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Continuum-particle hybrid coupling for mass, momentum, and energy transfers
in unsteady fluid flow

R. Delgado-Buscalioni* and P. V. Coveney†
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~Received 1 November 2002; published 11 April 2003!

The aim of hybrid methods in simulations is to communicate regions with disparate time and length scales.
Here, a fluid described at the atomistic level within an inner regionP is coupled to an outer regionC described
by continuum fluid dynamics. The matching of both descriptions of matter is made across an overlapping
region and, in general, consists of a two-way coupling scheme (C→P and P→C) that conveys mass, mo-
mentum, and energy fluxes. The contribution of the hybrid scheme hereby presented is twofold. First, it treats
unsteady flows and, more importantly, it handles energy exchange between bothC andP regions. The imple-
mentation of theC→P coupling is tested here using steady and unsteady flows with different rates of mass,
momentum and energy exchange. In particular, relaxing flows described by linear hydrodynamics~transversal
and longitudinal waves! are most enlightening as they comprise the whole set of hydrodynamic modes.
Applying the hybrid coupling scheme after the onset of an initial perturbation, the cell-averaged Fourier
components of the flow variables in theP region~velocity, density, internal energy, temperature, and pressure!
evolve in excellent agreement with the hydrodynamic trends. It is also shown that the scheme preserves the
correct rate of entropy production. We discuss some general requirements on the coarse-grained length and
time scales arising from both the characteristic microscopic and hydrodynamic scales.

DOI: 10.1103/PhysRevE.67.046704 PACS number~s!: 02.70.2c, 47.11.1j, 47.10.1g, 68.65.2k
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I. INTRODUCTION

A wide range of systems with important applications a
governed by a fine interplay between the atomistic proce
occurring within a small region of the system and the sl
dynamics occurring within the bulk. A large list of exampl
arise in complex flows near interfaces~polymers or colloids
near surfaces, wetting, drop formation, melting, crys
growth from a fluid phase, moving interfaces of immiscib
fluids or membranes, to name only a few!. The computa-
tional expense of realistic-size simulations of these proble
via standard molecular dynamics~MD! is prohibitive, and
such kind of studies require new algorithms that can re
the benefit of the atomistic description of matter where i
really needed, while treating the bulk of the system by mu
less costly continuum fluid mechanics methods.

Several hybrid algorithms of this sort have been propo
in the recent literature. In general, to couple the particle
gion P and the continuum regionC, such hybrid schemes us
an overlapping region comprised of two buffersC→P and
P→C, which account for the two-way transfer of informa
tion: from C to P and vice versa~see Fig. 1!. While the P
→C transfer essentially consists of a coarse-graining pro
dure, atC→P one needs to reconstruct the dynamics o
large collection of particles with only the limited prescriptio
from the C region as input. Moreover, in performing th
reconstruction, the number of unphysical artifacts added~as
Maxwell demons! should be minimized as far as possib
This task is very complicated and represents, in fact,
main part of any hybrid scheme.
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Hybrid algorithms for fluids are relatively recent. The e
egant method introduced by Garciaet al. @1# for rarefied
gases couples fluxes arising from a direct simulation Mo
Carlo ~DSMC! scheme to another region described by co
putational fluid dynamics~CFD!. The DSMC is set at the
finest grid scale of an adaptive mesh refinement hierarc
while a CFD semi-implicit solver is used at the upper lev
scales. In passing, we note that the scheme may, in princ
be implemented using an~MD-continuum! liquid descrip-
tion, although in this case theC solver must be completely
explicit to avoid having to change the particle’s energy in t
iterations of the implicit scheme.

In the case of liquids, the state of the art is relatively le
developed due to the complications arising from the interp
ticle forces. A pioneering work by O’Connell and Thompso
@2# coupled momentum by imposing the local continuum v
locity at C→P via a crude constraint Lagrangian dynamic

FIG. 1. ~a! Spatial decomposition in our hybrid scheme. In th
example, theP region is adjacent to a physical surface represen
by the rightmost shaded area. The continuum region spans the s
to the left at some distance from the surface. The overlapping
gion consists of aC→P cell, where theC flow is communicated to
P, and aP→C cell, where particle-averaged fluxes are injected in
the C flow. Dashed lines delimit the control cells of theC solver,
with areaA and grid spacingDX. The lettersO, W, andE denote
the center of a cell and its west and east surfaces, respectively
main cell’s vectors (nW , nE, and nPC) have been indicated~see
text!.
©2003 The American Physical Society04-1
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Hadjiconstantinou and Patera@3# introduced a reservoir re
gion to impose boundary conditions on theP region ~this
reservoir being the equivalent of theC→P domain defined
here!. While in residence in the reservoir, particles we
given, at each time step, a velocity drawn from a Maxwell
distribution with mean and variance consistent with the
locity and temperature of theC flow. To obtain the boundary
condition for theC region, the authors used a low ord
polynomial to smoothen the field variables derived fromP at
the P→C region. In order to match the boundary conditio
for both theP andC regions, Hadjiconstantinou and Pate
@3# implemented an iterative scheme~based on the Schwar
alternating method! that is suitable for steady incompressib
flows. Liao and co-workers@4# proposed a sophisticate
method~called the thermodynamic field estimator! to extract
continuum fields from the particle data by means of ma
mum likehood inference. This idea may be used to ame
rate theP→C coupling when the flow presents large grad
ents, albeit at a rather large computational cost. To tran
momentum on theP region, Liao and co-workers@4# pro-
posed a new Maxwell demon, called reflecting parti
method. A drawback is that the pressure gradient is then
outcome of the simulation, rather than an input. Finally, F
kkoy et al. @5# used the idea of coupling through fluxes a
also implemented mass transfer. However, energy tran
was still not allowed and only steady flows were consider
The main purpose of the present work is to broaden
scope of such hybrid schemes towards a general descrip
allowing mass, momentum, and energy coupling in unste
flows.

A question of central interest is to decide what kind
information needs to be transferred atC→P and P→C.
There are essentially two possibilities, to transfer either g
eralized forces~fluxes of conserved quantities! or the local
values of the averaged variables. Both kinds of approac
can be found in the published literature. Here, in the con
of energy transfer, we show that under unsteady flows
not sufficient to impose the localC quantities at the bound
ary of P; instead, it is necessary to couple through flux
Another possible benefit of flux coupling was pointed out
Flekkoy et al. @5# who stated that this procedure transcen
the problem of working with fluids whose constitutive rel
tions may be only partially or incompletely known. Althoug
we agree that the flux-based coupling is the correct match
procedure, we show nevertheless that if the transport co
cients atC and P are disparate enough, the hybrid sche
fails to couple the time evolution of both domains. Hence
such cases, the evaluation of transport coefficients~using
standard microscopic techniques, at least for the rang
densities and temperatures under study! is an unavoidable
requirement for the correct behavior of the hybrid schem

The rest of the paper proceeds as follows. The equat
governing the continuum and particle regions and the a
aging procedures are presented in Sec. II. The core of
scheme, describing theC→P coupling for momentum, en
ergy, and mass fluxes, is presented in Sec. III. Genera
quirements on the coarse-graining length and time scales
discussed in Sec. IV. The unsteady flows under which
scheme has been tested~decay of longitudinal and transve
04670
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sal waves! are presented in Sec. V, and in Sec. VI we discu
the results of these tests as far as the main hydrodynamic
thermodynamic variables are concerned. Finally, Sec. VI
devoted to conclusions.

