see Ref.@14#!. To conclude with
this section, an important point has to be mentioned ab
the dependence of the local Rayleigh number at the corR
with the external Rayleigh number, Ra. The basic profiles
a,90° in Table I diverge at a discrete set of values ofR, the
lowest one beingR0 /cosa. As shown in Ref.@24#, consid-
eration of the closing walls atz5$0,L/h% leads to the fol-
lowing conclusion: as Ra increases, the value ofR asymp-
totically tends to the divergence value, in such a way t
te
u
e
g
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R,R0 /cosa. Hence, the limitR→R0 /cosa corresponds to
the limit of infinite Rayleigh number, Ra→`. Respectively
for adiabatic and conducting walls,R0531.28 andR05p4.

III. EQUATIONS FOR THE PERTURBATIVE FLOW

In order to investigate the stability of the basic flow at t
core region, it is convenient to choose the local tempera
z gradient at the coreKDT/L in the temperature scaling
Thus, the scale of velocity and temperature in the pertur
tion equations are respectivelyRk/h and (RDT/L)h, and the
basic velocity and temperature fields are nowv5wb(x)k and
Tb52z1ub(x). As usual, the linearized equations for th
perturbative flow are obtained by expressing each flow v
able as the sum of the mean flow quantity and a small p
turbation, inserting them into Eqs.~1! and~2! and neglecting
products of perturbative quantities. We are hereby interes
in oscillatory longitudinal perturbations whose motion can
described by the perturbative temperature,Tp , the stream-
wise component of the perturbative velocity,wp , and one
stream function Cp for the flow in the x2y plane:
]Cp /]y52up and ]Cp /]x5vp . In the unbounded limit
Az→0 andAy→0 the set of equations for the longitudin
perturbations is of the formLFp50, where
L5S ]

]t
¹21Pr1/2¹4 0 2R Pr1/2sin~a!

]

]y

2
]

]y
R Pr21/2wb8

]

]t
2Pr1/2¹2 2R Pr1/2cos~a!

2Rub8
]

]y
21 Pr1/2

]

]t
2¹2

D ~5!
ar-

e-
vi-

ef.

h
-

lyti-
m
ds
ns

per-
e

with the following boundary conditions:

Cp~61,y,t !5
]Cp

]x
~61,y,t !50, ~6!

wp~61,y,t !50, ~7!

Tp~61,y,t !6Bi
]Tp

]x
~61,y,t !50. ~8!

For a given set of parameters (R,m,Pr,a,Bi), the solution
of Eqs.~5!–~8! is a vector,Fp5(wp ,Cp ,Tp), with the fol-
lowing functional form

Fp~x,y,t !5F̂p~x!eimy1Vt, ~9!

where F̂p(x) is the array of perturbative amplitude~com-
plex! functions. Inserting Eq.~9! into Eqs.~5!–~8! one ob-
tains an eigenvalue problem for the complex growth ra
V5V r1 iV i . The resulting system was solved by a Ta
Chebyshev method. Accuracies of about 1% in both the
genvalues and the eigenvectors were ensured by usin
,
-
i-
a

large enough number of basis functions which typically v
ied fromN515 for low Pr,0.05 toN525 for larger Pr and
larger inclinations~see Ref.@28# for convergence details!.
For a590° ~horizontal enclosures! the values of the critical
Rayleigh number, critical wave number, and critical fr
quency differed by less than 2% to those reported in pre
ous works@11,12#. The interested reader is referred to R
@14# for a complete report on the flow stability~including
transversal instabilities! in the case of tilted enclosures wit
adiabatic walls and to Ref.@28# for the conducting counter
part.

A. Analytical approach

The Galerkin method has been used to obtain an ana
cal approximation to the eigenvalue problem arising fro
Eqs. ~5!–~8!. The accuracy of this method greatly depen
on the choice of the trial functions. First, the trial functio
have to satisfy the boundary conditions of Eqs.~6!–~8! and
secondly they have to resemble as much as possible the
turbative amplitudes of the neutral mode. Th
amplitude functions have been modeled asF̂p(x)
1-3
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TABLE I. Axial velocity and temperature basic profiles corresponding~respectively from top to bottom!
to 0°,a<90°, a590° and 90°,a<180°. The parameterr is defined asr[(Rcosa)1/4 for 0o,a,90° and
r[(1/A2)(2Rcosa)1/4 for 90°,a,180°.

wb~x!5
sin~a!r22~11Bi!@sin~r!sinh~rx!2sin~rx!sinh~r!#

2Bisin~r!sinh~r!1r@cosh~r!sin~r!1cos~r!sinh~r!#

ub~x!5
sin~a!

r4 Sx2
~11Bi!@sin~rx!sinh~r!1sin~r!sinh~rx!#

2Bisin~r!sinh~r!1r@cosh~r!sin~r!1cos~r!sinh~r!#D
wb~x!5 1

6~2x1x3!

ub~x!52
~1517Bi!x

360~11Bi!
1

x3

36
2

x5

120

wb~x!5
sin~a!

r2

~11Bi!@SCh~r !CSh~rx !2CSh~r !SCh~rx !#

D~r !

ub~x!5
sin~a!

4r4 Sx2
~11Bi!@SCh~r !SCh~rx !1CSh~r !CSh~rx !#

D~r ! D
CCh~x!5cos~x!cosh~x!, SCh~x!5sin~x!cosh~x!, etc

D~r !5r @cos~r!sin~r!1cosh~r!sinh~r!#

1Bi@cosh~r!2sin~r!21cos~r!2sinh~r!2#
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5„C̄pFC(x),w̄pFw(x),T̄pFT(x)… where FF(x)
5(FC(x),Fw(x),FT(x)) is a set of normalized functions an
F̄p5(C̄p ,w̄p ,T̄p) is an array of complex numbers. The r
sults presented in this paper were obtained with the follo
ing set of trial functions:

FC~x!5A2

3
~11cospx!, ~10!

Fw~x!5FC~x!, ~11!

FT~x!5
1

Ac
X11dTcos~px!1

2

p
~12dT!BicosS p

2
xD C.

~12!

The proposed trial functions have been normalized accord
to the scalar product̂F2&[(1/2)*21

1 F2(x)dx @in particular,
^FT

2&51 determines the constantc appearing in Eq.~12!#.
The proposed amplitude for the perturbative temperatur
Eq. ~12! deserves a separate comment. For Bi→`, it simply
becomesFT(x)5cos(px/2), while for low Bi ~nearly insu-
lating boundaries! it depends on the parameterdT , which
models the amount of heat diffused along the cross-str
direction@e.g.,FT511dTcos(px) for Bi50#. For any given
values of the external parameters it is possible to calcu
the critical value ofdT by requiring the minimization of the
marginal Rayleigh numberRm in the plane (m,dT). Alterna-
tively, as long asFT9 /FT52p2dT

21O(dT
3), for any given

perturbative temperature fieldTp , the value ofdT can be
estimated by means of,p2dT

252^Tp
21]2Tp /]x2&, where

^•& denotes the average alongx and y-directions. It is ad-
vanced that the value ofdT for the critical perturbative tem
perature field is vanishingly small for Bi.0 and Pr,0.1 @see
01630
-

g

in

m

te

Fig. 3~a!#. Consequently, the rate of energy diffusion alo
thex direction shall be neglected in the foregoing analysis
the low-Prandtl range and adiabatic walls.

