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in unsteady fluid flow
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The aim of hybrid methods in simulations is to communicate regions with disparate time and length scales.
Here, a fluid described at the atomistic level within an inner re@idmcoupled to an outer regidd described
by continuum fluid dynamics. The matching of both descriptions of matter is made across an overlapping
region and, in general, consists of a two-way coupling schethe P and P— C) that conveys mass, mo-
mentum, and energy fluxes. The contribution of the hybrid scheme hereby presented is twofold. First, it treats
unsteady flows and, more importantly, it handles energy exchange betwee@ hothP regions. The imple-
mentation of theC— P coupling is tested here using steady and unsteady flows with different rates of mass,
momentum and energy exchange. In particular, relaxing flows described by linear hydrody(ieanggersal
and longitudinal wavesare most enlightening as they comprise the whole set of hydrodynamic modes.
Applying the hybrid coupling scheme after the onset of an initial perturbation, the cell-averaged Fourier
components of the flow variables in tReregion(velocity, density, internal energy, temperature, and pregsure
evolve in excellent agreement with the hydrodynamic trends. It is also shown that the scheme preserves the
correct rate of entropy production. We discuss some general requirements on the coarse-grained length and
time scales arising from both the characteristic microscopic and hydrodynamic scales.
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[. INTRODUCTION Hybrid algorithms for fluids are relatively recent. The el-
egant method introduced by Garog al. [1] for rarefied
A wide range of systems with important applications aregases couples fluxes arising from a direct simulation Monte
governed by a fine interplay between the atomistic processdsarlo (DSMC) scheme to another region described by com-
occurring within a small region of the system and the slowputational fluid dynamic¢CFD). The DSMC is set at the
dynamics occurring within the bulk. A large list of examples finest grid scale of an adaptive mesh refinement hierarchy,
arise in complex flows near interfacgmlymers or colloids ~While a CFD semi-implicit solver is used at the upper level
near surfaces, wetting, drop formation, melting, crystaiSc@les. Inpassing, we note that the scheme may, in principle,
growth from a fluid phase, moving interfaces of immiscible t,’e |mpIement§d using afMD-continuum liquid descrip-
fluids or membranes, to name only a fehe computa- tion, a_llthough_ in th|§ case th@é solver must b’e complet'ely
tional expense of realistic-size simulations of these problem xplicit to avoid having to change the particle’s energy in the

via standard molecular dynami¢MD) is prohibitive, and fterations of the implicit scheme.

such kind of studies reauire new algorithms that can retai In the case of liquids, the state of the art is relatively less
q 9 . rEjeveloped due to the complications arising from the interpar-

the benefit of the atomistic description of matter where it iSticle forces. A pioneering work by O'Connell and Thompson

really needed, while treating the bulk of the system by muci‘[z] coupled momentum by imposing the local continuum ve-

less costly continuum fluid mechanics methods. locity at C— P via a crude constraint Lagrangian dynamics.
Several hybrid algorithms of this sort have been proposed

in the recent literature. In general, to couple the particle re-

gion P and the continuum regio@, such hybrid schemes use C/,/ 4,_,,4v6_f\;er/|?ppmg rich,// P

an overlapping region comprised of two bufféfs—P and : ; NN .
P—C, which account for the two-way transfer of informa-  #! LW . . * .
tion: from C to P and vice versdasee Fig. 1. While theP ! W7 .

—C transfer essentially consists of a coarse-graining proce: ax X
dure, atC— P one needs to reconstruct the dynamics of a
large collection of particles with only the limited prescription
from the C region as input. Moreover, in performing this

FIG. 1. (a) Spatial decomposition in our hybrid scheme. In this
example, theP region is adjacent to a physical surface represented

. h b f hvsical artif desd by the rightmost shaded area. The continuum region spans the space
reconstruction, the number of unphysical artifacts adt to the left at some distance from the surface. The overlapping re-

quwell dgmon}; should _be minimized as far aS_ possible. gion consists of & — P cell, where theC flow is communicated to
This task is very complicated and represents, in fact, they 4ng ap—. C cell, where particle-averaged fluxes are injected into
main part of any hybrid scheme. the C flow. Dashed lines delimit the control cells of ti&solver,
with areaA and grid spacing\X. The lettersO, W, andE denote
the center of a cell and its west and east surfaces, respectively. The
*Email address: R.Delgado-Buscalioni@ucl.ac.uk main cell's vectors iy, Ng, andnpc) have been indicatetsee
"Email address: P.V.Coveney@ucl.ac.uk text).
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Hadjiconstantinou and Patefd] introduced a reservoir re- sal wavesare presented in Sec. V, and in Sec. VI we discuss
gion to impose boundary conditions on tReregion (this  the results of these tests as far as the main hydrodynamic and
reservoir being the equivalent of tf@&— P domain defined thermodynamic variables are concerned. Finally, Sec. VIl is
herg. While in residence in the reservoir, particles weredevoted to conclusions.

given, at each time step, a velocity drawn from a Maxwellian

distribution with mean and variance consistent with the ve- Il. OVERVIEW AND GEOMETRY OF THE HYBRID

locity and temperature of th€ flow. To obtain the boundary COUPLING SCHEME

condition for theC region, the authors used a low order
polynomial to smoothen the field variables derived frBrat
the P— C region. In order to match the boundary conditions
for both theP and C regions, Hadjiconstantinou and Patera
[3] implemented an iterative schenfleased on the Schwarz
alternating methoxthat is suitable for steady incompressible
flows. Liao and co-workerg4] proposed a sophisticated
method(called the thermodynamic field estimatdo extract ered. Within P, a numberN(t) of particles, located at

continuum fields from the particle data by means of maxi-_ o . . ! )

mum likehood infergnce. This idea may be used to amel!oi;]r{;ﬁ rﬁth?h:ut)ic”%{egﬁgg{:?:tztzﬁ[ (F()f}rrt)'?lze_ Er:ﬁr)%ﬁts
rate theP— C coupling when the flow presents large gradi- hg ticle h P locit d :
ents, albeit at a rather large computational cost. To transfelialC F;ar icle has a _mass, velocily vi, and energye;
momentum on the® region, Liao and co-workerg4] pro- ~ ~ 2MVi +29(rij) (rij=r;—r;). Their equations of motion,

posed a new Maxwell demon, called reflecting particle

The domain decomposition of the hybrid scheme is de-
picted in Fig. 1. Two regions need to be distinguished: the
particle regionP and the continuum regio@. RegionP is
composed of an ensemble of particles interacting through
prescribed interparticle potentials and evolving in time
through Newtonian dynamics. In order to illustrate the cou-
pling procedure, a Lennard-Jon@s)) fluid will be consid-

method. A drawback is that the pressure gradient is then an li=Vvi, @
outcome of the simulation, rather than an input. Finally, Fle-

kkoy et al.[5] used the idea of coupling through fluxes and C e () 1)

also implemented mass transfer. However, energy transfer mv; =f; _]Zl dr;; E 2

was still not allowed and only steady flows were considered.