II. OVERVIEW AND GEOMETRY OF THE HYBRID
COUPLING SCHEME

The domain decomposition of the hybrid scheme is
picted in Fig. 1. Two regions need to be distinguished:
particle regionP and the continuum regionC. RegionP is
composed of an ensemble of particles interacting thro
prescribed interparticle potentials and evolving in tim
through Newtonian dynamics. In order to illustrate the co
pling procedure, a Lennard-Jones~LJ! fluid will be consid-
ered. Within P, a numberN(t) of particles, located atr
5$r i% ~the subscripti denoting thei th particle! interacts
through the LJ potentialc(r )54e21@(s/r )122(s/r )6#.
Each particle has a massm, velocity vi , and energye i

5 1
2 mv i

21S jc(r i j ) (r i j 5r j2r i). Their equations of motion

ṙ i5vi , ~1!

mv̇i5f i 5(
j 51

N
dc~r i j !

dri j

r i j

r i j
, ~2!

are solved via standard MD at time stepsDtP.1023t,
wheret5(ms2/e)1/2 is the characteristic time of the LJ po
tential. Throughout the rest of the paper, all quantities will
expressed in reduced units of the LJ potential:t (50.45
310213 s), s (53.305310212 cm), e, m (56.63
310223 g), ande/kB (5119.18 K) for time, length, energy
mass, and temperature, respectively~the numerical values
correspond to argon!.

On the other hand, within theC region the relevant vari-
ables are the macroscopic local densities associated with
conserved quantities, the number densityr(R,t), the energy
densityre(R,t), and the momentum densityj (R,t) ~related
to the local mean velocityu by j5ru). In what follows, the
spatial coordinates of the macroscopic fields are denoted
capital lettersR, while the the microscopic coordinates a
designated by lowercase letters. The conservation laws
the local densities are

]r

]t
52“•ru, ~3!

] j

]t
52“•~ ju1P!, ~4!

]re

]t
52“•~reu1P•u1q!, ~5!

where the specific energye5u2/213T/21f includes the
translational energy, the thermal kinetic energy, and the
tential energyf. The momentum flow contains contribution
from convectionju and the pressure tensorP5P 11t, the
latter including the local hydrostatic pressureP(R,t) and the
4-2
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viscous stress tensor, which satisfy a Newtonian constitu
relation, as shown by previous MD descriptions of the
fluid @7,13#;

t52hS“u1~“u!T2
2

3
“•uD2j“•u. ~6!

The energy current includes convectionreu, dissipation
P•u and conductionq, which can be expressed in terms
the local temperature gradients and the thermal conduct
kc , through Fourier’s lawq52kc“T(R,t). In order to
close the above equations, it is necessary to know the ca
e(r,T) and thermal equations of stateP(r,T), and the con-
stitutive relations for the transport coefficients~shear and
bulk viscosities and thermal conductivity;h, j, andkc , re-
spectively! in terms of a set of independent thermodynam
variables, such asr and T. The equations of state for a L
fluid were extracted from Johnsonet al. @6# and the transpor
coefficientsh, kc , andj from Heyes@7# and Borgeltet al.
@8#. The variables relevant to theC region are the slowe
ones. Using any standard continuum fluid dynamics so
~e.g., based on a finite volume method!, the evolution of the
C variables will be traced at time intervalsDtC@DtP and
evaluated within cells of volumeVl whose size and location
are given by the nodes of a certain mesh,$Rl%, l
5$1, . . . ,Mc%. It will be assumed that the size of theC
→P and P→C regions are the same size as those of
cells used in the spatial discretization of the selected c
tinuum solver, say,Vl5(DX)3. In general, bothDX andDtC
may depend on the type of solver used for theC region, or
on the characteristic length of the particular phenomena
der study. Nevertheless, various intrinsic constraints onDX
andDtC will be mentioned in Sec. IV.

Averages

Averages are needed in order to transfer information fr
the faster time-scale and shorter length-scale particle dyn
ics to the slower and longer coarse-grained description
order to deal with unsteady, nonequilibrium scenarios, av
ages need to be local on the slower time scale and in
coarse-grained spatial coordinates. For any particle varia
sayF i , we define the following averages:

F̄~Rl ,t ![
1

Nl
(

i PVl

Nl

F i , ~7!

^F̄&~Rl ,tC![
1

DtC
E

tC

tC1DtC
F̄~Rl ,t !dt, ~8!

where the summation in Eq.~7! is made over theNl particles
inside the celll.

The averaging procedure is needed to translate theP and
C ‘‘languages’’ to and from each domain. This translation
done within the overlapping region, where the two descr
tions of matter coexist~see Fig. 1!. In particular, within the
P→C cells, the many degrees of freedom arising from
particle dynamics are coarse grained to provide bound
conditions at the ‘‘upper’’C-level. As long as the number o
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degrees of freedom is very much larger atP than atC, this
operation is rather straightforward and is based on the mi
scopic derivation of continuum fluid dynamics@9#. We adopt
the approach advocated by Flekkoyet al. @5#, in making the
information transferred fromP to C to be the coarse-graine
particle fluxes of conserved quantities. These are

ru•nPC5
1

VPC
K (

i 51

NPC

mvi L •nPC , ~9!

P•nPC5
1

VPC
K S (

i 51

NPC

mvivi2
1

2 (
i , j

NPC

r i j Fi j D L •nPC ,

~10!

q•nPC5
1

VPC
K S (

i 51

NPC

me ivi2
1

2 (
i , j

NPC

r i j viFi j D L •nPC ,

~11!

whereNPC is the number of particles inside theP→C cell
andnPC is the surface vector shown in Fig. 1.

By contrast, within theC→P cells, the particle dynamics
must be modified to conform to the averaged-dynamics p
scribed by the continuum description. In other words, o
needs to construct a sort of ‘‘generalized boundary con
tion’’ for the particle dynamics. As pointed out in all previou
papers on the subject@1–3,5#, this represents the most de
manding challenge in that one needs toinvent a way to re-
construct the microscopic dynamics of a large number
particles, based on only a few properties of the local c
tinuum variables. Moreover, to ensure that the effect on
inner P region is minimized, it is crucial to reduce as muc
as possible the unphysical artifacts, such as Maxwell
mons, which are added to the particle dynamics atC→P.
The present work is focused on this problem, which lies
the core of any hybrid scheme.

III. THE C\P COUPLING

This part of the hybrid scheme can be alternatively sta
as the imposition of generalized~mass, momentum, and en
ergy! boundary conditions on an MD simulation box. To de
with this task we have coupled the particle region to a c
lection of flows~with explicit analytical solution!, which in-
volves the whole set of conserved quantities exchan
~mass, momentum, and energy!. In this sense, in the presen
work our C-solver is not numerical but rather analytical.
particular, we use the initial~nonequilibrium! state imposed
at P to calculate the time-dependent analytical solution atC.
This C-flow is then imposed on theP region during the rest
of the simulation, meaning that~appart from the initial state!
the hybrid coupling used in the tests presented here work
one direction only~from C to P).

