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Flux boundary conditions are interesting in a number of contexts ranging from multiscale simulations to
simulations of molecular hydrodynamics in nanoscale systems. Here we introduce, analyze, and test a general
scheme to impose boundary conditions that simultaneously control the momentum and energy flux into open
particle systems The scheme is shown to handle far from equilibrium simulations. It acquires its main char-
acteristics from the requirement that it fulfills the second law of thermodynamics and thus minimizes the
entropy production, when it is applied to reversible processes. It is shown both theoretically and through
simulations that the scheme emulates the effect of an extended particle system as far as particle number
fluctuations, temperature, and density profiles are concerned. The numerical scheme is further shown to be
accurate and stable in both equilibrium and far from equilibrium contexts.
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I. INTRODUCTION

Both equilibrium and nonequilibrium particle simulations
always require boundary conditions in addition to the pre-
scription of the bulk dynamics. These boundary conditions
may act to simulate an extended particle bath, as in standard
equilibrium ensembles or a condition that maintains the sys-
tem away from equilibrium as in a shear flow simulation.
This is true whether the particle interactions are conservative
as in a classical molecular dynamics simulation �1�, or dissi-
pative as in dissipative particle dynamics �2� or granular sys-
tems.

While well-established techniques exist to introduce a
pressure �3� or a temperature �4� in a nonlocal way, the
present paper introduces local boundary conditions that al-
lows the fluxes of momentum and energy to be simulta-
neously specified either as free parameters or in order to
simulate an external reservoir. Such boundary conditions
may be required in a wide variety of contexts where the
hydrodynamic flow needs to be simulated on the molecular
level, whether one studies imbibition in carbon nanotubes
�5�, flows around proteins, or through layered liquid films
�6�. Examples of such systems and processes also include
temperature controlled, strong shears in nanolayers, or cross-
phenomena such as the thermomolecular effect in nanotubes
�7�, and the osmotic flow of water through membranes �8,9�.

Particle flux boundary conditions are interesting in par-
ticular for the design of multiscale simulation schemes where
particle and continuum simulations are coupled by flux ex-
change algorithms �10–14�. For these schemes to be conser-
vative the flux leaving one system must enter the other. In
existing schemes the particle fluxes have been imposed by
techniques that only produce the desired average fluxes, and
are unstable or burdened with certain undesirable features
�15,16�. The present scheme introduces the exact fluxes into
the particle system. Moreover, it is analyzed and derived by
a statistical mechanical argument.

Our model is derived from the requirement that it be pos-
sible to impose reversible changes through the flux boundary

conditions, i.e., that local equilibrium distributions be pre-
served and the entropy production minimized. From this it is
shown how our algorithm may be used to perform molecular
dynamics, or other particle simulations of systems which are
governed by the grand canonical ensemble. Our approach
differs from previous simulations using this ensemble �17�
by the use of open boundaries that connect to a reservoir of
particles from which the flow of momentum and energy is
controlled. Processes that are most effectively studied in the
grand canonical ensemble include the equilibration of thin
Black Newton films �18�, the swelling of clays in water
�19,20� or water between lamellar lipid structures �21�.

We note that the scheme may also be applied to some
nonstandard equilibrium ensembles. For instance, by setting
the energy flux to zero and the momentum flux to a pre-
scribed pressure p, an ensemble of fixed energy and pressure,
but variable particle number N, may be simulated.

In the present paper some simple 2D test simulations are
carried out using soft sphere potentials, of both equilibrium
and nonequilibrium processes. The scheme is shown to ex-
hibit the predicted equilibrium behavior and remain both
stable and accurate in far from equilibrium processes. The
equilibrium behavior coincides with the theoretical predic-
tions as far as density, temperature, and chemical potential
profiles are concerned. Also, the energies are shown to sat-
isfy the Boltzmann distribution and the particle number fluc-
tuations reproduce the standard predictions of the grand ca-
nonical ensemble. The nonequilibrium processes examined
include a freely expanding gas, in which case the model is
shown to be both stable and numerically accurate, and shear
flow simulations where the flow measurements agree with
simple hydrodynamic predictions.