Inserting the functions defined in Eqs.~9!–~12! into the
system ~5!, multiplying the resulting equations b
FFe2 im2Vt, and taking the scalar product leads to the f
lowing set of equations forF̄p5(C̄p ,w̄p ,T̄p)

^FF
T uL•FF&•F̄p50, ~13!

whereL denotes the resulting operator in thex coordinate.
Upon averaging, the diffusion operators are transformed
the following scalar form

^FF
T u“2F&5~^FFuFF9 &2m21!F̄p[2nF

(2)F̄p , ~14!

where the arraynF
(2)5(nw

(2) ,nC
(2) ,nT

(2)) is composed of posi-
tive real numbers. Similarly, the¹4 operator appearing in the
equation for the perturbative stream function on Eq.~5! is
converted to ^FCu¹4C&5nC

(4)C̄p with nC
(4)[^FCuFC

IV&
22m2^FCuFC9 &1m4.0. FordT50 the scalars representin
the diffusion operators are

nw
(2)5nC

(2)5
p2

3
1m2, ~15!

nC
(4)5

p4

3
1

2p2

3
m21m4, ~16!

nT
(2)5

p2

4 S 2Bi214Bi

2Bi218Bi1p2D 1m2, ~17!

while for dT.0 and Bi50, nT
(2)5dT

2p2/21m2.
1-4
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The following real numbers shall also be needed:cC,T
5^FCuFT&5cw,T5^FwuFT&. The value ofcwT ranges from
cwT50.816 for Bi50 ~and dT50) to cwT50.980 for Bi
→`. The cross-stream gradient of the mean velocity a
temperature appearing in Eq.~5! are transformed into the

following averaged quantities:wb8̂5^Fw(x)wb8(x)FC(x)&

,0 andub8̂5^FT(x)ub8(x)FC(x)&,0.
The characteristic equation arises from the solvabi

condition of the homogeneous system in Eq.~13!:
det@^FF

T uL•FF&#50. The present analysis is focused on lo
gitudinal oscillatory marginal perturbations, so the comp
growth rate can be set to a purely imaginary numberV
5 i2p f , the oscillation frequency beingf. Combining the
imaginary and real part of the characteristic equation yie
the neutral curve,Rm5Rm(m;Pr,a,Bi) and the dispersion
relation. For the sake of brevity, only the imaginary part
the characteristic equation is given:

~2p f !25nT
(2)S nC

(4)

nC
(2)

1nw
(2)D 1

nC
(4)nw

(2)

nC
(2)

Pr2
cCT

2

nC
(2)

Rm
2 m2ub8̂sina

2cwT
2 Rmcosa. ~18!

Let us now focus on the horizontal configuration to study
role of thermal boundary conditions and of the Prandtl nu
ber ~the effect of leaning is deferred to Sec. V!. The expres-
sion for the neutral curve fora590° is

R2m2cwT
2

nC
(2) F uwb8u

ˆ
2uub8u
ˆ S nc

(4)

nC
(2)

Pr1nT
(2)D G

5S nC
(4)

nC
(2)

1nw
(2)D S nT

(2)21nT
(2)

nC
(4)

nC
(2)

Pr1nw
(2)

nC
(4)

nC
(2)

Pr2D .

~19!

The right-hand side~RHS! of Eq. ~19! accounts for the over
all diffusion. Note that in nondimensional units, the mome
tum and temperature diffusion are respectively Pr1/2 and
Pr21/2. The LHS of Eq.~19! reflects the ‘‘effective’’ driving
mechanism of the oscillatory longitudinal modes, discus
in Refs.@4,6,14#. Owing to the imposed streamwise tempe
ture gradient, any wavyz-velocity perturbation creates tem
perature fluctuations along they direction, at a rate that ca
be estimated by averaging in Eq.~5!, d^Tp&/dt
;Pr21/2^wp&. The fluctuation of buoyancy accelerates t
fluid parcels along thex direction. TheCp part of Eq.~5!
leads tod^up&/dt;(R Pr1/2m2/nM

(2))^Tp&. Owing to the mean
shear, the cross-stream current activates a stress force
the z direction, pulling against the initial velocity perturba

tion, which decreases at a rated^wp&/dt;R Pr21/2uwb8u
ˆ ^up&

and finally reverts its motion around a quarter of the cyc
The sign of the perturbative temperature field~and the buoy-
ant force along thex direction! are thus inverted by the
streamwise advection and the same reasoning applies fo
rest of the cycle. Successive time derivation on the ab

rates leads to^wp&
21d3^wp&/dt3;R2m2Pr21/2uwb8u

ˆ /nC
(2) ,
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which represents the rate of the basic restoring mechan
~to the third power!, appearing in the first term on the LHS o
Eq. ~19!. The second term on the LHS of Eq.~19! represents
the reduction of the restoring force due to heat advect
along x direction. This current carries cold fluid from th
bottom surface (x51) to regions with excess of temperatu

~and vice versa! at a rateRuub8u
ˆ ^up& and reduces the buoyan

force along thex direction. This mechanism is able to dam
out the oscillation if the diffusion of temperature is slo
enough. This corresponds to the vanishing of the LHS of

~19!: Pr.(uwb8u
ˆ /uub8u
ˆ

2nT
(2))(nC

(2)/nC
(4)). It is advanced~see

Sec. V! that the hydrothermal wave can also be inhibited
arbitrarily small Pr and large enough inclinations, as a c
sequence of the streamwise stratification.

For any value of the external parameters the critical wa
number lies within the rangem<O(1). Hence a fourth order
expansion ofRm

2 m2 aroundm50 @taken from Eq.~19!# pro-
vides rather accurate values of the critical Rayleigh num
and wave number. Such expansion reads

Rm
2 m25a221a0m21a2m41h.o.t., ~20!

where the coefficientsa22 ,a0 anda2 are independent on th
wavelength and are straightforward calculated from Eq.~19!.
Equation~20! provides the following expressions:

mcr5S a22

a2
D 1/4

, ~21!

Rcr5~a012Aa22a2!1/2. ~22!

Some insight on the wave number selection can be
tained from Eqs.~20! and ~21!. Large structures, withm
,mcr , become unstable if the effective source of instabil
(}R2m2) overpowers a certain cross-stream diffusion ra
determined bya22. Hence, at the long-wave limit,Rm

.Aa22m21. On the other hand, the diffusion of small stru
tures (m.mcr) occurs along they direction and it is gov-
erned by the terma2m4; in particular Rm.Aa2m for m
.mcr . The critical wave number satisfiesa2mcr

4 5a22, in-
dicating that the selected wavelength establishes a bal
between the overall diffusion rates alongx andy directions.
This conclusion shall be used in the foregoing order of m
nitude analyses to provide estimations of the critical wa
number in different scenarios.