A. Imposing fluxes under unsteady flows

Following Flekkoyet al. @5#, at C→P we shall commu-
nicate fluxes of conserved quantities. These fluxes co
spond to mass, momentum, and energy transfers through
outer interface of theC→P cell ~the W surface in Fig. 1!.
4-3
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Flekkoy et al. @5# obtained these fluxes from the values
the continuum variables at the center of the control celx
5xO , instead of at the exact position of theC→P interface,
x5xW . We have found that it is essential to take into a
count this apparently unimportant technicality when deal
with unsteady scenarios. Let us consider a general conse
tion equation, with

]f

]t
1“•Jf5Sf , ~12!

whereJf is the flux off and the source term vanishes,Sf
50, as in Eqs.~3!–~5!. Integrating over the control cellC
→P,

]

]tEV
fdV1E

S
Jf•nds50. ~13!

For illustration, we shall restrict analysis to the on
dimensional~1D! situation depicted in Fig. 1. In this cas
one obtains

]

]tEV
fdV2AJfE•nW52AJfW•nW , ~14!

where the subscriptsE ~east! and W ~west! denote that the
variables are measured atx5xE and x5xW , respectively.
The surface vectorsnW and nE are shown in Fig. 1, and in
Eq. ~14! use has been made ofnW52nE . The right-hand
side ~RHS! of Eq. ~14! is the flux current off through the
interfaceW of the control cell, which is precisely the~gen-
eralized! force we want to introduce on the particles at t
C→P buffer. We note that only under steady flows do
JfW5JfO ~to see this, integrate Eq.~12! from x5xO to x
5xW). Hence only in this case does the evaluation of
fluxes atxW using the continuum variables atxO lead to the
same converged steady state as if the variables atxW were
used~although the transients may of course differ!. It is pos-
sible to provide an estimate of the global error arising fro
evaluating the flux at a positionxO shiftedd DX with respect
xW , over a certain time intervalDt. In the case of the mo
mentum equation, the deviation of the stress contribution
the momentum fluxJ5J•n at any instant would be of orde
DJ.¹J dDX, with d5uxO2xWu/DX being the distance to
the C→P interface (d50.5 in Fig. 1!. Assuming that the
mean velocity field can be expressed asu5u•n
;u(k)exp(ikx) (k being the dominant wave number! and us-
ing the Newtonian constitutive relation for the viscous ten
in Eq. ~6!, one obtainsDJ;hLk2u(k)dDX, where hL
54h/31j is the longitudinal viscosity. As a particular ex
ample, we consider a longitudinal wave and evaluate
error along a cycle,Dt52p/(kcs) ~where cs is the sound
velocity!. As a crude estimate, the accumulated error of
cell-averaged momentumj•n5reū is of order reDū
;DJDt/DX; usingre50.5, hL.1, andcs.5, one obtains
Dū/u(k);2pdhLk/(csre).0.3 for the typical wave num-
bers considered here (k;0.2). Simulations carried out with
the momentum flux evaluated atxO yield relative errors of
04670
-
g
va-

-

s

e

to

r

e

e

the averaged velocity atC→P of the same order of magni
tude as this estimate@see Sec. VI C 2 and Fig. 6~b!#. We
observe that most CFD codes provide the continuum v
ables at the center of the control cells~i.e., atxO), so that in
order to evaluate the fluxes pertaining to theC→P exchange
it would first be necessary to make use of simple interpo
tion techniques.

The fluxes arising from the continuum equations@on the
RHS of Eqs. ~15!–~17!# are imposed on the particle en
semble at theC→P cells through expressions involving ato
mistic variables@those on the LHS of Eqs.~15!–~17!#.

ms52Aru•n, ~15!

mŝ v8&1K (
i

NCP

Fi
extL 52A~ruu1P!•n, ~16!

mŝ e8&1K (
i

NCP

Fi
ext
•vi L 2^JQ

ext&•n

52A~ru e1P•u1q!•n, ~17!

where henceforth,n indicates the vector of the outermo
interface of theC→P cell, pointing towardsC. The nomen-
clature used here follows that of Flekkoyet al. @5#: s(t) in-
dicates the number of particles inserted (s.0) or removed
(s,0) from C→P per unit of time; the velocity of the in-
serted or removed particles isv8; Fi

ext is the external force
applied to each particlei within the C→P cell. The total
external force is(NCPFi

ext , where the summation is over th
NCP(t) particles insideC→P. Finally, ^e8& indicates the
energy of the inserted or removed particles and^JQ

ext& refers
to an externally imposed heat current.

As mentioned by Flekkoyet al. @5#, insertion of Eq.~15!
into Eq. ~16! shows that the rates of change of momentu
due to convection and local stresses are correctly introdu
if ^v8&5u and ^( i

NCPFi
ext&52A P•n52A(Pn1t•n), re-

spectively. Note that2Pn is the hydrostatic pressure forc
~pointing inwards theC→P cell!, while the viscous contri-
bution 2t•n depends on the local velocity gradient.

The balance of the energy flux requires some extra c
ditions. In Eq.~17! the convection, dissipation, and condu
tion of energy are balanced if̂e8&5e, ^( i

NFi
ext
•vi&5

2AP•u•n and ^JQ
ext
•n&5A q•n, respectively.

Let us now consider in more detail how the scheme de
with momentum, energy, and mass transfer fromC to P.

B. Momentum exchange

The condition̂ v8&5u ensures the balance of momentu
convection. If the mass flux points towards theP region (s
.0), this condition is fulfilled by choosing the velocity o
the inserted particles from a Maxwellian distribution acco
ing to the local temperature at theC→P cell, P(v8)
5(1/2pmkT)3/2exp@2m(v82u)2/2mkT#. Concerning par-
ticle removal (s,0), we note that if the average velocity a
the C→P cell is equal to the continuum velocitŷv̄&5u,
then the average velocity of the subset of extracted parti
4-4
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CONTINUUM-PARTICLE HYBRID COUPLING FOR . . . PHYSICAL REVIEW E 67, 046704 ~2003!
would be preciselŷ v8&5^v̄&5u. Hence the condition of
velocity continuity atC→P is needed to ensure the corre
balance of momentum convection.

The change of momentum due to local stresses establi
the overall external force exerted on the particle regi
Therefore one needs to determine how the overall exte
force is distributed on each individual particle. Flekkoyet al.
@5# distributed the force according to a certain functiong(x)
satisfying g(xW)5`, g(xO)5g8(xO)50. Normalization
leads to

Fi
ext52S g~xi !

(
i

NCP

g~xi !
D AP•n, ~18!

where x runs perpendicular to theC→P interface and the
applied force is made constant along eachDtC . As g(x)
tends to infinity asx→xW , the applied force diverges as on
approaches theC→P interface; hence the density nearbyx
5xW is very small or zero. The functiong(x) is thus en-
dowed with a twofold purpose: it ensures a limiting exte
sion to P ~as the hydrostatic pressure force always poi
towards theP region, particles will never cross theC→P
interface outwards! while also guaranteeing the existence
a small region where particles can be inserted with very
risk of overlapping.

Despite the benefits of theg(x) function for distributing
the externally imposed momentum, we decided to useg(x)
51 for all x inside theC→P cell. The reasons for this
choice will become clear when explaining the energy
change, below. The first implication ofg(x)51 is that the
external force is equally distributed among all the partic
within theC→P cell. In other words,Fi

ext no longer depends
on the particle label,

Fi
ext5Fext52S 1

NCP
DAP•n. ~19!