The main purpose of the present work is to broaden there solved via standard MD at time stepsp=10 37,
scope of such hybrid schemes towards a general descriptiQghere r=(mo?/€)*? is the characteristic time of the LJ po-
allowing mass, momentum, and energy coupling in unsteadyential. Throughout the rest of the paper, all quantities will be

flows. expressed in reduced units of the LJ potential(=0.45
A question of central interest is to decide what kind of x10"13s), o (=3.305<10 %cm), ¢, m (=6.63

information needs to be transferred @—P and P—C. X 10”23 g), andf/kB (:11918 K) for time, |ength, energy,
There are essentially two possibilities, to transfer either genmass, and temperature, respectivélye numerical values
eralized forceqfluxes of conserved quantitiesr the local  correspond to argon

values of the averaged variables. Both kinds of approaches On the other hand, within th€ region the relevant vari-
can be found in the published literature. Here, in the contexhples are the macroscopic local densities associated with the
of energy transfer, we show that under unsteady flows it igonserved quantities, the number dengitR,t), the energy

not sufficient to impose the loc& quantities at the bound- gensitype(R,t), and the momentum densityR,t) (related

ary of P; instead, it is necessary to couple through fluxesg the local mean velocity by j=pu). In what follows, the
Another possible benefit of flux coupling was pointed out bygpatial coordinates of the macroscopic fields are denoted by
Flekkoy et al. [5] who stated that this procedure transcendscapital lettersR, while the the microscopic coordinates are

the problem of working with fluids whose constitutive rela- gesignated by lowercase letters. The conservation laws for
tions may be only partially or incompletely known. Although the |ocal densities are

we agree that the flux-based coupling is the correct matching

procedure, we show nevertheless that if the transport coeffi- ap

cients atC and P are disparate enough, the hybrid scheme = VU Q)

fails to couple the time evolution of both domains. Hence, in

such cases, the evaluation of transport coeffici€ntng i

standard microscopic techniques, at least for the range of —=-V-(ju+II), (4)
densities and temperatures under sjugyan unavoidable at
requirement for the correct behavior of the hybrid scheme.
i dpe
The rest of the paper proceeds as follows. The equations Pe _ V. (peu+TI-u+q), ®)

governing the continuum and particle regions and the aver- at
aging procedures are presented in Sec. Il. The core of the

scheme, describing the— P coupling for momentum, en- where the specific energg=u?/2+3T/2+ ¢ includes the
ergy, and mass fluxes, is presented in Sec. Ill. General rdranslational energy, the thermal kinetic energy, and the po-
quirements on the coarse-graining length and time scales atential energyp. The momentum flow contains contributions
discussed in Sec. IV. The unsteady flows under which thérom convectionju and the pressure tensbk=P 1+ 7, the
scheme has been test@ecay of longitudinal and transver- latter including the local hydrostatic pressitéRr,t) and the
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viscous stress tensor, which satisfy a Newtonian constitutivelegrees of freedom is very much largerPathan atC, this
relation, as shown by previous MD descriptions of the LJoperation is rather straightforward and is based on the micro-
fluid [7,13]; scopic derivation of continuum fluid dynamif8]. We adopt

the approach advocated by Flekketyal. [5], in making the

B r 2 information transferred fror® to C to be the coarse-grained
7= VU (VW =g VU = eveu. ©) particle fluxes of conserved quantities. These are ’
The energy current includes convectigreu, dissipation 1 [Nee
IT-u and conductiorg, which can be expressed in terms of pu- I"Pc:V_PC 21 mv; | -Npc, 9)
the local temperature gradients and the thermal conductivity
k¢, through Fourier's lawg=—«.VT(R,t). In order to 1 Npc 1 Nec
close the above equations, it is necessary to know the caloric  [J. nPC:_< ( E mv,v,— = 2 riFij )> Npe,
e(p,T) and thermal equations of stap,T), and the con- Vec\ | =1 2 7]
stitutive relations for the transport coefficientshear and (10

bulk viscgsities and thermal conductivity;, &, andk,., re- Npc 1 Nec

spectively in terms of a set of independent thermodynamic ) __= = urE Y.

variables, such ap and T. The equations of state for a LJ 4 Npc Vpc< ( izl mevi— 3 Z, r”v,F”)> e

fluid were extracted from Johnse al.[6] and the transport (11
coefficientsn, k., andé from Heyes[7] and Borgeltet al. ) i o

[8]. The va7r7iablces relevant to th)é region are tge slower WhereNpc is the number of particles inside tiie—C cell
ones. Using any standard continuum fluid dynamics solvef"dNec is the surface vector shown in Fig. 1. _
(e.g., based on a finite volume methothe evolution of the By contrast, within theC— P cells, the particle dynamics

C variables will be traced at time intervalstc>Atp and must be modified to'conform to t'he' averaged-dynamics pre-
evaluated within cells of volum¥, whose size and location Scribed by the continuum description. In other words, one
are given by the nodes of a certain mesiR), | r_leeds to construct a sort_of gene_rallzed b(_)undary qondl-
={1,... M. It will be assumed that the size of th@ tion” for the particle dynamics. As pointed out in all previous

— P and P—C regions are the same size as those of thd?@Pers on the subje¢l—3,9, this represents the most de-

cells used in the spatial discretization of the selected Conr_’nandlng challenge in that one needsirtuenta way o re-

tinuum solver, say, = (AX)3. In general, botA X andAtc construct the microscopic dynamics of a large number of

may depend on the type of solver used for @eegion, or particles, b_ased on only a few properties of the local con-
’ dinuum variables. Moreover, to ensure that the effect on the

Inner P region is minimized, it is crucial to reduce as much
as possible the unphysical artifacts, such as Maxwell de-
mons, which are added to the particle dynamicat P.
The present work is focused on this problem, which lies at
the core of any hybrid scheme.

Averages are needed in order to transfer information from
the faster time-scale and shorter length-scale particle dynam- lll. THE C—P COUPLING
ics to the slower and longer coarse-grained description. In
order to deal with unsteady, nonequilibrium scenarios, aver- This part of the hybrid scheme can be alternatively stated
ages need to be local on the slower time scale and in thgs the imposition of generalizéthass, momentum, and en-
coarse-grained spatial coordinates. For any particle variabl@rgy) boundary conditions on an MD simulation box. To deal

der study. Nevertheless, various intrinsic constraintAdh
and At will be mentioned in Sec. IV.

Averages

say®;, we define the following averages: with this task we have coupled the particle region to a col-
Ny lection of flows(with explicit analytical solutiqh which in-
(I_>(R t)Ei 2 P @) volves the whole set of conservgd quant[tles exchanged
b N &, (mass, momentum, and enejgin this sense, in the present
work our C-solver is not numerical but rather analytical. In
_ 1 (totAte_ particular, we use the initiglhhonequilibrium state imposed
(P)(R, ’tC)EA_tcft O(Ry,t)dt, (8)  atP to calculate the time-dependent analytical solutiofat
(03

This C-flow is then imposed on the region during the rest

of the simulation, meaning th&ppart from the initial staje

the hybrid coupling used in the tests presented here works in
one direction only(from C to P).

where the summation in E¢7) is made over th&l, particles
inside the cell.