Figure 2 compares the critical parameters obtained fr
the single-term Galerkin expansion with the exact ones a
ing from the numerical solution Eqs.~5!–~8!. Considering
the simplicity of the analytical approach, the agreemen
quite remarkable particularly in the case of conducti
boundaries, for which the analytical approach even provi
a rather accurate prediction of the stabilizing value of
Prandtl number (Pr.0.5). In the case of adiabatic walls th
analytical model works perfectly for Pr,0.1, while the dis-
crepancy at larger Pr~see Fig. 2! is a consequence of th
failure of thedT50 assumption. To show this fact the valu
of dT has been plotted in Fig. 3~a! versus Pr. The sudde
1-5
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jump of the heat diffusion at Pr.0.1 clearly delimits the
frontier for the low-diffusion assumption.

The effect of the thermal behavior of the walls on t
stability properties is now discussed by means of order
magnitude analyses and of the asymptotic limits of the c
cal parameters extracted from the analytical expressions

B. Adiabatic walls

For Pr!1 the rate of cross-stream heat diffusion is ve
fast O(Pr21/2) and the isothermals reach almost instan
neously the equilibrium profile. If a vanishing heat flux alo
thex561 boundaries is imposed alongx561, the thermal
equilibrium profile is the conduction solution alongx @i.e.,
dT50 in Eq.~12!#. As a consequence, the input of energy
perturbative advection is uniquely diffused along they direc-
tion at a rateVk

(y);m2Pr21/2. Under this situation momen
tum is the fastest diffused quantity along thex direction,
Vn

(x);Pr1/2, and the critical wave number can be estima
by considering that the temperature spreading along thy
direction is slaved to the momentum diffusion. Hence,Vk

(y)

;Vn
(x) andmcr;Pr1/2. An estimation of the prefactor can b

FIG. 2. ~a! The critical Rayleigh number;~b! the critical wave
number versus the Prandtl number. Points corresponds to the
merical solution of the linear stability problem and lines to t
analytical approximation. Dashed lines are the asymptotic trend
Pr→0 in Eq. ~23!–~28!.

FIG. 3. ~a! The value of the parameterdT measured ata590°
according top2dT

252^Tp
21]2Tp /]x2&, Tp being the critical tem-

perature perturbation in adiabatic walls.~b! Perturbative tempera
ture x profiles in the case of conducting boundaries anda590°.
Dashed line corresponds to the perturbation assumed by the an
cal model@see Eq.~12!#.
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obtained using the proposed perturbative field on Eqs.~9!–
~12!: Vn.(p2/3)Pr1/2 and Vk.m2Pr21/2. This provides
mcr.1.8 Pr1/2, very close to the trend extracted from the e
act numerical solution of Eqs.~5!: mcr52.2 Pr1/2. The solu-
tion of Eq.~20! deviates by less than 8% to the former tren

mcr52.38 Pr1/21O~Pr3/2!, ~23!

Rcr5112 Pr1/21O~Pr3/2!. ~24!

The critical frequency can be obtained from Eq.~18!,

2p f cr510.3 Pr1/21O~Pr3/2!. ~25!

As shown in Eq.~25!, the critical frequency is of the sam
order ~although slightly greater! than the effective rate o
heat and momentum diffusion@Vn

(x).Vk
(y).(p2/3)Pr1/2#. It

is noted that in adiabatic walls the rate of perturbative h

advection along thex direction @upRuub8u
ˆ ;O(Pr)# can be

neglected, as it is smaller than the dominant diffusion ra
Vn

(x);Pr1/2. This fact can also be seen from Eq.~19!. As
shown afterwards this fact does not hold in the case of c
ducting boundaries.

C. Perfectly conducting boundaries

The previously described situation is completely chang
if a certain amount of energy flux is imposed through thex
561 walls. In this case a part of the energy supplied
streamwise advection at the central part of the layer has
essarily to be diffused along thex direction in order to main-
tain the wall’s temperature constraints. As long as at low
energy it is much more rapidly diffused than momentum,
fastest diffusion rates along thex andy direction are respec
tively Vk

(x).(p2/4)Pr21/2 and Vk
(y).m2Pr21/2. As previ-

ously concluded the critical disturbance enables the bala
of the diffusion rates along these two directions; theref
mcr.p/2. In the case of conducting walls, the above reas
ing is equivalent to considering that the critical perturbati
minimizes the amount of heat diffused out of each pertur
tive cell, which is proportional to*21

1 *2p/2m
p/2m ¹2Tpdxdy. In

fact, for the perturbative temperature proposed in Eqs.~9!
and ~12!, this integral minimizes form5p/2. This estima-
tion can now be compared to the asymptotics obtained fr
Eq. ~20! ~which agree within;3% with the exact ones fo
Pr,0.05; see Fig. 2!,

mcr51.0810.48 Pr1O~Pr2!, ~26!

Rcr599.2711317.07 Pr1O~Pr2!, ~27!

2p f cr59.40128.16 Pr1O~Pr2!. ~28!

Note that the critical wave number is somewhat sma
(mcr.1) than predicted by the minimization of heat diffu
sion. The reason is that the critical perturbation tends to
ther reduce the wave number to lessen the stabilizing ef
of the cross-stream heat advection. This fact can be see
solving Eq.~19! with an artificially imposed vanishing valu
of uub8uˆ , resulting in mcr51.5 andRcr579. In conducting
walls it turns out thatnT

(2);O(1), so thecross-stream advec

u-

or

yti-
1-6



ra

ll
a

a
th
b

n-
r

th

th

tin
l

ri
re
th

en

p-
o

re
o
pr

ss

e
part

in-

e

ed
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tion has a sizeable stabilizing contribution in the neut
curve of Eq.~19! even at Pr→0. This result counterpoints
with the adiabatic case.

D. The effect of Biot number

Let us first consider the case of nearly adiabatic wa
(Bi!1). As stated earlier, irrespective of the wall therm
behavior, the rate of heat diffusion along they direction is
Pr21/2m2T̄p . On the other hand, for a small Biot number
certain drop of perturbative temperature sets up along
cross-stream direction. The heat diffusion rate can
estimated from Eqs. ~9! and ~12!: ^]2Tp /]x2&
5(p/2)Pr21/2BiT̄p . Now, if heat is the fastest diffused qua
tity along thex direction the wave number selection is dete
mined from the balance of heat diffusion rates, as in
conducting case, leading tomcr;Bi1/2. Nevertheless, for Bi
,O(Pr), the rate of momentum diffusionO(Pr1/2) overpow-
ers that of heat diffusionO(Pr21/2Bi), and the trend for per-
fectly insulating boundaries is recovered. According to
asymptotic solution of Eq.~19!, shown in Eqs.~29!–~31!, the
nearly adiabatic limit is recovered for Bi,5 Pr ~see also Fig.
4!. Up to O(Bi23/2) andO(Pr3/2), one obtains

mcr5Bi1/212.38 Pr1/2, ~29!

Rcr545.29$Bi1/212.47 Pr1/2%, ~30!

Vcr55.13$Bi1/212.02 Pr1/2%. ~31!