The second implication ofg(x)51 is that the particle
density profile near theC→P interface no longer vanishes
so one needs an efficient way to resolve the problem of o
lap on the insertion of new particles. This task is carried
by theUSHERalgorithm, as explained below. Finally, in orde
to ensure a finite extent of the particle region, if a particle~i!
crosses outwards theC→P interface~in Fig. 1, xi5xW2d,
with d.0) with velocity vi , it is substituted by another on
~j! with yj5yi ; zj5zi , xj5xW1d, and withvj5vi . In this
way, the overall momentum is strictly conserved before a
after the particle exchange.

C. Energy exchange

1. Advection

The balance of advected energy requires that^e8&5e
5u2/213T/21f. Decomposing the particle energy into th
kinetic and potential parts,e85(v8)2/21c8, one sees tha
since the new particles are drawn from a Maxwell distrib
tion, thereforê (v8)2/2&5u2/213T/2. By contrast, the bal-
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ance of potential energŷc8&5f is much less straightfor-
ward to implement. This condition is fulfilled by theUSHER

algorithm, described below.

2. Dissipation

One needs to satisfy the following balance of heat dis
pation:

K (
i

NCP

Fi
ext
•vi L 52AP•u•n. ~20!

This condition does not generally hold if the external force
distributed according to an arbitraryg(x). Indeed, it is not
even clear that a functiong(x) exists satisfyingg(xW)→`
and enabling the heat dissipation balance in Eq.~20!. In any
case, such a functiong would depend on the particle’s veloc
ity distribution, and then the problem of findingg would
become a formidable task at each time step.

The advantage of usingg(x)51 now becomes clear. As
long asFi

ext does not depend on the particle label, one c
greatly simplify the left-hand side of Eq.~20! to obtain

Fext
•K (

i

NCP

vi L 5NCPFext
•^v̄&52AP•u•n. ~21!

The last equality follows from construction of the overa
force NCPFext52AP•n, and from the continuity of veloc-
ity ^v̄&5u.

3. Conduction

The condition̂ JQ
ext&•n5Aq•n requires the establishmen

of a heat current along theC→P cell representing the con
duction of energy. This may be implemented by vario
means; for instance, following the idea of Evans and Mor
@9# one may include an extra force that pulls the ‘‘hotte
particles towards the direction of the heat flux and conser
the overall momentum. Alternatively, one may try to impo
a Chapman-Enskog velocity distribution with the desir
heat flux, at some region inside theC→P buffer. In this
work we have made use of the phenomenological Fouri
law, q52kc¹T. A temperature gradient is imposed alon
eachC→P cell by using a set of Nose´-Hoover thermostats
~NHT’s! placed along the direction of the heat flux. Th
outer and inner thermostats are located a distanced apart,
and the temperature difference between both set tod¹T•n.
Typically, at eachC→P cell we have used a set of two o
three NHT’s along a distance of 3s or 4s. The values of the
Q parameter appearing in the NHT formulation@10# were
chosen small enough to minimize unphysical dynamics,
we have chosenQ.5. The main benefit of using the Nose´-
Hoover formulation is the small distortion these thermost
introduce to the particle dynamics compared with other w
of implementing thermostatting@10#.

D. Mass exchange: Particle insertion

One important condition on the particle insertion, inhe
ited from the balance of potential energy, is^c8&5f ~see
4-5
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Sec. III C!. To deal with this task, our strategy has been
place the new particles in positions wherec8.f. As f is,
roughly speaking, the energy needed to insert a new part
we shall insert particles with energies close to the lo
chemical potential. In any case, this implies that the ins
tions need to be made in very precise positions which dep
on the configuration of the rest of the particles. To this e
we have developed an algorithm~USHER! that guides each
new inserted particle to a position where the potential ene
is equal tof ~up to a prespecified threshold!. A brief expla-
nation is given below~see the work of Delgado-Buscalion
and Coveney@11# for further details!. We first note that while
the USHER algorithm guides a new particle to a correct loc
tion, the rest of the particles remain frozen in positio
USHER essentially performs the following steps:

~1! Place the new particle (i 5N11) at an initial position
insideC→P, r (0).

~2! EvaluatefN115( j 51
N fN11,j and

dts5A 2dr

ufN11u
.

Typically one can usedr .s.
~3! Move the new particle according to the update rule

r (n11)5r (n)1
1

2
f N11

(n) dt2,

wheredt5min(Dt ,dts), with D t.0.05 in reduced units.
~4! Evaluate the relative difference between the spec

internal energy of the new particle,cN118 , and that pre-
scribed by the continuum,f: RErr5ucN118 2fu/ufu.

~5! The particle is correctly inserted ifRErr is small
enough~typically ;0.1).

Let us show how theUSHER algorithm easily overcome
the problem of possible initial overlap with preexisting pa
ticles. An overlap leads to very large values of the interp
ticle force, f N11@1, so in this casedts!1 anddt5dts .
But by construction, during the intervaldts , the new particle
moves a distance of the order of the particle sizes in the
direction of minimum energy, just enough to avoid any init
overlap. Then, as the particle steadily moves towards a l
minimum of energy,f N11 decreases, anddts increases until
it becomes larger thanD t . Then,dt5D t is fixed. For liquid
densities varying betweenr50.5 and20.8, theUSHER al-
gorithm typically needs 15–90 iterations~single-force evalu-
ations! to correctly place a new particle@12#. By introducing
the particles withc85f(16RErr), we found that, upon av
eraging overDtC , the condition̂ c8&5f holds within about
2% ~even using values ofRErr as large as 0.5).

Until now we have not mentioned any limitation on th
sizes of the coarse mesh and time step,DX anddtC . Com-
ments on this topic are very scarce in the previous litera
on hybrid methods for fluids. Moreover, since the local a
erages are made using these spatial and temporal window
is also appropriate to formulate any condition onDX and
DtC before presenting the results of the tests carried out
different flows.
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IV. LENGTH AND TIME-SCALE PREREQUISITES

A. Arising from consideration of the microscopic description

Continuum fluid dynamics rest on the local equilibriu
assumption. This means that, in order to define a local th
modynamic and hydrodynamic state characterizing
coarse-grained variables at theC→P and P→C cells, the
size of these cells needs to be greater than the mean free
l extracted from the particle dynamics. Moreover, the lo
equilibrium within each cell should be attained on tim
scales smaller thanDtC . This means thatDtC has to be
larger than the collision timetcol . In summary,DX.l and
DtC.tcol . In the case of a LJ fluid, it is possible to use t
hard-sphere approximation to make an order-of-magnit
estimate,DX.0.2r21 andDt.0.14r21T21/2. These condi-
tions become less restrictive at larger densities; as an
ample, forT51, r50.5, and a typical MD time stepDtP

;1023, local equilibrium would requireDtC /DtP>100 in-
tegration steps.