The averaging procedure is needed to translatéthad
C “languages” to and from each domain. This translation is
done within the overlapping region, where the two descrip-
tions of matter coexistsee Fig. 1 In particular, within the Following Flekkoyet al. [5], at C— P we shall commu-
P—C cells, the many degrees of freedom arising from thenicate fluxes of conserved quantities. These fluxes corre-
particle dynamics are coarse grained to provide boundargpond to mass, momentum, and energy transfers through the
conditions at the “upper’C-level. As long as the number of outer interface of th&C— P cell (the W surface in Fig. L

A. Imposing fluxes under unsteady flows
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Flekkoy et al. [5] obtained these fluxes from the values of the averaged velocity & — P of the same order of magni-
the continuum variables at the center of the control cell, tude as this estimatisee Sec. VI C 2 and Fig.(6)]. We
=Xg, instead of at the exact position of tRe— P interface, observe that most CFD codes provide the continuum vari-
Xx=Xw. We have found that it is essential to take into ac-ables at the center of the control celi®., atxp), so that in
count this apparently unimportant technicality when dealingorder to evaluate the fluxes pertaining to @e> P exchange
with unsteady scenarios. Let us consider a general conserva-would first be necessary to make use of simple interpola-

tion equation, with tion techniques.
The fluxes arising from the continuum equatidos the
%+V-J _gs (12) RHS of Egs.(15—(17)] are imposed on the particle en-
at ¢ ¢ semble at th&€ — P cells through expressions involving ato-

mistic variabledthose on the LHS of Eq$15)—(17)].
whereJ, is the flux of ¢ and the source term vanishe

=0, as in Egs(3)—(5). Integrating over the control ce ms=—Apu-n, (15
—P,
Ncp
P ms(v' )+ > F&Y) =—A(puu+II)-n, (16)
—f ¢dv+f\] -nds=0. (13 [
atJv s ?
Ncp
For illustration, we shall restrict analysis to the one- mse’)+ 2 FFX‘-vi —(J%’“)-n
dimensional(1D) situation depicted in Fig. 1. In this case i
one obtains — —A(pue+Il-u+q)-n, (17)
EJ ddV—AJ e ny=—Ad sy Ny, (14)  Where henceforthp indicates the vector of the outermost
atly ¢ ¢ interface of theC— P cell, pointing toward<C. The nomen-

clature used here follows that of Flekkey al. [5]: s(t) in-
where the subscriptg (eas} and W (wes) denote that the dicates the number of particles insertest>Q) or removed
variables are measured atxg and X=Xy, respectively. (s<0) from C—P per unit of time; the velocity of the in-
The surface vectoray andng are shown in Fig. 1, and in  serted or removed particles ¥&; F*'is the external force
Eq. (14) use has been made ofy=—ng. The right-hand  applied to each particle within the C—P cell. The total
side (RHS) of Eq. (14) is the flux current of through the  external force issNcPFEX, where the summation is over the
interfaceW of the control cell, which is precisely thgen- Ncp(t) particles insideC—P. Finally, (¢') indicates the

eralized force we want to introduce on the particles at theenergy of the inserted or removed particles @@5 refers
C—P buffer. We note that only under steady flows does;; 5, externally imposed heat current.

Jow=Jy0 (to see this, integrate EG12) from x=xg 10 X As mentioned by Flekkogt al.[5], insertion of Eq.(15)
=Xy). Hence only in this case does the evaluation of thnio £q. (16) shows that the rates of change of momentum

fluxes atx,y using the continuum variables x$ lead to the  §ye to convection and local stresses are correctly introduced
same converged steady state as if the variablegyatvere ¢ (v'y=u and (S;NcPFY = — ATI.n=— A(Pn+ 7-n), re-
I 1 )

used(although the transients may of course diffédt is pos-
sible to provide an estimate of the global error arising from
evaluating the flux at a positiory shifted 6 AX with respect
Xw, Over a certain time intervalt. In the case of the mo-
mentum equation, the deviation of the stress contribution tey;,
the momentum fluxJ=J-n at any instant would be of order
AJ=VJ SAX, with §=|xo—xw|/AX being the distance to
the C—P interface ¢=0.5 in Fig. 3. Assuming that the
mean velocity field can be expressed as=u-n
~u®exp(kx) (k being the dominant wave numbemnd us-
ing the Newtonian constitutive relation for the viscous tensor

in Eq. (6), one obtainsAJ~ 7 k?u®WSAX, where 7, B. Momentum exchange

=47/3+ ¢ is the longitudinal viscosity. As a particular ex-  The condition(v')=u ensures the balance of momentum
ample, we consider a longitudinal wave and evaluate theonvection. If the mass flux points towards tReegion (s
error along a cycleAt=2m/(kcs) (wherecs is the sound  >0), this condition is fulfilled by choosing the velocity of
velocity). As a crude estimate, the accumulated error of thehe inserted particles from a Maxwellian distribution accord-
cell-averaged momentunj-n=p.u is of order p.,Au ing to the local temperature at thE—P cell, P(v')
~AJAt/AX; usingpe=0.5, 7, =1, andc,=5, one obtains = (1/2rmkT)%¥%exd —m(v’ —u)?/2mkT]. Concerning par-
Awu(k)wzmgmk/(cspe)zo_g for the typical wave num- ticle removal §<0), we note that if the average vglocity at
bers considered her&{-0.2). Simulations carried out with the C—P cell is equal to the continuum velocity)=u,

the momentum flux evaluated & yield relative errors of then the average velocity of the subset of extracted particles

spectively. Note that- Pn is the hydrostatic pressure force
(pointing inwards theC— P cell), while the viscous contri-
bution — 7-n depends on the local velocity gradient.
The balance of the energy flux requires some extra con-
ions. In Eq.(17) the convection, dissipation, and conduc-
tion of energy are balanced ife’)=e, (SNF&Ly))=
—AlIl-u-n and(Jg“n)=Aq-n, respectively.

Let us now consider in more detail how the scheme deals
with momentum, energy, and mass transfer frGrto P.
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would be precisely(v’)=<7):u. Hence the condition of ance of .potential energW’)z_q? is .much. less straightfor-
velocity continuity atC— P is needed to ensure the correct Ward to implement. This condition is fulfilled by thesHER
balance of momentum convection. algorithm, described below.

The change of momentum due to local stresses establishes
the overall external force exerted on the particle region.
Therefore one needs to determine how the overall external One needs to satisfy the following balance of heat dissi-
force is distributed on each individual particle. Fleklketyal. ~ pation:

[5] distributed the force according to a certain functgyix)

2. Dissipation

. . . . N
satisfying g(xw)=2, 9(Xo)=9'(Xo)=0. Normalization <
leads to " © © EI Fie"t. v; ) =—AIl-u-n. (20
Fext= — Ng(—xl) AII-n, (18) T_his_condition doe_s not generall_y hold if the externa_l force is
cp distributed according to an arbitrag(x). Indeed, it is not
zi: 9(xi) even clear that a functiog(x) exists satisfyingg(Xy)—

and enabling the heat dissipation balance in ®6). In any

wherex runs perpendicular to th€— P interface and the Case, such a functiopwould depend on the particle’s veloc-

applied force is made constant along eatt.. As g(x) ity d|str|but|on,_and then the probk_em of finding would

tends to infinity ax—xyy, the applied force diverges as one Pecome a formidable task at each time step.

approaches th€— P interface; hence the density nearky The advantage of using(x)=1 now becomes clear. As

=Xy is very small or zero. The functiog(x) is thus en- long asF*' does not depend on the particle label, one can

dowed with a twofold purpose: it ensures a limiting exten-greatly simplify the left-hand side of E¢20) to obtain

sion to P (as the hydrostatic pressure force always points

towards theP region, particles will never cross tHe— P

interface outwardswhile also guaranteeing the existence of

a small region where particles can be inserted with very low

risk of overlapping. The last equality follows from construction of the overall
Despite the benefits of thg(x) function for distributing  force NcpF®*'=— AII-n, and from the continuity of veloc-

the externally imposed momentum, we decided to gise ity (7>=u.