Let us now consider the case of quasiperfectly conduc
boundaries, i.e., Bi21'0. The expansion of the analytica
trends around Bi2150 leads to the following relations@valid
up to O(Bi23/2) andO(Pr3/2)#:

mcr
2 ~Bi!5mcr

2 ~`!2~0.6626.60 Pr!Bi21, ~32!

Rcr
2 ~Bi!5Rcr

2 ~`!2~4.310422.6104Pr!Bi21, ~33!

Vcr
2 ~Bi!5Vcr

2 ~`!2~328.521408 Pr!Bi21. ~34!

As seen in Fig. 4, the trends~32!–~34! deviate by less than
about 8% to the exact analytical solutions for Bi.10 and
Pr,0.1.

IV. RELATION FOR THE FREQUENCY

Owing to the applications mentioned in Sec. I, the de
vation of theoretical trends for the hydrothermal wave f
quency has been an important part of the endeavor of
previous theoretical analyses, as those by Gill@4# and Hart
@6#. Surprisingly, although both authors proposed differ
theoretical descriptions and frequency trends for the Pr→0
limit, any study concerning the validity range of both a
proaches is found among the relative abundant literature
this topic. In this section an equation is derived for the f
quency which recovers Hart’s and Gill’s trends at the limit
slow and fast energy diffusion. The equation extends the
vious analysis depicted in Ref.@14# by taking into account
the effect of heat and momentum diffusion and of the cro
stream advection.

To begin with, we proceed as in Ref.@14#. Consider that a
01630
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positive disturbance of velocity along thez axis is made at an
instantt0 and aroundy50. The subsequent evolution of th
perturbative flow can be represented by taking the real
of Eqs.~9!,

wp~x,y;t !.Fw~x!cos~my!w̃p~ t !,

Cp~x,y;t !.FC~x!sin~my!ũp~ t !, ~35!

Tp~x,y;t !.FT~x!cos~my!T̃p~ t !.

The time-dependent part of the perturbation has been
troduced in functions likew̃p(t) and the initial condition of
the perturbation isw̃p(t0).0. The perturbative flow at a
time t5dt shall be described expanding to first order in tim
the equations for the longitudinal disturbances@Eqs.~5!# av-
eraged according to Eq.~13!. This leads to

Pr1/2T̃p1nT
2T̃pdt5w̃p~ t0!dt, ~36!

~Pr1/2nC
(2)dt11!ũp52

m2R Pr1/2sina

nC
(2)

T̃pdt, ~37!

~Pr1/2nC
(2)dt11!w̃p5w̃p~ t0!1ũpuwb8̂uR Pr21/2dt

1R Pr1/2cosadt. ~38!

For the sake of simplicity we have introducednM
2 [nC

(2)

5nw
(2) and we have chosennM

4 5nC
(4) in Eq. ~37!. Although

this choice is incoherent with the shape ofFC in Eq. ~10!, it

FIG. 4. ~a! The dependence of the critical wave number,~b!
critical Rayleigh number, and~c! critical frequency with the Biot
number for Pr50.025 and horizontal cavities,a590° and Pr
51023. ~d! corresponds to the critical Rayleigh number. Dash
lines in ~d! correspond to Eq.~30! (Bi51023 and 0.1) and Eq.~33!
(Bi510).
1-7
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TABLE II. Order of magnitude of the several frequencies appearing in Eq.~39!. Frequencies are in units
of (nk)1/2/h2. The contribution off BV is discussed in Sec. V

B.C. f cr f k f n f adv f Gill f Hart

Bi50 1.6 Pr1/2 1.2 Pr1/2 0.8 Pr1/2 O(Pr) O(Pr1/2) O(Pr1/2)
Bi→` 1.6 0.8 Pr21/2 Pr1/2 O(1) O(1) O(Pr21/6)
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introduces almost no variation on the results. Inserting
~36! into Eq. ~38! and the resulting equation into Eq.~37!

one obtains a closed expression forw̃p(t) up to dt3. The
resulting expression can then be used to obtain an estima
of the frequency. The value ofw̃p changes sign at a quarte
of a cycle; hencew̃p50 arounddt5 f 21/4. This reasoning
leads to the following equation:

~ f 1 f n!2S 11
f

f k
D5 f Gill

2 1
f

f k
~s f BV

2 2 f adv
2 !, ~39!

where

f Gill [
cwT

4 S R2m2uwb8usina

nM
2 nT

(2) D 1/2

, ~40!

f adv[
cwT

4 S R2m2uub8u
ˆ

nM
2

sina D 1/2

, ~41!

f k[
nT

(2)

4 Pr1/2
, ~42!

f n[
nM

2

4 Pr1/2
, ~43!

s f BV
2 [H 2S cwT

4 D 2

Rcosa for a,90°

S cwT

4 D 2

Rucosau for a.90°.

~44!

The newly introduced frequencies correspond to the
lowing mechanisms:f Gill represents the main oscillator
driving ~see below!; f adv is the ~stabilizing! contribution of
the cross-stream advection which tends to diminish the
quency of oscillations;f BV comes from the streamwise buo
ancy and its effect shall be discussed in Sec. V. Finallyf k
and f n are proportional to the inverse of the characteris
heat and momentum diffusion times.

In previous theoretical analyses of the low-Prandtl-lim
the momentum diffusion has usually been neglected with
justification ~see e.g.,@4,6,12#!. It is remarked that such a
simplification is only possible if the transient rate of mome
tum change is much larger than that associated with mom
tum dissipation,f @ f n . Although at low Pr this inequality
holds for critical perturbations in conducting boundaries~see
Table II!, in adiabatic walls the contribution of momentu
01630
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diffusion has necessarily to be included in the frequen
analysis because it turns out thatf cr; f n;O(Pr1/2) for any
small value of Pr.

Depending on how the frequencyf compares with the
effective thermal diffusion ratef k two different possible situ-
ations arise, as revealed by inspection of Eq.~39!. As ex-
plained in Ref.@14#, if f . f k , the amount of energy diffused
along each period of oscillation can be neglected and
transient variation of heat equals the rate of energy supp
by advection@]Tp /]t5wp#. In the opposite case,f , f k ,
thermal diffusion distributes the advected heat much fa
than the dynamic change of any flow quantity, so the te
perature is in phase with the perturbative axial veloc
@¹2Tp52wp#. It should be also remarked that the therm
effects at the RHS of Eq.~39! ( f BV and f adv! are negligible
only if the time needed to diffuse the temperature fluctu
tions is much shorter than the period of oscillation; i.e.,
f / f k!1.

With these facts in mind, let us now revise the two the
retical approaches derived by Hart@6# and Gill @4# for the
horizontal case and low Pr . It is recalled that in both the
retical works the contribution of the momentum diffusio
was assumed negligible, and hencef n shall not be included
in the following revision. The implication of this assumptio
on the adiabatic case is analyzed afterwards.