B. Arising from consideration of the hydrodynamic
description

Conditions onDX and DtC are firstly imposed by the
smallest characteristic length and time scales involved in
process under investigation~say, 2p/kmax and 2p/vmax, re-
spectively!. Practically, to correctly recover the smallest sp
tio temporal flow pattern, one needs at least eight points
period, soDtC<p/4vmax andDX<p/4kmax. The numerical
stability of theC-solver algorithm may also impose limita
tions. As mentioned in Sec. I, algorithms with explicit tim
discretization are better suited for theC solver of a hybrid
scheme. A necessary condition for their numerical stability
C5UDtC /DX<1/2, whereC is the Courant number andU
the maximum characteristic flow velocity. The value ofU
depends on the physical process one is dealing with, bu
provide numbers in the present discussion, let us assume
we are dealing with low or moderate Reynolds numbe
Then, if the process is a diffusive one,U5n/DX; alterna-
tively, if sound waves are relevant within the flow,U5cs . In
summary, the computational window forDtC should be
0.14r21T21/2,DtC<DX/(2U). Using the maximum grid
spacing allowed,DX5p/4kmax, one obtains the computa
tional windows forDtC shown in Fig. 2 versusr, for kmax
5$0.1,0.2%, U5$n/DX,cs%, and T52.5. As expected, a
sound wave requires smaller time steps than a diffusive p
cess. For large enoughkmax, the temporal and spatial com
putational window may be highly localized; e.g., forr
50.5, one should use 0.2,DtC,0.5 if waves with wave-
lengths smaller than 30s need to be captured by the coars
grained description. As the density decreases, these co
tions become much more restrictive, until the acoustic ti
finally becomes smaller than the collision time~see Fig. 2!.
Also, in rarefied gases, ifr,kmax/4, the mean free path
becomes larger than the wavelength, but here we shall no
concerned with situations where the Navier-Stokes equat
are not appropriate~see Garciaet al. for further discussion
@1#!.
4-6
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V. TESTS: HYDRODYNAMIC MODES

As already mentioned, our hybrid scheme has been te
under stationary and unsteady flows. Typical stationary n
equilibrium states were considered, such as heat conduc
profiles @13# and Couette profiles@5,13#. The microscopic
reconstruction of these flows has been so well studied in
literature that nothing new may added here. In passing,
note that the transient times to achieve the steady state
the rest solution were found to be in agreement with
diffusive timesLx /k and Lx /n. The rest of the discussio
will be focused on our choice of unsteady scenarios, wh

FIG. 2. Conditions imposed on the time step of the continu
solver DtC plotted versus the number densityr. Variables are ex-
pressed in the LJ reduced units@s for length andt5(s2m/e)1/2 for
time#. As discussed in Sec. IV B,DtC has to be greater than th
collision timetcol ~the thick solid line! and smaller thanDX/(2U)
~indicated with dashed and dash-dotted lines!. The typical flow ve-
locity U is chosen to be either the sound velocityU5cs or the
diffusive velocityU5n/L, according to each case discussed in S
IV B. The grid spacing isDX5p/(4kmax), wherekmax is the largest
wave number to be captured within the flow.
la
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are described by the decay of transversal and longitud
waves. These flows are now briefly presented, using stan
hydrodynamics.

Consider a fluid at equilibrium characterized by homog
neous mass densityre, specific energyee, and a vanishing
mean velocityue50. Our procedure is to perturb this equ
librium state with different hydrodynamic fields$rp,u,ep%
~periodic in thex direction, i.e.,k5ki) and then make use o
the C→P coupling scheme described in Sec. III to veri
that, within the particle region, the subsequent evolution
wards equilibrium is carried out in a hydrodynamically co
sistent way. If use is to be made of the linear hydrodynam
theory, the externally induced perturbations should be sm
enough to guarantee that the relaxation process is alw
governed by the linearized mass, momentum, and ene
equations~3!–~5! @14#. We defer further discussion of thi
point to Sec. VI below.

As is customary, to solve the linearized set of equation
Laplace-Fourier transform~LFT! is first performed@14#. The
LFT of any perturbative variable, sayF(r ,t), will be de-
noted as

F~k,t ![E
2`

`

F~r ,t !exp~2 ik"r !dr , ~22!

F̂~k,z![E
0

`

dzexp~ izt!F~k,t !dt. ~23!

The LFT of the linearized equation@Eqs. ~3!–~5!# leads to
the following algebraic system forF̂5( r̂p,T̂p, ĵ x

p , ĵ y
p , ĵ z

p)
@14#,

MF̂T~k,z!5FT~k,0!, ~24!

where the hydrodynamic matrix is

.

M5S 2 iz 0 ik 0 0

0 2 iz1kgk2 ik
g21

rea
0 0

ikcs
2/g ikD 2 iz1bk2 0 0

0 0 0 2 iz1nk2 0

0 0 0 0 2 iz1nk2

D . ~25!
We note that instead of usingep, the energy equation is
expressed in terms of temperature fluctuations. Also, for c

ity, it is better to write the solutionF̂ in terms of thet50
Fourier-transformed perturbative heat densityQp and pres-
surePp. These quantities are related torp and Tp through
the relations
r- ep5cvTp1S ]e

]r D
Te

rp, ~26!

Qp5recvS Tp2
g21

rea
rpD , ~27!
4-7
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Pp5
mcs

2

g
~reaTp2rp!. ~28!

Herecp andcv are the specific heats at constant pressure
volume, respectively;g5cp /cv is the adiabatic coefficient
k5kc /cpre is the thermal diffusivity;a52(]r/]T)P /re

the thermal expansion coefficient; and the kinematic long
dinal viscosityb5(4h/31j)/re is related to the sound at
tenuation coefficientG through 2G5b1(g21)k. Finally
D5(]P/]T)r and the adiabatic speed of sound iscs

2

5g(]P/]r)T .
Provided that, in the hydrodynamic limit, the wavelengt

of the perturbations are much larger than the mean inter
ticle distance, it is sufficient to obtain the solution of Eq.~24!
up to O(k2) @14#. Puttingz→vPR into Eqs.~24! and ~25!
leads, after some algebra, to the following identities

T̂~k,v!5
EkQ~k,0!

recp

1
g21

rea
ESRP~k,0!1

g21

reacs

ESIj x~k,0!,

~29!

r̂~k,v!52
a

cp
EkQ~k,0!1

1

mcs
2

ESRP~k,0!1
1

cs
ESIj x~k,0!,

~30!

ĵ x~k,v!5
1

mcs
ESIP~k,0!1ESRj x~k,0!, ~31!

ĵ y~k,v!5En j y~k,0!, ~32!

ĵ z~k,v!5En j z~k,0!, ~33!

and, using Eqs.~27! and ~28!,

Q̂~k,v!5EkQ~k,0!, ~34!

P̂~k,v!5ESRP~k,0!1mcsESIj x~k,0!, ~35!

where the following propagators have been introduced,

Ek~k,v!5exp~2kk2t !, ~36!

ESR~k,v!5exp~2Gk2t !cos~cskt!, ~37!

ESI~k,v!52 iexp~2Gk2t !sin~cskt!, ~38!

En~k,v!5exp~2nk2t !. ~39!

The shear or transverse modes correspond to momen
perturbations alongy and/orz axis ~i.e., perpendicular to the
wave vectorki); from Eqs.~32! and~33!, it is clear that they
are completely decoupled. The remaining hydrodynam
variables$rp,Tp, j x

p% are coupled and conform to three lo
gitudinal modes that can be divided into two subgroups: t
sound modes~involving longitudinal momentum and pres
sure at constant entropy! and one heat mode~involving heat
diffusion!. The fact that the heat density is an independ
mode is evident from Eq.~34!, where it is seen that it relaxe
04670
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diffusively, being proportional to exp(2kk2t). We note that
Qp5Tesp is essentially the fluctuation of the entropy dens
sp @14#. From Eqs.~31! and ~35!, it is easily shown that the
two sound modes (P̂/cs6 ĵ x) decay like exp(ikcst2Gk2t).