The paper is organized as follows: In Sec. II the basics of
the model are defined, In Sec. III the details are worked out
and statistical mechanical arguments applied to derive the
particle insertion and removal procedure. In Sec. IV the
model is applied to simulate equilibrium ensembles, in Sec.
V a numerical technique to improve accuracy is introduced,
and in Sec. VI the simulation results are presented and dis-
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cussed. Our conclusions are contained in Sec. VII.

II. MODEL

It follows from Newton’s laws that it is impossible to
prescribe the force on a body and the resulting velocity in-
dependently. For this reason we cannot simultaneously
specify mass, momentum, and energy fluxes, and we choose
to let the mass flux be the dependent quantity. For example,
if our boundary conditions were applied at the ends of a pipe
in which particles bounced back upon hitting the walls, the
average mass flux would be determined by the pressure drop
across the system, the net energy flux into it, as well as the
shape of the pipe boundaries.

A key feature of our model is the definition of a particle
buffer where the fluxes are imposed, as illustrated in Fig. 1.
In the present case the buffer is located to the left of the bulk
particles at x�−xB where x is the horizontal coordinate. The
buffer has a fixed number M of particles, while the overall
particle number N �which includes both bulk and buffer� will
vary with time. Previous schemes have employed particle
buffers too �11–14�, albeit with variable M. The fixed M
prescription implies continuous particle creation and removal
according to the flow between the region of bulk particles
�defined by x�−xB� and the buffer. Whenever a buffer par-
ticle crosses x=−xB a new particle is created in the buffer,
and whenever a bulk particle crosses this boundary a buffer
particle is removed. Here periodic boundary conditions are
applied in the vertical direction, giving only one buffer cell.
However, reflective boundary conditions could have been ap-
plied, or several neighboring buffer cells could have been
introduced.

The boundary conditions which are the topic of this paper
are specified by the normal component of the energy flux
j�= j� ·n, where j� is the energy flux and the normal compo-
nent of the momentum flux jp=� ·n, where � is the momen-
tum flux tensor and n the unit normal shown in Fig 1. Both
fluxes will in general include advective terms.

The boundary conditions are intended to impose the exact
momentum and energy flux to the whole N particle system,
including the buffer. Since the buffer has a certain mass and

heat capacity the flux across the bulk boundary will both
fluctuate and be somewhat delayed if jp and j� depend on
time. Correspondingly, the momentum and energy contained
in the buffer will fluctuate. However, in real applications
typically N�104 or larger while M �102 or smaller. The
time scale of momentum and energy flow through the buffer
will be correspondingly smaller than these time scales in the
bulk. Hence the relative effect of the buffer mass and heat
capacity will normally be negligible.

The particle dynamics itself conserves mass, momentum,
and energy. In the buffer zone there is an additional noncon-
servative force Fi. The average of this force will act to taper
the particle density profile continuously to zero. The particle
creation procedure is thus easily implemented as particles
may be added in the dilute region away from other particles.
While efficient techniques to add particles with the correct
potential energy in dense particle systems do exist �22�, the
present model circumvents any need for them.

The flux boundary conditions introduce energy and mo-
mentum to the particle system both through the force Fi and
particle addition/removal. We require that the combined ef-
fect is to create the prescribed momentum and energy fluxes,
i.e.,

jpAdt = �
i

Fidt + �
i�

��mvi�� , �1�

j� Adt = �
i

Fi · vidt + �
i�

��i�, �2�

where i� runs only over the particles that have been added or
removed during the last time step dt, and A is the buffer-bulk
interface area. The momentum change ��mvi��=mvi� if the
particle is added and ��mvi��=−mvi� if the particle is re-
moved. The energy change ��i� of the added/removed par-
ticles uses the same sign convention. The sums �iFidt and
�iFi ·vidt are the momentum and energy inputs due to Fi
during the time dt. In order to simplify Eqs. �1� and �2� we
define j̃p and j̃� through the relations

Adtj̃p = Adtjp − �
i�

��mvi�� = �
i

Fidt , �3�

Adtj̃� = Adtj� − �
i�

��i� = �
i

Fi · vidt . �4�

Provided that the force Fi satisfies these conditions the cor-
rect energy and momentum fluxes into the particle system
will result.