=1 for all x inside theC—P cell. The reasons for this

choice will become clear when explaining the energy ex- 3. Conduction

change, below. The first implication @f(x)=1 is that the

" ext o p . ,
external force is equally distributed among all the particles The condmon(JQ ')-n—Aq n requires the e_stabhshment
ext of a heat current along thé— P cell representing the con-

within the C— P cell. In other wordsF; " no longer depends . . . .
. duction of energy. This may be implemented by various
on the particle label, ) . . . .
means; for instance, following the idea of Evans and Morris
1 [9] one may include an extra force that pulls the “hotter”
F?Xt: FexXt= — (N_) AII-n. (19 particles towards the direction of the heat flux and conserves
cp the overall momentum. Alternatively, one may try to impose
L . . a Chapman-Enskog velocity distribution with the desired
The second implication 0g(x)=1 is that the particle heat flux, at some region inside tl@&— P buffer. In this

density profile near th€ — P interface no longer vanishes, . .
- work we have made use of the phenomenological Fourier’s
S0 one needs an efficient way to resolve the problem of over-

lap on the insertion of new particles. This task is carried ou{aw’ q=—rcVT. A temperature gradient is imposed along

: : . . eachC— P cell by using a set of NosEoover thermostats
by theusHeERalgorithm, as explained below. Finally, in order . S
to ensure a finite extent of the particle region, if a particle (NHT's) placed along the direction of the heat flux. The

crosses outwards tHe— P interface(in Fig. 1, X=Xy o, outer and inner thermostats are located a distahegart,

with 6>0) with velocityv;, it is substituted by another one and. the temperature difference beween both Sevd - n.
() with y, =y 2,=2, X;=Xu+ , and withv,=v; . In this Typically, at eachC— P cell we have used a set of two or

way, the overall momentum is strictly conserved before an hree NHT's along a qllsta_nce obSor 40. The vglues of the
. parameter appearing in the NHT formulatifh0] were

after the particle exchange. e . o
chosen small enough to minimize unphysical dynamics, i.e.,

we have chose@=>5. The main benefit of using the Nese
C. Energy exchange Hoover formulation is the small distortion these thermostats
1. Advection introduce to the particle dynamics compared with other ways

of implementing thermostattindL0].

Ncp
Fext_<z Vi>:NcheXt~<V>:_AH'U'n' (22
|

The balance of advected energy requires thelt)=e
=u?/2+3T/2+ ¢. Decomposing the particle energy into the
kinetic and potential partss’=(v')%/2+ ', one sees that
since the new particles are drawn from a Maxwell distribu- One important condition on the particle insertion, inher-
tion, therefore((v')?/2)=u?/2+3T/2. By contrast, the bal- ited from the balance of potential energy,(ig’')= ¢ (see

D. Mass exchange: Particle insertion
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Sec. Il O. To deal with this task, our strategy has been to  IV. LENGTH AND TIME-SCALE PREREQUISITES

place the new particles in positions Whe.’#éz(ﬁ' As ¢ Is, . A. Arising from consideration of the microscopic description

roughly speaking, the energy needed to insert a new patrticle,

we shall insert particles with energies close to the local Continuum fluid dynamics rest on the local equilibrium

chemical potential. In any case, this implies that the inserassumption. This means that, in order to define a local ther-

tions need to be made in very precise positions which depenchodynamic and hydrodynamic state characterizing the

on the configuration of the rest of the particles. To this enccoarse-grained variables at tie—P and P—C cells, the

we have developed an algorithosHER) that guides each size of these cells needs to be greater than the mean free path

new inserted particle to a position where the potential energy extracted from the particle dynamics. Moreover, the local

is equal tog (up to a prespecified thresholdh brief expla-  equilibrium within each cell should be attained on time

nation is given below(see the work of Delgado-Buscalioni scales smaller thate. This means that\tc has to be

and Coveneﬂll_] for fur’_[her details. We _flrst note that while larger than the collision time.,. In summaryAX>\ and

the usHER algorithm guides a new particle to a correct loca-yy ~ - |n the case of a LJ fluid, it is possible to use the

tion, the rest of the particles remain frozen in pos't'on'hard—sphere approximation to make an order-of-magnitude

USHER essentially performs the following steps: . estimate AX>0.2p~ * andAt>0.14 ‘T~ %2 These condi-

ins(iézazli?g tr;?o)new particle € N+1) at an initial position tions become less restrictive at Ia_rger dengities; as an ex-
@ Evaluéltef ’ —sN f and ample, forT=1, p=0.5, and a typical MD time steptp

N+LT=j=1N+1 ~10"3, local equilibrium would require\tc/Atp=100 in-
tegration steps.

20r

|fN+ 1|' B. Arising from consideration of the hydrodynamic

description

o

Typically one can usér=o. - _ _

(3) Move the new particle according to the update rule ~ Conditions onAX and At are firstly imposed by the
smallest characteristic length and time scales involved in the
process under investigatideay, 2m/Ky.x and 2/ o pax, re-

1
rtD=r 4 Ef M, o2, spectively. Practically, to correctly recover the smallest spa-
tio temporal flow pattern, one needs at least eight points per
where st=min(A,,&,), with A,=0.05 in reduced units. period, SOAt-< /4w ma AN AX< /4K 2. The numerical

(4) Evaluate the relative difference between the specifictability of the C-solver algorithm may also impose limita-
internal energy of the new particlef,.,, and that pre- tions. As mentioned in Sec. I, algorithms with explicit time

scribed by the continuump: R, = |4y, .— || . discretization are better suited for tkesolver of a hybrid
(5) The particle is correctly inser;ed iRg,, is small scheme. A necessary condition for their numerical stability is
enough(typically ~0.1). C=UAtc/AX=<1/2, whereC is the Courant number arid

Let us show how theJsHER algorithm easily overcomes the maximum characteristic flow velocity. The value of
the problem of possible initial overlap with preexisting par- depends on the physical process one is dealing with, but, to
ticles. An overlap leads to very large values of the interparfrovide numbers in the present discussion, let us assume that
ticle force, fy,1>1, so in this caseft,<1 and dt=t, . we are dealing with low or moderate Reynolds numbers.
But by construction, during the intervat ., the new particle  Then, if the process is a diffusive ond,=»/AX; alterna-
moves a distance of the order of the particle sizén the  tively, if sound waves are relevant within the flow=cg. In
direction of minimum energy, just enough to avoid any initial summary, the computational window fakt. should be
overlap. Then, as the particle steadily moves towards a locd.14p 1T~ Y?<At,<AX/(2U). Using the maximum grid
minimum of energyf ., decreases, anét, increases until spacing allowedAX= 7/4K.., ONe obtains the computa-
it becomes larger thanr;. Then,dt=A, is fixed. For liquid  tional windows forAt: shown in Fig. 2 versug, for Kax
densities varying betweep=0.5 and—0.8, theusHEr al-  ={0.1,0.2, U={v/AX,cs}, and T=2.5. As expected, a
gorithm typically needs 15-90 iteratiofsingle-force evalu- sound wave requires smaller time steps than a diffusive pro-
ations to correctly place a new partic[d2]. By introducing  cess. For large enougdty,.,. the temporal and spatial com-
the particles withy' = ¢(1£Rg,,), we found that, upon av- putational window may be highly localized; e.g., for
eraging overAtc, the condition(y') = ¢ holds within about =0.5, one should use :2At-<0.5 if waves with wave-
2% (even using values dRg,, as large as 0.5). lengths smaller than 30need to be captured by the coarse-

Until now we have not mentioned any limitation on the grained description. As the density decreases, these condi-
sizes of the coarse mesh and time st&), and dtc. Com-  tions become much more restrictive, until the acoustic time
ments on this topic are very scarce in the previous literaturéinally becomes smaller than the collision tirfeee Fig. 2.
on hybrid methods for fluids. Moreover, since the local av-Also, in rarefied gases, ip<k.J4, the mean free path
erages are made using these spatial and temporal windows bgcomes larger than the wavelength, but here we shall not be
is also appropriate to formulate any condition AX and  concerned with situations where the Navier-Stokes equations
At before presenting the results of the tests carried out foare not appropriatésee Garciaet al. for further discussion
different flows. [1].
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are described by the decay of transversal and longitudinal
waves. These flows are now briefly presented, using standard
hydrodynamics.