VI. RESULTS

A. Setup and initial states

The coupling scheme was implemented and tested in
setup shown in Fig. 3. The system is periodic alongy andz
directions, and the gradients of the continuum variables
set along thex direction. The particle region occupies a r
gion of sizeLx aroundx50 and of sizeLy5Lz along the
periodic directions. TheP region is divided into control cells
of sizeDX, wherein local averages are taken. The center
the two C→P slabs~the outermost cells! are situated atx
56uLx2DX/2u. The deviation from the local equilibrium
assumption was monitored in terms of the relative differen
of the cell-averaged pressure and energy with respect
values given by the equation of state of Johnsonet al., Ref.
@6#. Around a distance 1.5s away from theC→P interface,
the typical maximum deviations were only about 6%.

The initial perturbative flow was prepared by first lettin
the P region relax until a vanishing and homogeneous me
flow was obtained. Then, during a small time interv
(;3t), the particle velocities were periodically changed a
cording to a Maxwellian distribution with the desired velo
ity profile and local cell temperature. The resulting initi
state was then analyzed to extract the Fourier componen
the whole set of flow variables (v, r, T, e, P). For the sake
of consistency these were extracted by Fourier transform
the cell-averaged variables,

f̄cos
(n)~ t ![

cn

Mc
(

l

Mc

f̄~Xl ,t !cos~knXl !, ~40!

f̄sin
(n)~ t ![

cn

Mc
(

l

Mc

f̄~Xl ,t !sin~knXl !, ~41!

where kn5nk (nPN); and cn51 for n50, and cn52
otherwise. In any case, it was checked that the Fou
transform of the microscopic variablesf (n)5cn( i

Nf(xi ,t)
3exp(2iknxi)/N yields essentially the same output as Eq
~40! and ~41!.

The initial Fourier transforms calculated from Eqs.~40!
were injected into Eqs.~29!–~35! to obtain the time evolu-
tion of the continuum variables. These, in turn, were used
calculate the fluxes imposed on theC→P cells over time.
The transport coefficients used were those reported in
literature@7,6#. As an interesting check, it was found that th
coupling scheme failed significantly if the transport coef
cients used in theC region differed by more than about 15%
from those of the LJ fluid. In particular, the oscillation fre
quency of the averaged particle velocity differed with resp
to that ofC, while correlations decayed at a faster rate th
those of theC flow. Therefore, in cases where the constit
tive relations are not known, this result means that it is fi
necessary to measure the transport coefficients from the
4-8
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ticle dynamics~using any standard molecular technique!, be-
fore applying the hybrid scheme, particularly if unstea
flows are to be studied.

The wavelengths of the initial perturbations were chos
to be much larger than the mean free path~i.e., 2pl/k
!1), in order to work within the hydrodynamic regime.
other words, the dependence of the transport coefficient
the wavenumber was negligible@14#. The amplitudes of the
initial perturbation were chosen small enough to ensure
the subsequent relaxation process could be described b
linear theory. In particular, ifv̄(1)(t) is the maximum Fourier
amplitude of the velocity, the typical values of the Reyno
number at t50 @Re5uv̄(1)ure /(kh)# were Re(0)<3. As
uv̄(1)(t)u decays exponentially, convection was present o
in the first stages of the relaxing flow, but it was not stro
enough to produce significant deviations from the line
theory „nonlinear effects become dominant for Re.O(10)
@15#…. The maximum Mach number was less than 0.2, a
density fluctuations were aroundur̄ (1)u/re;Ma2.0.05.

In another test, the hybrid scheme was applied to a flui
mechanical (u50) and thermodynamical equilibrium (r
50.5, T53.5, e52.7, P53.2) during a longer simulation
(50t) to check for any possible spurious drift in the over
momentum and energy@note that Eq.~15! ensures the mas
conservation by construction#. During this calculation, the
total momentum inside theP region was conserved up to
31024, and the total energy fluctuated;5% around its
equilibrium value. The size of these fluctuations is consist
with the system size~which containedN51600 particles and
a specific heat ofcv51.8). Note that the total energy of th
system cannot be conserved because a part of the syst
connected to a thermostat, and it also receives mecha
energy fromC.

B. Transversal waves

In order to test the transfer of momentum flux along t
direction perpendicular to theC→P interface, planar shea
waves alongx were excited in a LJ fluid withr50.5, T
52.5, andh50.7560.05 ~the error bar comes from Re

FIG. 3. The setup for which the scheme has been tested~here
region P is surrounded byC). The fluxes of continuum variable
are imposed along thex direction, whiley andz are periodic. The
hybrid coupling is applied at theC→P cells and the heat current i
established along the Nose´-Hoover thermostatted regions whos
thickness is set between (3 –4)s. We usedDX5(1 –2)s, Lx

5(10–40)s andLy5Lz5(7 –9)s.
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@7#!. These waves were created by imposing sinuso
y-velocity profilesvy(x)5vy,sin

(1) sin(kx).
Figure 4 shows results for perturbations withvy,sin

(1) 51.0 in
a system withLx520s, Ly5Lz57s, and Mc510 cells
(DX52). The filled circles in Fig. 4~a! correspond to the
main Fourier component of the velocityv̂y,sin

(1) for a calcula-
tion using wave numberk50.31. The relaxation process
indeed exponential, until the noise-to-signal ratio becom
large enough~around t.10) and the observed decay ra
(0.1460.1)t21 agrees perfectly with the theoretical value
k2h/re. To explicitly appreciate the effect of the hybrid cou
pling, we show@open circles in Fig. 4~a!# the outcome of a
calculation in which the unsteady shear stress contributio
the external forceFext was set to zero, leaving just the con
tribution of the equilibrium hydrostatic pressure. As e
pected, if less momentum flux is provided towardsP, the
decay rate is appreciably slower (0.07t21) than the hydro-
dynamic one (0.14t21). Figure 4~b! shows the autocorrela
tion function~ACF! of v̂y,sin

(1) (t) for another perturbation with
a slightly different wave number,k50.35. The good agree
ment with the theoretical decay@exp(20.17t), in dashed
line# shows that the scheme is able to deal with small va
tions in the perturbation shape.

C. Longitudinal perturbations

Longitudinal waves transport mass, momentum, and b
mechanical and thermal energy; they are therefore perfe
suited for an overall test of the hybrid scheme behavior.
our setup the wave vector of these waves was perpendic
to theC→P interface, and they were generated by impos
mean velocities along thex direction as either pure cosinu
soidal, sinusoidal profiles, or combinations of both profile
As explained before, the particle velocities were extrac
from Maxwell-Boltzmann distributions at the local mean v
locities and at a constant temperature. The mean velo
profile induces pressure, density, and energy fluctuati
with a periodic pattern in thex direction. The temporal be
havior of the main flow variables is now described.

1. Mass

One of the main problems involved in the hybrid ma
transfer atC→P is that although the continuum flux is
floating point number, one can only possibly exchange
integer number of particles. In order to adhere closely
possible to the prescribed continuum mass flux, the follo
ing procedure is followed during each interval,tC,t<tC
1DtC , tC5mDtC , mPN. The first one evaluates the qua
tity

j~ tC![E
tC

tC1DtC
s~ t !dt. ~42!