1. The case f™f k : Gill’s assumption

The above inequality implies that one can neglect
terms accompanying the ratiof / f k in the RHS of Eq.~39!,
leading to f 5 f Gill , where f Gill , defined in Eq.~40!, coin-
cides ~unless constant factor! with the solution obtained by
Gill @4# for the formal Pr→0 (R finite! limit of Eqs. ~5!–~8!.
It is noted thatf Gill stands for the rate of variation of th
driving oscillatory force in a highly conducting (f k@ f ) but
inviscid (f n! f ) media.

2. The case fšf k : Hart’s assumption

From Eq.~39!, the above inequality leads to

f '@ f Hart2 f ~ f adv
2 2 f BV!#1/3, ~45!

f Hart[
cwT

4 S R2m2sinaPr21/2uwb8u

nM
2 D 1/3

. ~46!

In the case of horizontal cavities with adiabatic walls and
low values of Prandtl number, the termf adv is vanishingly
small and Eq.~46! coincides~unless constant factor! with the
trend proposed by Hart in Ref.@6#. It is stressed that the
assumptionsf k! f and f n! f mean that the wave dynamic
are not influenced by either momentum or energy diffusi
1-8
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EFFECTS OF THERMAL BOUNDARY CONDITIONS AND . . . PHYSICAL REVIEW E66, 016301 ~2002!
In other words,f Hart represents the rate of variation of th
restoring force arising purely from the basic hydrotherm
coupling and regardless of the delay induced by diffus
effects.

A. Adiabatic walls

As shown in Sec. III B, if the walls are perfectly insula
ing the critical parameters for the horizontal case go l
mcr.2.2Pr1/2, Rcr.102Pr1/2, and f cr.1.6Pr1/2. The orders
of magnitude and estimations exposed in Table II are
tained by introducing these trends into Eqs.~40!–~43! ~the
prefactors are valid fora590°).

Figure 5 compares the critical frequency obtained fr
the numerical solution of Eqs.~5!–~8! with the outcome of
Eq. ~39!, Eq. ~46! and Eq.~40!, ~respectively labeled asf th ,
f Hart and f Gill ). Concerning the adiabatic case@see Fig. 5~a!#
the first point to be noted is that at low Pr, bothf Hart and
f Gill correctly line up with the slopef cr;Pr1/2. As stated, in
the adiabatic casef cr; f k , so the critical perturbations lie
just between the range of applicability of both Eqs.~46! and
~40!. Nevertheless none of these two trends properly t
into account the finite diffusion rates and as a conseque
both overvalue the critical frequency by a certain fact
which depends on the particular setup. For the critical p
turbations these factors could be forecasted by using the
timations for f n , f k , and f cr given in Table II. Note that
f cr1 f n.1.51f cr and f 1 f k.1.75f cr ; operating at the LHS
of Eq. ~39! leads to f cr.0.4f Gill . Similarly, as f Hart

3

5 f k f Gill
2 , the LHS of Eq.~39! yields f cr.0.45f Hart ; both

corrections being very close tof cr .
As seen in Fig. 5, Eq.~39! provides better concordanc

with the absolute values off cr , as long as it takes into ac
count heat and momentum diffusion. The critical frequen
is anyhow slightly overestimated~the best fit corresponding
to f cr.0.77f th!. Although this discrepancy could be sure
reduced by further melioration of the constructed pertur
tive flow, it shall be shown that the ratiof cr / f th50.75
60.05 remains unaltered for Pr,0.1, irrespectively of the
thermal boundary condition and inclination. Another proof
the consistency of Eq.~39! is given in Sec. VI, where it is

FIG. 5. The analytical frequency trends extracted from E
~40!, ~46! ~dashed lines! and Eq.~39! ~solid line! compared with the
critical frequency obtained from the numerical solution of the line
stability problem~circles!. Data correspond to horizontal cavitie
(a590°) in cavities with~a! adiabatic and~b! conducting walls.
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shown that the same ratio is obtained when comparingf th

with the frequency measured in numerical calculations a
previous experiments in confined flows. These facts ens
that Eq.~39! can be used in the subsequent analysis.

B. Conducting boundaries

Using the critical parameters for the horizontal case,Rcr

.102 and mcr;1, one obtains the estimations shown
Table II. In the conducting casef k@ f cr@ f n , so it is possible
to neglect the contribution of the momentum diffusion in E
~39!. Also as a first approximation one should use the in
nitely fast heat diffusion assumption of Eq.~40!, leading to
f Gill ;O(1). Indeed@see Fig. 5~b!#, the infinitely slow heat
diffusion limit f Hart;Pr21/6 clearly fails for the conducting
case, whereas 0.7f Gill fits better tof cr at low Prandtl number.
Nevertheless, for 0,Pr,0.02, the exact values of the critica
frequency scales likef cr;Pr21/12 @see Fig. 5~b!#. This slight
variation means that the finite thermal diffusion rate still co
tributes at very low Pr, with a weak but appreciable delay
is remarked that this effect was not reported in previous
bility analysis @6,11,13# because the lowest values of P
thereby considered were around 1022. As seen in Fig. 5~b!,
the outcome of Eq.~39! correctly reproduces this decreasin
slope and fits tof cr.0.73f th , in good agreement with the
previous comparison for the adiabatic case. For Pr.0.1, the
ratio f cr / f th increases as a consequence of a greater m
match between the temperature profile assumed in Eq.~12!
and the critical one. As seen in Fig. 3~b!, just above Pr
.0.1, the ansatzTp}cos(px/2) largely underestimates th
heat diffusion, which becomes more concentrated arounx
50. This mismatch leads to deviations with respect tof cr by
a certain factor which is essentially Pr dependent and d
not greatly vary with the inclination@see Fig. 7~c!#. It is
finally remarked that Pr.0.1 determines the frontier of low
diffusion for both Bi→` and Bi50 @see Fig. 3~a!#.

V. THE EFFECT OF INCLINATION

The amplitude of the effective restoring force that driv
the instability is proportional to thex component of buoy-
ancy, i.e., to sina. Hence any tilt with respect to the horizon
tal position tends to increase the critical Rayleigh num
and thus the critical frequency. Anyhow the effect of inclin
tion is also strongly dependent on the other componen
buoyancy which acts along the streamwise direction. Its r
is now analyzed.

For a,90° the unstable stratification along the strea
wise direction favors perturbations with larger wavelengt
Concerning the critical Rayleigh number, it decreases for
clinations slightly smaller than 90° as a consequence of
larger mean flow velocities~see@24#!. Anyhow, as seen in
Fig. 6, below a certain tilt this trend is reverted and at lo
inclinationsRcr→R0 /cosa, meaning that Racr increases be-
yond bounds~see Sec. II!. This is a consequence of the fo
lowing mechanism: as far aswpTp.0 along almost the en
tire cycle, the streamwise component of buoyancy alw
tends to maintain unaltered the sense ofwp . Therefore the
effective restoring force~proportional to the mean shear! has

.

r
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R. DELGADO-BUSCALIONI PHYSICAL REVIEW E66, 016301 ~2002!
to overpower the buoyant force in a part of the oscillati
cycle. Two immediate consequences are thatRcr and the os-
cillation period increase fora,90° In Eq. ~39! this is re-
flected in the negative contribution off BV to the frequency
for a,90°. At low enough inclinations the streamwise pe
turbative flow can no longer be reverted and, as shown
Ref. @14#, the oscillatory mode is damped in favor of
~Rayleigh-Bénard-like! stationary longitudinal roll, driven by
the streamwise buoyant force. The points marked with
symbols in Fig. 6~c! are placed on the smallest wave numb
for which the oscillatory longitudinal modes can become u
stable.