Consider a fluid at equilibrium characterized by homoge-
neous mass densify®, specific energye®, and a vanishing
mean velocityu®=0. Our procedure is to perturb this equi-
librium state with different hydrodynamic fieldP,u,eP}
(periodic in thex direction, i.e.k=ki) and then make use of
the C—P coupling scheme described in Sec. Il to verify
that, within the particle region, the subsequent evolution to-
wards equilibrium is carried out in a hydrodynamically con-
sistent way. If use is to be made of the linear hydrodynamic
theory, the externally induced perturbations should be small
enough to guarantee that the relaxation process is always
governed by the linearized mass, momentum, and energy
equations(3)—(5) [14]. We defer further discussion of this
point to Sec. VI below.

As is customary, to solve the linearized set of equations, a

FIG. 2. Conditions imposed on the time step of the continuum
solver At¢ plotted versus the number denspy Variables are ex-
pressed in the LJ reduced urits for length andr=(a°m/ €)Y for

time]. As discussed in Sec. IV BAtc has to be greater than the . e
collision time ., (the thick solid ling and smaller tha x/(2u)  -@place-Fourier transforfLFT) is first performed 14]. The

(indicated with dashed and dash-dotted ljndhe typical flow ve- LFT of any perturbative variable, sa(r,t), will be de-
locity U is chosen to be either the sound velodiy=c, or the ~ noted as
diffusive velocityU = v/L, according to each case discussed in Sec.

IV B. The grid spacing iAX= 7/ (4Ka, Wherek,,., is the largest @

wave number to be captured within the flow. CD(kat)Ef ch)(r,t)exp(— iker)dr, (22

V. TESTS: HYDRODYNAMIC MODES

As already mentioned, our hybrid scheme has been tested ‘b(k,Z)EJ dzexp(izt)®(k,t)dt. (23
under stationary and unsteady flows. Typical stationary non- 0
equi_librium states were consid_ered, such as hgat cond.uctithe LFT of the linearized equatiofEgs. (3)—(5)] leads to
profiles [13] and Couette profile$5,13]. The microscopic followi lgebrai ¢ fofb— (5P TP 3P TP D
reconstruction of these flows has been so well studied in thE.'e ollowing algebraic system fop=(p"T"jx.]y.Jz)
literature that nothing new may added here. In passing, wi 14],
note that the transient times to achieve the steady state from
the rest solution were found to be in agreement with the MéT(k,z):q)T(k,o), (24)
diffusive timesL,/x andL,/v. The rest of the discussion
will be focused on our choice of unsteady scenarios, whictwhere the hydrodynamic matrix is

—iz 0 ik 0 0
-1
0 —iz+Kkyk? ikl 0 0
pfa
M=| _ _ , : (25)
ikcg/y ikD —iz+bk 0 0
0 0 0 —iz+vk? 0
0 0 0 0 —iz+vk?

We note that instead of using®, the energy equation is
expressed in terms of temperature fluctuations. Also, for clar- eP=c, TP+

ity, it is better to write the solutiomb in terms of thet=0
Fourier-transformed perturbative heat density and pres- _1
surePP. These quantities are related 48 and T” through Qp:PeCU( TP yTpp) , (27)
the relations pta

oe

p
o) P (26)

Te
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m . diffusively, being proportional to exp(xk’). We note that
PPZT(P aTP—pP). (28)  QP=TesP is essentially the fluctuation of the entropy density
sP [14]. From Egs.(31) and(35), it is easily shown that the

Herec, andc, are the specific heats at constant pressure antivo sound modesR/c.*],) decay like expikcd—Tk?).
volume, respectlvelyy cp/c, is the adiabatic coefficient;

k=rKclCyp® is the thermal diffusivity;a=—(ap/&T)p/p'3 VI. RESULTS

the thermal expansion coefficient; and the kinematic longitu-

dinal viscosityb= (47/3+ &)/p® is related to the sound at- A. Setup and initial states

tenuation coefficient” through "'=b+ (y—1)«. Finally The coupling scheme was implemented and tested in the
D=(dP/dT), and the adiabatic speed of sound aé setup shown in Fig. 3. The system is periodic algrandz
=vy(dPldp)t. directions, and the gradients of the continuum variables are

Provided that, in the hydrodynamic limit, the wavelengthsset along the< direction. The particle region occupies a re-
of the perturbations are much larger than the mean interpagion of sizelL, aroundx=0 and of sizeL,=L, along the
ticle distance, it is sufficient to obtain the solution of E24) periodic directions. Th® region is divided into control cells
up to O(k?) [14]. Puttingz— w € R into Egs.(24) and(25)  of sizeAX, wherein local averages are taken. The centers of

leads, after some algebra, to the following identities the two C— P slabs(the outermost celjsare situated ak
==*|Ly—AX/2|. The deviation from the local equilibrium
N E.Q(k,00 y—1 y—1 . assumption was monitored in terms of the relative difference
T(k,w)= pec + pCa ESRP(k’O)+peaC Esiix(k,0), of the cell-averaged pressure and energy with respect the
p s

(29) values given by the equation of state of Johnebal, Ref.
[6]. Around a distance 1db away from theC— P interface,
the typical maximum deviations were only about 6%.

,}(k,w): E Q(k,00+ — EggP(K, o)+ Esd «(k,0), The initial perturbative flow was prepared by first letting
C§ the P region relax until a vanishing and homogeneous mean
(300  flow was obtained. Then, during a small time interval
1 (~37), the particle velocities were periodically changed ac-
2 _ ; cording to a Maxwellian distribution with the desired veloc-
k@)= mcSES'P(k’O)+ESRIX(k'O)’ (3Y) ity profile and local cell temperature. The resulting initial
state was then analyzed to extract the Fourier components of
]y(k,w)= E.iy(k,0), (32 the whole set of flow variables/( p, T, e, P). For the sake
of consistency these were extracted by Fourier transforms of
j2(k,©)=E,jk,0), (33  the cell-averaged variables,
MC
and, using Eqgs(27) and (298), -
9 Eqel27) and(29 FRUO=1 3 B0x VeoskX), (40
~ C
Q(k,w)=E,Q(k,0), (39
M
. Ch <
P(k,0)=EseP(k,0)+mcEsix(k0), (39 D=3 2 (X DsinkX), (41)

C

where the following propagators have been introduced, where k,=nk (neA): and c,=1 for n=0, andc,=2

(K, ) =exp( — xk?t), (36)  otherwise. In any case, it was checked that the Fourier
transform of the microscopic variables™ =c,=N¢(x; ,t)
Esr(k,0)=exp —Tk?t)coq ckt), (37) X exp(—ikx)/N yields essentially the same output as Egs.
(40) and (41).
Esi(k,w)=—iexp —'k?t)sin(cgkt), (39 The initial Fourier transforms calculated from Ed¢g0)
were injected into Eqs(29)—(35) to obtain the time evolu-
E,(k,w)=exp — vk?t). (390  tion of the continuum variables. These, in turn, were used to

calculate the fluxes imposed on tlie—P cells over time.