III. STATISTICAL MECHANICS OF FLUX BOUNDARY
CONDITIONS

In order to specify Fi and the particle addition/removal
procedure we need a criterion in addition to Eqs. �3� and �4�.
This criterion is that it shall be possible to impose reversible
changes to the system through the boundary conditions. This
implies that the scheme must evolve the buffer via equilib-
rium states, or arbitrarily close to such states. In order for the

FIG. 1. Illustration of the model. The buffer is to the left of x
=−xB and the nonconservative buffer force Fi acts only on the M
=16 particles there. At x=xB the particle velocities are reversed. In
the vertical direction periodic boundary conditions are used.
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entire system to undergo reversible changes, momentum and
energy must be added sufficiently slowly that the buffer and
bulk have the time to equilibrate.

To be more precise we introduce the Gibbs entropy

S = − �
r

Pr log Pr, �5�

where r= �xi ,vi�i=1,…,N. Here and throughout we will work in
units where kB=1. In the absence of a Pauli principle this
entropy is maximized for every N by the classical equilib-
rium distribution

Pr
eq =

e−�Er

Z
, �6�

where Z is the partition function and Er=Ek+U��xi��, where
U is the total potential energy, Ek=�i�m /2�v�i

2 is the thermal
kinetic energy, and � is the Lagrange multiplier linked to the
constraint �rErPr=E. The velocity in Ek is the thermal com-
ponent vi�=vi− 	v
 where the average 	v
=�i=1

M vi /M. This
ensures Galilean invariance of Pr

eq and that the entropy only
depends on the thermal energy and not the overall transla-
tional energy of the buffer �23�. If any perturbation of the
system brings the distribution away from its equilibrium
form it will relax to equilibrium, spontaneously producing
entropy, i.e., the process will be irreversible. The only way to
achieve reversibility is to make sure the flux boundary
scheme preserves the form of Pr

eq at every step.
First, we employ the following decomposition of the par-

ticle force

Fi = F + Fi�, �7�

where F alone satisfies Eq. �3�, i.e.,

F =
Aj̃p

M
. �8�

This implies that Fi� gives no net momentum input, i.e.,
�i=1

M Fi�=0, and that F does not alter the vi�’s. The latter fol-
lows since the application of F over a time dt only changes
the average velocity by changing all velocities vi by equal
amounts. In particular, F has no effect on the distribution of
�vi��. The force Fi� will preserve the form of the velocity
distribution Peq��vi���	exp�−�Ek� if its application over a
time dt changes all the particle kinetic energies �m /2�vi�

2 by
the same factor, i.e.,

d�1

2
mvi�

2� = mvi� · dvi� = vi� · Fi�dt 	
1

2
mvi�

2. �9�

From this condition we obtain that Fi�= fvi� where the pref-
actor f may be determined from Eq. �4�. Note that while the
distribution Peq��vi��	exp�−�Ek� keeps its form � changes
infinitesimally. The new � is easily shown to be ��= �1
− �2f /m�dt��.

In order to determine f we use the identity

�
i=1

M

Fi · vi = MF · 	v
 + �
i=1

M

Fi� · vi�, �10�

which gives f and the particle force

Fi� =
Avi�

�i=1

M
vi�

2
� j̃� − j̃p · 	v
� . �11�

This concludes the derivation of Fi. External particle forces
that are proportional to the particle velocity have been
widely applied and studied as heating mechanisms in mo-
lecular dynamics simulations �24,25�. However, to our
knowledge such forcing schemes have not previously been
generalized to control the momentum flux.