This floating point number, which represents the number
particles that should cross theC→P interface alongtC,t
<tC1DtC is converted into an integerdN(t) by the follow-
ing construction:
4-9
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dN~ t !5NINT@j~ tC!#1dj~ t2tk!, ~43!

dj~ t2tk!5 INTF E
tk

t2DtP
@j~ t8!2dN~ t8!#dt8G , ~44!

where tk is such thatudj(t2tk)u<1 and 05t0,tk,tk11.
The deviationdj(t2tk) assimilates the errors made throu
successive rounding off (j→ NINT @j#). When udj(t2tk)u
becomes larger than 1~at t5$tk%), a particle is added to~or
extracted from! dN and the correctordj is then reset to zero
To minimize the effect on the remaining particles over ea
intervalDtC , the particle crossings are regularly separated
time at a rate as close as possible todN(tC)/DtC . As illus-
trated in Fig. 5, this kind of procedure enables us to foll
rather closely the desired mass flux.

2. Momentum

Figures 7–9 show the time dependence of the Fou
components of the main hydrodynamic and thermodyna
variables. Dashed lines correspond to the theoretical tre
obtained via the inverse Fourier transform of Eqs.~29!–~35!.

For the reasons explained in Sec III A, it is particular
important to ascertain that the averaged velocity atC→P
correctly follows the desired continuum flow velocity. Figu
6 shows the instantaneousv̄x and time-averaged velocit

^v̄x& at both C→P cells. We obtained a very good agre
ment, the deviation of̂v̄x& with respect the continuum valu
being less than about 5% along most part of the dam
oscillation ~see Fig. 6!. The importance of evaluating th
continuum fluxes at precisely theC→P interface (xW in Fig.
1! is illustrated in Fig. 6 by comparison with the outcome
a calculation in which the fluxes are evaluated atx5x0. For
this calculation, the deviation with respect to the continu
prescription is clear and its magnitude agrees with the e
mate made in Sec. III A;30%.

Figure 7~a! shows the time evolution of the Fourier am
plitudes of the velocity in one of the calculations~a pure
cosinusoidal perturbation withv̄x,cos

(1) 50.6). The overall ve-

locity v̄x,cos
(0) remains close to zero, confirming that th

method conserves the initial total momentum. Thev̄x,sin
(1)

component~initially set to zero! has been also included t
display the level of noise. The ACF ofv̄x

(1)5 v̄ (x,cos)
(1)

1iv̄(x,sin)
(1) is shown in Fig. 7~b! for two runs with different

initial profiles ~for more details see the caption of Fig. 7!.
These data were fitted to the hydrodynamic expression a
ing from Eq. ~31!, and in Fig. 7 these fits are shown wi
dashed lines. The best fit to the velocity was obtained w
Gk250.076 andcsk50.867, while for the ACF it yielded
Gk250.072 andcsk50.867. These values coincide, with
the error bars, with those imposed by theC flow ~obtained
upon insertion of the transport coefficients reported in
literature@7#! 0.071 and 0.88, respectively.

3. Thermodynamic variables

We start by observing that, unlike longitudinal momentu
and pressure, the relaxation of density, temperature, and
04670
h
n

r
ic
ds

d

f

ti-

is-

h

e

n-

ergy perturbations includes not only an acoustic part, but a
an entropic contribution proportional to exp(2kk2t) @see Eqs.
~29!–~39!#. However, as the initial perturbation consider
was a mechanical one (T(n).0), the entropic contribution is
rather small. This can be seen in the theoretical express
written in Fig. 6: the amplitude att50 of the entropic part of
any heat-related variable is nearly six times smaller than
mechanical counterpart. This observation led us to a m
careful study of the effect of heat conduction. As explain
in Sec. III C 3, heat currents through eachC→P cell were
created by imposing several~typically two! NHT’s placed
close to theC→P interface over a distance of 4s. We found
it very informative to study the effect of the numberp of
NHT’s perC→P cell ~notation:p-NHTCP) on the collective
behavior of the system. In some calculations, this num
was reduced to merely 1-NHTCP in such a way that only the
local temperature prescribed by the continuum was impo
~and not the heat flux!. The results of this comparison may b
seen in Figs. 8 and 9. Calculations using 1-NHTCP yielded
essentially the same evolution of the velocity and pressur
those with a larger number of NHT’s, although the press
for the 1-NHTCP case showed a slight phase lag, see F
8~d!. This is not surprising asv andP are governed by acous
tic terms and are independent of heat transfers. Us
1-NHTCP , deviations onrp, ep, andTp with respect to the
hydrodynamic trend are indeed appreciable, while res
with 2-NHTCP adhere closely to the analytical curves~see
Fig. 8!. In any case, the calculation of the entropy product
is the best way to highlight the completely different qualit
tive behavior of 1-NHTCP with respect to two~or more!
NHTCP .

4. Entropy

The entropy fluctuation, or more precisely the perturb
tion of heatQp5Tesp, was calculated using Eq.~27!. We

FIG. 4. ~a! The main Fourier component of the cell-averag
velocity vy,sin

(1) @in units ofs/t, with t5(s2m/e)1/2]. Results corre-
spond to a transversal wave with wave numberk50.31. Compari-
son is made between a calculation in which the full expression
the external forceFext was imposed~filled circles! and another
which did not include the viscous contribution~open circles!. The
dashed line is the correct hydrodynamic decay.~b! The nondimen-

sional ACF of v̄y,sin
(1) (t) for another transversal perturbation withk

50.35 showing the theoretical decay in the~partially hidden!

dashed line. In all cases, the initial amplitude wasv̄y,sin
(1) 51.0 and

Lx520s, Ly5Lz57s. In abscissas, time is nondimensionaliz
with the LJ reduced time unitt5(s2m/e)1/2.
4-10
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note that, in order to reproduce the steady diffusive h
decay in Eq.~30!, an exact cancellation of the acoustic o
cillations coming fromrp andTp is necessary@see Eqs.~30!
and ~29!#. As stated above, the contribution associated w
heat diffusion in Eqs.~30! and ~29! is rather small as com
pared to the mechanical one. This observation indicates

FIG. 5. The total number of inserted particles*0
t dN(t8)dt8 at

the rightmostC→P cell, along a simulation of a longitudinal wav
with k50.168 inside a region (Lx540s, Ly5Lz59s) with re

50.53 andTe53.5. The initial perturbative velocity profile wa
ux50.60 cos(kx). The dashed line is the continuum prescripti
*0

t s(t8)dt8 ~see text!. Time has been nondimensionalized witht
5(s2m/e)1/2.

FIG. 6. The velocity at bothC→P cells for the same paramete
as in Fig. 5. The dashed line is the continuum prescription~partially
hidden!. In ~a! we show the outcome of a calculation in which th
momentum flux from theC region was evaluated atx5xW ~see Fig.

1!; the instantaneousv̄x velocities are shown in lighter dotted line

while thicker solid lines are the time-averaged velocities^v̄x&. In
~b! we show the time-averaged velocities for another calcula
with the same parameters as in~a!, but evaluating the momentum
flux at x5xO . All variables are nondimensionalized with the L
potential units@s for length andt5(s2m/e)1/2 for time#.
04670
at
-

h

at

small mechanically driven fluctuations around the local th
modynamic equilibrium may become large enough to a
the purely exponential heat decay. In other words, Eqs.~27!
and ~34! provide a demanding test of the coupling sche
under the present flow. Figure 9 shows the main Fou
component of the heat perturbationQp obtained for 1- and
2-NHTCP . The dashed lines correspond to the theoreti
expectation. It is evident that the 1-NHTCP case does no
obey the second law of thermodynamics at all. On the c
trary, a rather good agreement with the theoretical trend
obtained when using at least 2-NHTCP . In Fig. 9, it is seen
that the behavior measured in the 2-NHTCP case exhibits
fluctuations around the theoretical straight line. Typically, t
largest excursions last around 3t from pure exponential de
cay. As previously stated, they may be due to the weakn
of the entropy perturbation, but to confirm this statement
plan in the future to study some heat-driven flows~such as a
heat pulse with initial zero mean velocity!.