The shear or transverse modes correspond to momentuthe transport coefficients used were those reported in the
perturbations along and/orz axis (i.e., perpendicular to the literature[7,6]. As an interesting check, it was found that the
wave vectoki); from Egs.(32) and(33), it is clear that they  coupling scheme failed significantly if the transport coeffi-
are completely decoupled. The remaining hydrodynamicients used in th€ region differed by more than about 15%
variables{pP,TP,j?} are coupled and conform to three lon- from those of the LJ fluid. In particular, the oscillation fre-
gitudinal modes that can be divided into two subgroups: twaquency of the averaged particle velocity differed with respect
sound modeginvolving longitudinal momentum and pres- to that of C, while correlations decayed at a faster rate than
sure at constant entropgnd one heat modg@nvolving heat those of theC flow. Therefore, in cases where the constitu-
diffusion). The fact that the heat density is an independentive relations are not known, this result means that it is first
mode is evident from Eq34), where it is seen that it relaxes necessary to measure the transport coefficients from the par-
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ticle dynamicqusing any standard molecular technigjuse-
fore applying the hybrid scheme, particularly if unsteady
flows are to be studied.

PHYSICAL REVIEW E 67, 046704 (2003

[7]). These waves were created by imposing sinusoidal

y-velocity profilesv,(x)=v " sinkx).

Figure 4 shows results for perturbations witfl,;;=1.0 in

The wavelengths of the initial perturbations were chosery system withL,= 200, Ly=L,=70, and M;=10 cells

to be much larger than the mean free péile., 27\/k
<1), in order to work within the hydrodynamic regime. In
other words, the dependence of the transport coefficients
the wavenumber was negligibJ@4]. The amplitudes of the

linear theory. In particular, iV(l)(t) is the maximum Fourier
amplitude of the velocity, the typical values of the Reynolds

number att=0 [Re=|v(M|p./(k7n)] were Re(0k3. As

(AX=2). The filled circles in Fig. &) correspond to the

main Fourier component of the velocity');, for a calcula-

%Yion using wave numbek=0.31. The relaxation process is

indeed exponential, until the noise-to-signal ratio becomes

%rge enough(aroundt>10) and the observed decay rate

the subsequent relaxation process could be described by tI'(‘6.14i 0.1)7 ! agrees perfectly with the theoretical value of

k27l p®. To explicitly appreciate the effect of the hybrid cou-
pling, we show{open circles in Fig. @&)] the outcome of a
calculation in which the unsteady shear stress contribution to

[v)(t)| decays exponentially, convection was present onlythe external forcd=®*' was set to zero, leaving just the con-

in the first stages of the relaxing flow, but it was not strong

tribution of the equilibrium hydrostatic pressure. As ex-

enough to produce significant deviations from the linearpected, if less momentum flux is provided towafdsthe

theory (nonlinear effects become dominant for -R@(10)

decay rate is appreciably slower (0:07) than the hydro-

[15]). The maximum Mach number was less than 0.2, andlynamic one (0.14 '). Figure 4b) shows the autocorrela-

density fluctuations were arounp®)|/p,~Ma2=0.05.

tion function (ACF) of o)

v.sin(t) for another perturbation with

In another test, the hybrid scheme was applied to a fluid ird slightly different wave numbek=0.35. The good agree-

mechanical (=0) and thermodynamical equilibriump (
=0.5, T=3.5,e=2.7, P=3.2) during a longer simulation
(507) to check for any possible spurious drift in the overall
momentum and energyote that Eq(15) ensures the mass
conservation by constructipnDuring this calculation, the
total momentum inside thE region was conserved up to 5
X104, and the total energy fluctuateg 5% around its
equilibrium value. The size of these fluctuations is consisten,
with the system sizéwhich containedN= 1600 particles and

a specific heat of,=1.8). Note that the total energy of the
system cannot be conserved because a part of the system
connected to a thermostat, and it also receives mechanic
energy fromC.

B. Transversal waves

In order to test the transfer of momentum flux along the
direction perpendicular to th€— P interface, planar shear
waves alongx were excited in a LJ fluid withp=0.5, T
=2.5, and»=0.75+0.05 (the error bar comes from Ref.

FIG. 3. The setup for which the scheme has been te$tec:
region P is surrounded byC). The fluxes of continuum variables
are imposed along the direction, whiley andz are periodic. The
hybrid coupling is applied at th€— P cells and the heat current is
established along the Nos$#oover thermostatted regions whose
thickness is set between (3-¢i) We usedAX=(1-2)o, L,
=(10-40)p andL,=L,=(7-9)o.

ment with the theoretical decayexp(—0.1%1), in dashed
line] shows that the scheme is able to deal with small varia-
tions in the perturbation shape.

C. Longitudinal perturbations

Longitudinal waves transport mass, momentum, and both
mechanical and thermal energy; they are therefore perfectly
Luited for an overall test of the hybrid scheme behavior. In
our setup the wave vector of these waves was perpendicular
to theC— P interface, and they were generated by imposing
an velocities along the direction as either pure cosinu-
idal, sinusoidal profiles, or combinations of both profiles.
As explained before, the particle velocities were extracted
from Maxwell-Boltzmann distributions at the local mean ve-
locities and at a constant temperature. The mean velocity
profile induces pressure, density, and energy fluctuations
with a periodic pattern in the direction. The temporal be-
havior of the main flow variables is now described.

1. Mass

One of the main problems involved in the hybrid mass
transfer atC— P is that although the continuum flux is a
floating point number, one can only possibly exchange an
integer number of particles. In order to adhere closely as
possible to the prescribed continuum mass flux, the follow-
ing procedure is followed during each intervah<t<tc
+Atc, te=mAte, meN. The first one evaluates the quan-
tity

te+Ate
§(tc)EJ't s(t)dt. (42)

This floating point number, which represents the number of
particles that should cross the— P interface alongto<t
<tc+ Atc is converted into an integeiN(t) by the follow-

ing construction:
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SN(t)=NINT[ &(tc) ]+ SE(t—ty), (43 (a) U L L L L
1 F*e%eagp000 =
B At , , C “tgooooooooooooooooooo -
5§(t_tk)_|NT th [g(t )_5N(t )]dt ) (44) ) K 1 exp(-0.14t):.-:-£".-.‘.0_.... OODoog
gg 1+ 1E | N § e ---. ee
wheret, is such that s&(t—t,)|<1 and O=ty<t, <ty.;. >~ "5 E ® ] Cege T
The deviations&(t—t,) assimilates the errors made through <[ .
successive rounding offé(~ NINT [£]). When|S&(t—t,)| 0'1:_0.1__(]?) Ui =
becomes larger than (att={t,}), a particle is added t¢or ) 2 4 6 tmere 8 -
extracted from SN and the correctodé is then reset to zero. P I T T NS NI N
To minimize the effect on the remaining particles over each 2 4.6 8 10
. ) . . time/g
interval At , the particle crossings are regularly separated in
time at a rate as close as possiblesté(t:)/Ate. As illus- FIG. 4. (@) The main Fourier component of the cell-averaged
trated in Fig. 5, this kind of procedure enables us to followvelocity v{";, [in units of o/ 7, with 7= (o?m/€)*?. Results corre-
rather closely the desired mass flux. spond to a transversal wave with wave numker0.31. Compari-
son is made between a calculation in which the full expression of
2. Momentum the external forceF®*' was imposed(filled circles and another