If the cavity is heated from above (a.90°) the stream-
wise buoyancy acts within a completely stable stratificat
whose effect is to further increaseRcr . On the other hand
the restoring torque along thex direction generated by th
streamwise buoyant force is proportional to the wavelen
2pm21, whereas the torque associated with the instabi
restoring force is proportional tom. Hence, to overpower the
buoyancy dampingmcr increases witha. Also, according to
Eq. ~39!, for a.90° the termf BV contributes to increase th
frequency. It is noted that within a completely stable stra
fied media, the streamwise buoyancy acts also as a resto

FIG. 6. The critical Rayleigh number for adiabatic~a! and con-
ducting walls~b!, and~c! the critical wave number versus the incl
nation angle. The dashed line in~a! and ~b! corresponds toR
5R0 /cosa, which stands at the limit Ra→`. The value ofR0 is
31.28 andp4 respectively for adiabatic and conducting walls.
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force whose associated time is the inverse of the Bru
Vaisala frequency. At moderate inclinations this restori
force is coupled to the basic hydrothermal mechanism
volving a reduction of the oscillation period.

In conclusion, the steady increase of the critical frequen
with a ~see Fig. 7! is not due to a unique reason and has
be analyzed by quantitatively establishing the relevance
the above introduced mechanisms. Equation~39! has been
used for this task. The low-Prandtl-number range is illu
trated in Figs. 7~a! and 7~b!. In the case of conducting wall
@Fig. 7~a!#, the inequality f cr,, f k holds at least fora
<115°; the critical frequency fits well to 0.6f Gill and the
thermal effects (f adv and f BV) are very small. This situation
changes gradually above 115° asf cr / f k becomes larger than
1 and thermal effects become relevant. The Brunt-Vais
term, f BV , tends to increase the critical frequency while t
cross-stream advection (f adv) tends to decrease it. This latte
contribution has been highlighted in Fig. 7, by comparing
outcome of Eq.~39! with an imposedf BV50. In Fig. 7~a!,
such comparison reveals that at the largest inclinati
(100°,a<125°) both thermal contributions are near
counterbalanced.

A different scenario is found in the case of adiaba
walls. The ratiof / f k is greater or roughly equal to 1 for an
inclination @see Fig. 7~b!# meaning that the thermal effect
need to be considered. Fora,90° the~negative! contribu-
tion of f BV in Eq. ~39! becomes rapidly significant inducin
a rather steep decrease off cr . On the other hand, the effec
of cross-stream advection is rather small, so when hea
from above, the termf BV is not counterbalanced byf adv ~as

FIG. 7. The critical frequency in the unbounded domain ver
a. ~a! and~b! correspond to Pr50.025 and respectively Bi→` and
Bi50, ~c! to Pr50.2 and Bi→`, and ~d! to Pr50.1 and Bi50.
Circles correspond to the critical frequencyf cr obtained by numeri-
cal solution of the stability problem. Dashed lines correspond to
trends signaled at the above legends, and the solid lines corres
to the solution of Eq.~39!, f Th . In ~a!, ~b! and ~d! f Th has been
multiplied by 0.77.
1-10
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EFFECTS OF THERMAL BOUNDARY CONDITIONS AND . . . PHYSICAL REVIEW E66, 016301 ~2002!
occurs for Bi→`). This implies a further increment off cr
with a. According to Eq.~39! the contribution off BV is not
so large between 90,a,100° ~about 10% off th), but it
reaches 30% fora5115°.

The dependence off cr with a for moderate values of the
Prandtl number Pr>0.1 is displayed in Fig. 7~c! and 7~d!.
The conclusions extracted above for the low-Prandtl ra
concerning the dependence on the inclination remain es
tially applicable.

Mechanisms for suppression of oscillations

As shown in Fig. 8 the oscillatory instability is dampe
above a certain~Pr-dependent! cut off inclination. Apart from
the stabilization mechanism associated with the cross-str
advection described at the end of Sec. III A, for arbitrar
small Pr, the oscillations can be suppressed owing to ano
process which dominates at large enough inclination,a
.95°. If the cavity is heated from above, the system p
sesses two different restoring mechanisms acting at diffe
rates:f Hart , which stands for the hydrothermal coupling, a
f BV which represents the Brunt-Vaisala frequency associa
with the streamwise buoyant force. It has been reckoned
the wave stability is rather sensible to the relation of b
frequencies,f Hart / f BV . As illustrated in Fig. 9~a! the ratio
f Hart / f BV rapidly decreases fora.90° and it tends to
roughly 1 for the largest inclinations, just before the instab
ity is damped. Figure 9~b! shows the value off Hart / f BV very
near to the stabilization angle (1° apart! versus Pr. An inter-
esting result arising from the range Pr,0.1 is that at the
stabilization angle the ratiof Hart / f BV becomes slightly
smaller than 1 independently of the thermal boundary c
ditions. On the other hand, as shown in Fig. 9~c!, precisely
for Pr,0.1, the stabilizing termf adv becomes smaller tha
f BV , meaning that at low Pr the stabilization is a cons
quence of the streamwise buoyant force. In order to un
stand the damping mechanism it is remarked that oncef BV
becomes larger thanf Hart , the restoring buoyant force in
verts the sense of the streamwise perturbative flow before
basic cycle of the hydrothermal coupling can be complet

FIG. 8. The region in the Pr-a space where hydrothermal wave
are observable~solid lines!. Inside the region delimited by dashe
lines the critical Rayleigh number of the oscillatory longitudin
disturbance is smaller than that corresponding to transversal s
rolls.
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thus making impossible the development of the instability.
summary, while fora,95° the oscillations can be only sup
pressed for Pr.O(0.1) via the cross-stream perturbative a
vection ~see Sec. III A!, when using larger inclinations th
wave can be damped at arbitrarily small Pr provided tha

f Hart

f BV
5

~R2m2sinaPr21/2uwb8u
ˆ

!1/3

S m21
p2

3 D ~Rcosa!1/2

<1. ~47!

In the following section it shall be shown that the abo
condition also applies in the case of confined flows.

VI. EFFECT OF CONFINEMENT: COMPARISON WITH
EXPERIMENTAL DATA AND NUMERICAL

CALCULATIONS

In what follows it shall be examined to what extent th
theoretical relationships for the frequency are robust w
respect to deviations from the plane-parallel assumption

ear

FIG. 9. ~a! The value of f Hart / f BV versus the inclination for
adiabatic walls. Crosses correspond to numerical calculations
Pr50.025 in a 13634 cavity; the rest of the data arise from th
stability analysis in the unbounded domain.~b! The value of
f Hart / f BV at an angle one degree smaller than the stabiliza
angle ~indicated for some configurations!. ~b! The ratio f adv / f BV

versus Pr at the same angles than in~b!.
1-11
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finite enclosures. These deviations are a consequence o
confinement but also arise owing to the presence of trans
sal shear rolls, which can coexist with the hydrotherm
wave@20#. It should be mentioned that although these effe
have been put forward in the previous works to justify t
departures of the experimentally measured frequencies f
the theoretical trends~see e.g., Refs.@4,6,16#! no quantitative
comparison was presented in the case of moderate stro
confined flows.