VII. CONCLUSIONS

We have presented the core of a hybrid continuu
particle method for fluids at moderate-to-large densit
which couples mass, momentum, and energy transfers
tween two regions,C andP, described respectively by con
tinuum fluid dynamics and by discrete particle Newtoni
dynamics. Both domains

n

FIG. 7. ~a! Time evolution of the Fourier transforms ofx veloc-

ity v̄x
(n) for the pure cosinusoidal perturbation of Fig. 5. In~b!, the

nondimensional ACF ofv̄x
(1)(t), corresponding to the pure cosinu

soidal perturbation~solid line! and to another initial perturbation

with $v̄x,cos
(1) (0),v̄x,sin

(1) (0)%5$0.60,0.25% ~dash-dotted line!. In ~a! and
~b!, the dashed line is the theoretical hydrodynamic solution. T
remaining parameters are the same as those in Fig. 5. Variable
nondimensionalized with the LJ potential units@s for length and
t5(s2m/e)1/2 for time#.
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FIG. 8. Time dependence o
the Fourier amplitudes of the~a!

temperatureT̄sin
(1) , ~b! density rsin

(1)

@5Si exp(ikxi)/N#, ~c! energy per

particleēsin
(1) , and~d! pressureP̄sin

(1) .
All quantities are nondimensional
ized with the LJ potential units (s
for length ande for energy!. Com-
parison is made between a simul
tion with two Nosé-Hoover ther-
mostats per C→P cell
(2-NHTCP), and another using
only one (1-NHTCP , dotted line!.
In each figure, the analytical hy
drodynamic expressions for th
dominant Fourier component~in
dashed lines! are explicitly writ-
ten. The initial amplitudes were

v̄x,cos
(1) (0)50.60, T̄sin

(1)(0)520.06,

P̄sin
(1)(0)50.25, andrsin

(1)(0)50.022.
lls

y

r
of

rg
s
th
w
ro
W

e

ct
b
s

p

in
cle
l
e

rg
nt
-

an
e
el

ual
ap-
n-

va-

le-
t
re
di-

ed
ur
ng

-
ns-
ing

ur-

e

overlap within a coupling region divided into two subce
which account for the two-way exchange:C→P and P
→C. While the procedure at theP→C cell is simply to
average the particle-based~mass, momentum, and energ!
fluxes in order to supply open boundary conditions to theC
domain, the operations at theC→P cell are much less
straightforward as they need to reconstruct a large numbe
~particles’! degrees of freedom only from the knowledge
the three fluxes of conserved quantities arising withinC. The
present work has been concerned with extending theC→P
coupling to arbitrary rates of mass, momentum, and ene
transfer. To this end, the proposed method has been te
under unsteady flows which demand conformance to
whole set of conserved variable densities. In particular,
have considered the set of relaxing flows arising from hyd
dynamics, namely longitudinal and transversal waves.
have followed the idea proposed by Flekkoyet al. @5#, in the
sense that the scheme is explicitly based on direct flux
change between theC and P regions. In order to deal with
unsteady scenarios, we have shown that the fluxes inje
into the particle region from the continuum region need to
measured exactly at theC→P interface and not at the node
of the continuum lattice.

The implementation of flux exchanges requires the sup
of energy currents to the particle system arising from theC
domain due to advection, dissipation, and conduction. To
ject the correct amount of advected energy, the parti
averaged specific energy at theC→P cell needs to be equa
to the continuum value. This can only be achieved if the n
inserted particles are placed at positions where the~interpar-
ticle! potential energy equals the C-specified internal ene
per unit mass. This severe condition has been impleme
by the USHER algorithm, whose purpose is twofold: to pro
vide the correct mass transfer rate and to ensure the bal
of energy advection. In the proposed scheme, the balanc
energy dissipation arises naturally, provided that the c
04670
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averaged velocity and the injected momentum flux eq
their continuum counterparts. This is made possible by
plying the external force according to a flat distribution, i
stead of a biased one as used by Flekkoyet al. @5# but as a
result, the new particles have to be inserted within a non
nishing density environment. This is sorted out by theUSHER

in a very efficient way. Energy conduction has been imp
mented by using a set of Nose´-Hoover thermostats adjacen
to the C→P interface, whose temperature and position a
determined through the continuum local temperature gra
ent. Confirmation of the validity of this procedure is obtain
from the correct rate of entropy production computed in o
simulations of longitudinal waves. We showed that usi
only one thermostat perC→P cell ~i.e., providing only the
local value ofT but not the heat flux! leads to negative en
tropy production. Therefore, in the context of energy tra
fer, this result reinforces the central importance of coupl
through fluxes proposed by Flekkoyet al. @5#.

FIG. 9. The main Fourier amplitude of the heat density pert

bation2^Q̄sin
(1)&(t) time-averaged alongDtC51.0 ~and multiplied by

21). The parameters are the same as those of Fig. 5~and 8! and
heat density is in units ofe/s3. The dashed line corresponds to th
theoretical decay. Comparison is made between two (2-NHTCP)
and one (1-NHTCP) Nosé-Hoover thermostats perC→P cell. The
latter violates the second law of thermodynamics.
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Enhancements to the present scheme are under inves
tion and merit some discussion here. The number densit
C→P may be controlled by a feedback algorithm whi
preserves the momentum flux balance. Other kinds of im
mentations for the energy transport by conduction also
serve to be considered. Finally, we plan to implement
P→C coupling in conjunction with a finite volume CFD
solver in 3D. In order to extend the coupling scheme
higher dimensions, some additional complications will ne
to be adressed. First, a mass flux will be assigned to each
within an array of neighboringC→P cells. To adhere to
mass continuity, particles will then have to be inserted wit
precisely defined finite regions and the insertion algorit
may have to pay an extra computational cost for this rest
tion of the search domain. We have checked, however,
the distance traveled by theUSHERalgorithm from the initial
trial position to the final insertion site is rather small@11#
~typically, less than 1s and less than 0.5s on average! so we
do not expect any significant extra cost if the search
insertion sites is done within volumes larger than (2s)3. In
higher dimensions, one may also have to smooth to so
extent the variations of the mean mechanical quantities
posed along theC→P region. To this end, it may be nece
-

i-
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sary to interpolate the external force along neighboringC
→P cells in such a way that the local momentum flux im
posed at eachC→P cell is still preserved. In the same wa
although the Maxwell distribution, used here to choose
velocities of the new particles, proved to be sufficient
ensure momentum continuity for 1D coupling~i.e., with no
neighboringC→P cells!, it may be convenient to use
Chapman-Enskog distribution in higher dimensions. This
ter distribution enables the average velocity of the inser
particles to conform to the velocity gradient along neighb
ing C→P cells. We hope to report our findings in these are
in future publications.
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