. . . which did not include the vi tributi ircles Th
Figures 7-9 show the time dependence of the Fouriep o1 €¢ NOt Incllde the ¥iscous contribu I¢open circles The

components of the main hydrodynamic and thermodynamic@aShed line is the correct hydrodynamic decay.The nondimen-
. _(1) .
variables. Dashed lines correspond to the theoretical trenddo"@ ACF 0fvysi(t) for another transversal perturbation wih
obtained via the inverse Fourier transform of E@9)—(35). —0.35 showing the theoretical decay in thpartially hidden
For the reasons explained in Sec Il A, it is particularly Eaihzeoillnl_e._lrll_ a_ll7cas?s, tge initial atf_“p"“.‘de V%%i":l'p anlql d
important to ascertain that the averaged velocityCat P x= £, Ly=-,= [0 1N abscissas, ime 1S nondimensionalize

; ; w2 1/2
correctly follows the desired continuum flow velocity. Figure VIt e LJ reduced time unit=(o~m/¢)
6 shows the instantaneous, and time-averaged velocity ergy perturbations includes not only an acoustic part, but also

e : A : 2

at bothC— P cells. We obtained a very good agree- &1 entropic contribution proportional to expkk) [see Egs.
() he d _) O\ with h y'g gl (29-(39)]. However, as the initial perturbation considered
ment, the deviation ofv,) with respect the continuum value a5 3 mechanical ong{”=0), the entropic contribution is

being less than about 5% along most part of the dampefhiher small. This can be seen in the theoretical expressions
oscillation (see Fig. 6. The importance of evaluating the \yitten in Fig. 6: the amplitude at=0 of the entropic part of
continuum fluxes at precisely tt@— P interface &y in Fig.  any heat-related variable is nearly six times smaller than its
1) is illustrated in Fig. 6 by comparison with the outcome of mechanical counterpart. This observation led us to a more
a calculation in which the fluxes are evaluatedatx,. For  careful study of the effect of heat conduction. As explained
this calculation, the deviation with respect to the continuumin Sec. Ill C 3, heat currents through eaCh-P cell were
prescription is clear and its magnitude agrees with the estiereated by imposing severéiypically two) NHT's placed
mate made in Sec. Il A-30%. close to theC— P interface over a distance o4 We found
Figure 1a) shows the time evolution of the Fourier am- it very informative to study the effect of the numbgrof
plitudes of the velocity in one of the calculatioia pure  NHT'’s perC— P cell (notation:p-NHTcp) on the collective
cosinusoidal perturbation Witﬁ((l)cos=0.6). The overall ve- behavior of the system. In some calculations, this number
L T0) . ’ o was reduced to merely 1-NHF in such a way that only the
locity vy cos remains close to zero, confirming that the 04| temperature prescribed by the continuum was imposed
method conserves the initial total momentum. T ,)Sin (and not the heat flyxThe results of this comparison may be
component(initially set to zerg has been also included to seen in Figs. 8 and 9. Calculations using 1-NigTyielded
display the level of noise. The ACF 05&1):;&%%) essentially the same evolution of the velocity and pressure as
+ivf). is shown in Fig. o) for two runs with different those with a larger number of NHT’;, although the pressure
(x.sin) 9- for the 1-NHT:p case showed a slight phase lag, see Fig.

initial profiles (for more details see the ca_ption of F_ig).. 7 . 8(d). This is not surprising as andP are governed by acous-
These data were fitted to the hydrodynamic expression arisic terms and are independent of heat transfers. Using

ing from_Eq. (31), and in_ Fig. 7 these _fits are shO\_Nn With 1-NHT¢p, deviations orpP, €°, and TP with respect to the
daghed lines. The best fit to the velocity was obtained with,yqrodynamic trend are indeed appreciable, while results
Fk2:0'076 andcsk=0.867, while for the ACF it yielded ity 2 -NHT,, adhere closely to the analytical curvesee
I'’k?=0.072 andcsk=0.867. These values coincide, within riq g) |n any case, the calculation of the entropy production
the error bars, with those imposed by tBeflow (obtained s 'the best way to highlight the completely different qualita-

upon insertion of the transport coefficients reported in thje pehavior of 1-NHEp with respect to two(or more
literature[7]) 0.071 and 0.88, respectively. NHTcp.

3. Thermodynamic variables 4. Entropy

We start by observing that, unlike longitudinal momentum  The entropy fluctuation, or more precisely the perturba-
and pressure, the relaxation of density, temperature, and etien of heatQP=T®sP, was calculated using Eq27). We
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FIG. 5. The total number of inserted particl€§sN(t’)dt’ at
the rightmostC— P cell, along a simulation of a longitudinal wave
with k=0.168 inside a regionl(=400, L,=L,=90) with p®
=0.53 andT®=3.5. The initial perturbative velocity profile was
u,=0.60 coskx). The dashed line is the continuum prescription
fﬁ,s(t’)dt’ (see text Time has been nondimensionalized with
=(o?’m/e)*2

ACF

note that, in order to reproduce the steady diffusive heat
decay in Eq.(30), an exact cancellation of the acoustic os-
cillations coming frompP andTP is necessarysee Eqs(30)
and(29)]. As stated above, the contribution associated with  FiG. 7. (a) Time evolution of the Fourier transforms ®fveloc-

heat diffusion in Eqs(30) and(29) is rather small as com- it%/ 2 for the pure cosinusoidal perturbation of Fig. 5.(b, the

ared to the mechanical one. This observation indicates th . . . .
P %ondlmensmnal ACF oﬂl)(t), corresponding to the pure cosinu-

soidal perturbatior(solid line) and to another initial perturbation
with {v{".(0)0®,(0)}={0.60,0.2% (dash-dotted line In (a) and

(b), the dashed line is the theoretical hydrodynamic solution. The
remaining parameters are the same as those in Fig. 5. Variables are
nondimensionalized with the LJ potential unjts for length and

= (o’ml €)¥2 for time].

velocity/(6/7)

small mechanically driven fluctuations around the local ther-
modynamic equilibrium may become large enough to alter
the purely exponential heat decay. In other words, E2j8.
and (34) provide a demanding test of the coupling scheme
under the present flow. Figure 9 shows the main Fourier
component of the heat perturbatiQ? obtained for 1- and

o 1 2-NHT.p. The dashed lines correspond to the theoretical
B 0.5 expectation. It is evident that the 1-NHJg case does not
=0 obey the second law of thermodynamics at all. On the con-
3 0 trary, a rather good agreement with the theoretical trend is
% obtained when using at least 2-NHJ. In Fig. 9, it is seen
> .05 that the behavior measured in the 2-NkpTcase exhibits
fluctuations around the theoretical straight line. Typically, the
-1 largest excursions last around om pure exponential de-

cay. As previously stated, they may be due to the weakness

of the entropy perturbation, but to confirm this statement we

plan in the future to study some heat-driven floigsch as a
FIG. 6. The velocity at botl€— P cells for the same parameters heat pulse with initial zero mean velocity

as in Fig. 5. The dashed line is the continuum prescriptpantially

hidden. In (a) we show the o.utcome of a calculation in WhiC!’] the VII. CONCLUSIONS

momentum flux from the& region was evaluated &t x,y (see Fig.