The validity of Eq.~39! has first been checked by com
parison with experiments and numerical calculations d
for large aspect ratios. In the case of conducting bounda
Wang and Korpela@13# reported numerical calculations for
Pr50.2 fluid in a horizontal unbounded configuration. T
measured wave number wasm51.0 and respectively forR
5Rcr5166 and R5250, they reportedf cr51.87 and f
52.44. The ratio between each of these frequencies and
outcome of Eq.~39! is 1.1, in agreement with the previou
comparison with our calculations at Pr50.2 @see Fig. 7~c!#.

Almost all previous experiments and numerical calcu
tions considered adiabatic lateral walls. Pratte and Hart@16#
made a series of experiments with a Pr50.025 fluid in cavi-
ties with different aspect ratios. For the shallowest cav
(D/H3L/H5838) they reportedf ;Gr0.67, which agrees
with Hart’s trendf Hart;Gr2/3 @see Eq.~46!#. Also, Hung and
Andereck@15# made experiments in a Pr50.027 fluid in a
very shallow cavity 1317.7317.8, obtaining a wave num
ber m50.46 close to the critical onemcr50.38, and report-
ing f 52.15 at the onset of oscillations (Ra530.89). The
experimentall measured frequencies increased asf exp
50.035Ra2/3. Comparison of the experimentally measur
frequency with Eq.~46! provides f exp/ f Hart.0.49, while
Eq. ~39! yields f exp/ f th.0.68. It is noted that for this par
ticular configuration, the inverse of the characteristic h
diffusion time along one wavelength,m2Pr21/2/(2p).0.2,
is more than two times smaller than the oscillation freque
for any value of Ra, hence Hart’s assumption remains va
On the contrary, Gill’s trend@Eq. ~40!# is clearly inappli-
cable: f Gill ;Ra1/2.

A. Confined flow

In order to investigate the effect of confinement it is ne
essary to consider cavities with shorter dimension along thy
and z axes. We have performed numerical calculations
Pr50.025 in aD/H3L/H5634 cavity with adiabatic lat-
eral walls, for a range of inclinations, 70°<a<115°. The
same system with fixeda580° was studied in a previou
work concerning the interaction of the hydrothermal wa
and transversal shear rolls@20#. The interested reader is re
ferred to that paper for numerical details.

In a confined enclosure the hydrothermal wave devel
at the core region, away from end regions where the fl
turns around@20,22#. Thus it shall be assumed that the fu
damental frequency can be estimated by inserting into
~39! the core-averaged Rayleigh numberR, and the averaged

values of the mean flow profiles,uwb8u
ˆ , uub8u

ˆ . We refer to Ref.
@20# for details on how these averaged values were ca
lated from the numerical solution. The following trends a
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obtained ~see @24# for a theoretical derivation!: R

50.27 Ra4/7, uwb8u
ˆ .1.2Wmax ~whereWmax50.31 Ra3/7) and

uub8u
ˆ .0.013. The evolution of the frequency with Ra w
studied fora580°. The outcome of Eq.~39! is compared in
Fig. 10 with the fundamental frequency obtained from t
numerical calculation of the flow. The agreement is exc
lent. Quite remarkably, the absolute values of the freque
f num are recovered by 0.73f th , in consistency with the pre
viously reported results in the unbounded configuration.

It should be stressed that for all values of the Rayle
number in Fig. 10, the mean flow is already far from bei
plane-parallel at the core. The flow grows in complex
through a number of successive transitions reported in R
@20#. First, a centered transversal shear roll begins to
formed at Ra.15 and it is already well developed at th
onset of the oscillations, Ra.31. Then, at Ra.195 and 218,
the flow becomes quasiperiodic and frequency locked t
lower frequency transversal wave formed by a pair of sh
rolls. That Eq.~39! ~deducted from a linear stability analysis!
correctly recovers the trend of the fundamental frequenc
the nonlinear-dynamic regime indicates that the basic os
latory mechanism is not so sensitive, either to the local
tails of the flow or to the low frequency interaction with th
secondary transversal wave. Instead the basic hydrothe
coupling behaves as if it were in az-independent environ-
ment whose properties were those of the averaged m
flow.

An interesting conclusion arising from the confined co
figuration is comprised of the fact that, as Ra is increas
the wave can cross over the two dynamical regimes
scribed by Eqs.~40! and~46!. As seen in Fig. 10, the funda
mental frequency does not line up with a unique power la
Instead for Ra,60 the frequency fits to Eq.~40!, f Gill
;Ra9/14, whereas for larger Ra it lines up with Eq.~46!,
f Hart;Ra3/7. Equation~39! correctly predicts the observe
change of slope although it slightly overestimatesf num at
large Ra. It is finally remarked that, quite in consistency w
the comments made in Sec. IV, the change of slope oc

FIG. 10. Comparison of the theoretical trends with the fund
mental frequency obtained in the numerical calculations for
50.025,D/H3L/H5634 anda580°. All theoretical trends are
calculated with core-averaged quantities.
1-12
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when the oscillation frequency becomes larger than the
verse of the characteristic heat diffusion time along o
wavelength,m2Pr21/2/2p;0.6.

B. Varying inclination

Calculations were also carried out for varying inclinati
at a fixed Ra5100. The obtained values of the fundamen
frequency,f num, are shown in Table III along with the rela
tion of f num and the theoretical trendsf Gill , f Hart , and f th .
First it is noted that bothf Gill and f Hart decrease abovea
.90° as a consequence of the decrease of the mean
velocity with the inclination~see Table III!. On the contrary,
due to the effect of the streamwise buoyancy forcef num
slightly increases witha. This discrepancy is reflected i
f num/ f Gill and f num/ f Hart ~see Table III!. On the other hand
Eq. ~39! leads to a ratiof num/ f th which remains roughly
constant around 0.75 for increasing inclination. The go
concordance found with the previous comparisons indica
that Eq. ~39! correctly takes into account the effect of th
streamwise buoyancy on the wave’s frequency.

According to the numerical calculations, the oscillatio
completely disappeared ata5115°. This result is in good
agreement with the stabilization angle predicted by the lin
stability analysis (116°). More interestingly, as shown
Fig. 9~a!, at the transition to the steady flow, the rat
f Hart / f BV has decreased to a value quite close to 1, t
supporting the validity of Eq.~47! for predicting the stabili-
zation.