1); the instantaneous, velocities are shown in lighter dotted lines, ~ We have presented the core of a hybrid continuum-

while thicker solid lines are the time-averaged velocitfes). In ~ particle method for fluids at moderate-to-large densities

(b) we show the time-averaged velocities for another calculatiowhich couples mass, momentum, and energy transfers be-

with the same parameters as (@, but evaluating the momentum tween two regionsC and P, described respectively by con-

flux at x=Xq. All variables are nondimensionalized with the LJ tinuum fluid dynamics and by discrete particle Newtonian

potential unitg o for length andr=(o?m/€)*2 for timel]. dynamics. Both domains
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(a) T T T " T T 1T 7717 0.08 T ml T T T T T T T T ] (b)
@0.4 T exp(/14) [0.13 cos(2x t7.2) + : psinfoi;‘gf'gi::;iotﬁo:)]m@“"7'2)* FIG. 8. Time dependence of
sin , . 2)] +0.012 oxp(-122) ; .
) 0.2 0,56 sin(2nt/7.2)]+0.067exp(-422) mb 0.06 - ) _ the Fourier amplitudes of thén)
R s 2NHTcr ] 5004 ~& " — temperatureT$), (b) density p{)
% 0 % -] g 0.02 — [=3,; exp(kx)/N], (c) energy per
2-0.2 i 18 o A particlee)), and(d) pressure?ld).
£.0.4 b N 0.02 f. - All quantities are nondimensional-
2 ‘I I-NHTcp ] ized with the LJ potential unitso
06— T [, yNHTee o 004 | i I for length ande for energy. Com-
0 5 10 15 20 25 30 0 5 10 15 20 25 30 parison is made between a simula-
time/t time/T tion with two NoseHoover ther-
(c) LI I LI I B mostats per C—P cell
é;l)n= exp(t/14) [0.1 cos(2r ¥/7.2)+ 1 ~~ 2 (1) =exp(-t/14I1-) [0.2 cos(@nt/7.2)+ | (d) 2-NHT, and another usin
0.4 +0.6 sin(2r t/7.2)] -1 = P on X i ( cP) g
@ 02 s ep2z) ] g +146 sin2r t7.2)] + only one (1-NHEp, dotted ling.
= N 2NHTe ] = 1 F . Z-NHTce - In each figure, the analytical hy-
=] ; [ I3
5 0 1 & £ . drodynamic expressions for the
Lﬁ 02 i “‘-«.‘ 4 20 T-.‘ — dominant Fourier componer(in
04 A P VI E /"“f- - dashed lingsare explicitly writ-
06 '~ 1-NHTcH -1 s 1-NHTé1> _ ten. The initial amplitudes were
jg S P R I PR i | Lo 1 o1 13 H v{1,{0)=0.60, TG)(0)=-0.06,
0 5 10 15 20 25 30 0 5 10 15 20 25 30 PW(0)=0.25, andp{}(0)=0.022.
time/t time/t

overlap within a coupling region divided into two subcells averaged velocity and the injected momentum flux equal
which account for the two-way exchang€—P and P their continuum counterparts. This is made possible by ap-
—C. While the procedure at thB—C cell is simply to  plying the external force according to a flat distribution, in-
average the particle-basdthass, momentum, and eneygy stead of a biased one as used by Flekkbwl. [5] but as a
fluxes in order to supply open boundary conditions toGhe result, the new particles have to be inserted within a nonva-
domain, the operations at th€—P cell are much less nishing density environment. This is sorted out by tis&lER
straightforward as they need to reconstruct a large number dfi a very efficient way. Energy conduction has been imple-
(particles) degrees of freedom only from the knowledge of mented by using a set of Nostoover thermostats adjacent
the three fluxes of conserved quantities arising withifhe  to the C— P interface, whose temperature and position are
present work has been concerned with extendingGheP determined through the continuum local temperature gradi-
coupling to arbitrary rates of mass, momentum, and energgnt. Confirmation of the validity of this procedure is obtained
transfer. To this end, the proposed method has been testéwm the correct rate of entropy production computed in our
under unsteady flows which demand conformance to theimulations of longitudinal waves. We showed that using
whole set of conserved variable densities. In particular, wenly one thermostat peC— P cell (i.e., providing only the
have considered the set of relaxing flows arising from hydrodocal value of T but not the heat fluxleads to negative en-
dynamics, namely longitudinal and transversal waves. Weéropy production. Therefore, in the context of energy trans-
have followed the idea proposed by Flekkatyal. [5], in the  fer, this result reinforces the central importance of coupling
sense that the scheme is explicitly based on direct flux exthrough fluxes proposed by Flekkey al. [5].
change between th€ and P regions. In order to deal with
unsteady scenarios, we have shown that the fluxes injected — T T
into the particle region from the continuum region need to be
measured exactly at tteé— P interface and not at the nodes
of the continuum lattice. |
The implementation of flux exchanges requires the supply TE

of energy currents to the particle system arising from@he 0.2 exp(-t/22)

domain due to advection, dissipation, and conduction. To in- 0.01k .

ject the correct amount of advected energy, the particle- RN IS S [ S S

averaged specific energy at tBe— P cell needs to be equal 0 5 10 15 20 25

to the continuum value. This can only be achieved if the new time/t

inserted particles are placed at positions wherel(ititerpar- FIG. 9. The main Fourier amplitude of the heat density pertur-

ticle) potential energy equals the C-specified internal energyation — (QW)(t) time-averaged alongtc= 1.0 (and multiplied by
per unit mass. This severe condition has been implemented1). The parameters are the same as those of Fign8 8 and

by the usHER algorithm, whose purpose is twofold: to pro- heat density is in units o/ o>. The dashed line corresponds to the
vide the correct mass transfer rate and to ensure the balangoretical decay. Comparison is made between two (2T

of energy advection. In the proposed scheme, the balance afd one (1-NHEp) NoseHoover thermostats p&— P cell. The
energy dissipation arises naturally, provided that the cellfatter violates the second law of thermodynamics.
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Enhancements to the present scheme are under investigsary to interpolate the external force along neighboithg
tion and merit some discussion here. The number density at: P cells in such a way that the local momentum flux im-
C—P may be controlled by a feedback algorithm which posed at eactt— P cell is still preserved. In the same way,
preserves the momentum flux balance. Other kinds of impleathough the Maxwell distribution, used here to choose the
mentations for the energy transport by conduction also deye|ocities of the new particles, proved to be sufficient to
serve to be considered. Finally, we plan to implement thepsure momentum continuity for 1D couplifige., with no
P—C coupling in conjunction with a finite volume CFD nejghboringC—P cells), it may be convenient to use a
solver in 3D. In order to extend the coupling scheme tochapman-Enskog distribution in higher dimensions. This lat-
higher dimensions, some additional complications will needer distribution enables the average velocity of the inserted
to be adressed. First, a mass flux will be assigned to each C?Jhrticles to conform to the velocity gradient along neighbor-

within an array of neighborinC—P cells. To adhere to jhgCc— P cells. We hope to report our findings in these areas
mass continuity, particles will then have to be inserted withinin fyture publications.

precisely defined finite regions and the insertion algorithm
may have to pay an extra computational cost for this restric-
tion of the search domain. We have checked, however, that
the distance traveled by thesHER algorithm from the initial

trial position to the final insertion site is rather smgilL] We gratefully acknowledge fruitful discussions with E.
(typically, less than & and less than O on averageso we  Flekkoy, P. Espami, G. Ciccotti and R. Winkler and useful

do not expect any significant extra cost if the search focomments from B. Boghosian, A. Ladd and |. Paganobar-
insertion sites is done within volumes larger tharf2. In raga. This research was supported through a European
higher dimensions, one may also have to smooth to som€ommunity Marie Curie Grant No. HPMF-CT-2001-01210.
extent the variations of the mean mechanical quantities imR.D.-B. wishes also to acknowledge support from Project
posed along th€ — P region. To this end, it may be neces- No. BFM2002-0290.
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