The evolution of the dynamics and the structure of
flow as the inclination is varied is relatively rich and a mo
detailed analysis is left for a forthcoming paper. Anyhow,
the sake of consistency, some facts need to be mentio
When leaning from 80° to 76°, the value of Ra5100 be-
comes largely supercritical and the flow becomes aperio
~with a dominant frequency peak atf .0.7). Leaning to-
wards heating-from-above configurations leads to a more
teresting dynamic. Abovea5100° the hydrothermal wave

TABLE III. Averaged flow quantities at the core: the local Ra
leigh number,R, the maximum streamwise velocity,wmax ~in k/h

units!, the cross-stream temperature gradient,uub8u
ˆ @in units of

10223(DT/L)hR# and the temperature drop between thex561
^DxT& ~in units of DT). Data correspond to the numerical calcul
tions made for Pr50.025 and Ra5100 in a 13436 cavity. The
leftmost columns compare the numerically obtained fundame
frequency f num @in units of (nk)1/2/h2# with the TRENDS derived
from Eqs.~40!, ~46!, and~39!.

a~deg! R wmax uub8u
ˆ ^DxT& f num

fnum

fGill

fnum

fHart

fnum

fth

76 67.94 4.60 1.08 0.133 0.703 0.37 0.46 0.71
80 66.49 4.39 1.26 0.146 0.732 0.39 0.49 0.73
90 71.00 3.76 1.27 0.151 0.754 0.42 0.51 0.74
95 69.98 3.74 1.08 0.131 0.756 0.43 0.52 0.71
100 71.72 3.61 1.10 0.130 0.78 0.44 0.54 0.72
105 74.56 3.32 1.05 0.126 0.9 0.52 0.63 0.80
115 80.55 2.65 0.93 0.117 0
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frequency becomes about 0.6 times the Brunt-Vaisala
quency@NBV5(Rcosa)1/2/(2p)# and it excites an interna
gravity wave with a much lower frequency and larger amp
tude. After the onset of the internal wave, the amplitude
the hydrothermal wave drastically diminishes in such a w
that for a>105° it is no longer trivial to recognize its pea
among the multiple harmonics and frequency combinati
found in the power spectra. The frequency reported in Ta
III for 105° corresponds to a relatively larger high-frequen
peak, but it is not clear that it matches to the hydrotherm
wave fundamental frequency. Anyhow, ata5115° the high
frequency oscillations associated with the hydrotherm
wave vanish, and the internal wave also fades out in abse
of the forcing mechanism.

VII. CONCLUDING REMARKS

According to previous analyses@14#, hydrothermal waves
are responsible for the onset of oscillations in flows of liqu
metals Pr;1022. The present study is concerned with th
effect of the thermal behavior of the walls and of the cav
inclination on the hydrothermal wave instability o
buoyancy-driven convection in end-heated enclosures.

In the first part of the paper, analytical expressions for
neutral curve and dispersion relation were derived by me
of a Galerkin procedure. The critical parameters extrac
from the analytical approach were shown to quantitativ
agree with the exact numerical solution of the perturbat
equations. A quite general conclusion arising from the n
tral curve is that at the critical Rayleigh number the dom
nant diffusion rates along the cross-stream~x! and longitudi-
nal ~y! directions become comparable. This furnishes a w
to estimate the critical parameters, starting from the criti
wave number. For Pr,O(1), heat is the fastest diffuse
quantity along the longitudinal direction at a ratem2Pr21/2,
independently on the thermal boundary conditions. On
contrary, the thermal behavior of the walls determines
rate of heat diffusion along the depth of the layer (x direc-
tion!. In conducting walls energy is rapidly diffused alon
the x direction, at a rate Pr21/2, and the critical mode,mcr
.1, enables a balance of the heat fluxes alongx and y di-
rections. This yieldsRcr.102 and f cr;1.6. In adiabatic
walls, the disturbances attain instantaneously a diffusion
temperature profile (]Tp /]x50), so momentum is the fast
est diffused quantity along thex direction provided that Pr
,0.1. Momentum spreads at a rate (Pr1/2) which equals the
rate of energy diffusion along they direction; hencemcr
.2.2Pr1/2, Rcr.102Pr1/2, and f cr;Pr1/2. Anyhow, if a small
amount of heat flows across the walls (Bi.Pr) energy be-
comes the fastest diffused quantity across the depth of
layer, resulting in an increase ofO(Bi1/2) in Rcr , mcr , and
f cr .

The proposed relation for the frequency, derived from
linearized perturbative equations, was shown to corre
forecast the critical frequency in the unbounded geome
and the fundamental frequency measured in previous exp
ments and hereby presented numerical calculations. On
other hand, the equation recovers the well known theoret
trends for Pr!1 derived by Hart@6# and Gill @4#, which

al
1-13
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respectively arise for frequencies much larger or smaller t
the characteristic rate of heat diffusion along one wa
length, m2Pr21/2/(2p). These two limits therefore corre
spond to the instantaneous heat diffusion regime and the
fusionless regime.

It has been found that the instantaneous diffusion~Gill’s !
and diffusionless~Hart’s! limits are better suited to mak
estimations of the frequency in respectively conducting a
adiabatic walls. Nevertheless, a relevant conclusion of
work is that in general it is necessary to take into accoun
the contributions of the frequency equation to correctly fo
cast frequency behavior. For instance, numerical calculat
of the oscillatory (Pr50.025) flow inside a 13634 cavity
with adiabatic walls have shown that the behavior of
hydrothermal wave may shift from the fast- to the slo
diffusion trend as Ra is increased. The crossover arises w
the fundamental frequency surpasses the heat diffusion
This fact is rather probable to occur under moderate or
vere confinement because the selected wave number is
larger than the critical one.

Concerning the effect of inclination, when the cavity
tilted towards the vertical position (a50°) the frequency
decreases because the unstable stratification tends to m
tain unaltered the sense of the streamwise perturbative
and therefore buoyancy competes with the restoring fo
When heating from above, buoyancy acts also as a resto
force along the streamwise direction and the frequency
creases. Anyhow, if the buoyant frequency becomes fa
than the frequency of the hydrothermal coupling, the se
of the streamwise perturbative flow is reverted before
hydrothermal coupling is able to complete its cycle. As
, J

s.

01630
n
-

if-

d
is
ll
-
ns

e

en
te.
e-
en

in-
w
e.
ng
-

er
e
e

consequence the oscillation can be damped out at arbitr
low Pr (<1022) providing inclinations around 115°. Th
condition for stabilization, reflected in Eq.~47!, is rather ro-
bust in the sense that it holds independently on the ther
boundary conditions, and has been found to be valid un
confinement, as revealed by the numerical calculations.

A final point to be stressed is that at the stabilization an
the maximum streamwise velocity remains of the same or
than in the oscillatory regime. This fact counterpoints w
what happens if the stabilization is achieved via the insert
of a transversal magnetic field~see Refs.@2,7–9#!. In this
former case the increase of the stability threshold is dire
related to the decrease of the mean streamwise velocity.
reason for the different behaviors is that in the inclined se
the damping mechanism acts directly against the perturba
flow. A conclusion to be therefore addressed to the cry
growth community is tilting the convection ampoule may
a simple and suitable way to suppress the thermal osc
tions in the Bridgman setup, while still obtaining relative
large transport rates.
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