The only thing that remains in order to define the full
algorithm is to specify the particle addition/removal proce-
dure. We start from the general observation that a factorized
equilibrium distribution is easily preserved under the addi-
tion of a particle. The N-particle equilibrium distribution

i=1

N pi
eq simply becomes the N+1-particle distribution


i=1
N+1pi

eq if the new particle is picked from the single particle
distribution pi

eq.
However, Pr

eq is in general not factorizable. It may be
written

Pr
eq = ���xi��

i

PMB�vi� �12�

where the Maxwell-Boltzmann distribution

PMB�vi� 	 exp�− �m/2�vi�
2

T
� �13�

when �=1/T. As long as particle interactions cannot be ne-
glected ���xi�� will contain information on spatial correla-
tions and will not factorize. Only in the low density limit will
it do so. So, for the dilute end of the buffer we may write

���xi�� 	 
i

�eq�xi� , �14�

where �eq�xi� is the dilute limit of the equilibrium density
profile and i now only runs over particles in the correspond-
ing region.

By adding particles with positions and velocities picked
from the single particle distribution

p0
eq�x,v� 	 �eq�x�PMB�v� , �15�

local equilibrium is preserved in the dilute part of the buffer.
For global equilibrium to be preserved as well, we must
again allow the system to remain sufficiently close to overall
equilibrium states, so that the entropy production of the hy-
drodynamic modes following from the external fluxes re-
mains negligible. In particular the heat conduction, which is
likely to be the slower of the hydrodynamic modes, must be
allowed to relax.

Note that if we remove particles by randomly selecting
them in the region where particles are added, the distribution
of the removed particles is automatically the same as that of
the added particles, i.e., Eq. �15�.
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The buffer density profile is easily predicted from the as-
sumption of equilibrium. Since the buffer particle number M
is fixed we may under equilibrium conditions write the aver-
age force on the buffer particles 	F
 as a potential force

	F
 =
pA

M
n = − � , �16�

where =−pAx /M and p is a constant pressure. The fluc-
tuations in F around the average 	F
 are caused by the par-
ticle insertion/removal and temperature fluctuations. In equi-
librium the contributions from both these effects vanish. The
potential  should then be considered as part of U and will
thus act to define Pr

eq. In equilibrium � is constant through-
out the system. We may thus write �=�0(��x� ,T)+�x�
=const where �0 is the chemical potential at ��x� in the
absence of any external potential. In the dilute part of
the buffer we may use the ideal gas expression �0
=T0 log(��x� /�Q), where �Q is the quantum density. This
gives the barometric density profile

�eq�x� 	 epAx/MT0. �17�

The above result could also have been predicted from force
balance arguments.

In practice, it is an easy matter to observe where the pro-
file acquires an exponential decay. In the simulations particle
insertion/removal is carried out at x�−3xB which is well
within this domain, and the spatial probability distribution
for particle insertion is normalized to unity over this region.

Since both particle addition and removal are reversible in
the sense that they minimize the entropy production we may
write the entropy change associated with the addition of �N
particles as

T�S� = �
i�

��i� − ��N . �18�

This is the standard form of the second law when the volume
available to the system is not changed. But the total entropy
change to the system during the time �t, during which the
�N particles are added, also includes the heating due to Fi�.
For isolated systems ��N=0� it has been shown both analyti-
cally and through simulations �24� that T�S=�i=1

M Fi� ·vi��t.
Hence since particle addition and the application of Fi� hap-
pen sequentially we may assume the following additive form
for the entropy change:

T�S = T�S� + �
i=1

M

Fi� · vi��t . �19�

Combining this result with the expression for the corre-
sponding energy change

�E = �
i=1

M

Fi · vi + �
i�

��i� = MF · 	v
�t + �
i=1

M

Fi� · vi��t

+ �
i�

��i� �20�

we obtain

T�S = �E − ��N − MF · 	v
�t . �21�

We define the volume change �V of the system as A times
the buffer center of mass displacement in the x direction, i.e.,

�V = − A	v
 · n�t . �22�

By using Eq. �16� to eliminate An we get

p�V = − MF · 	v
�t , �23�

and we obtain the standard form of the second law for re-
versible processes

T�S = �E + p�V − ��N . �24�

Finally, we note that the existence of the barometric den-
sity profile Eq. �17� requires a positive pressure. Indeed, the
existence of a dilute region relies on this. With a positive
external pressure p the existence of a finite equilibrium vapor
pressure will guarantee some ideal gas region where x�
−xB and the local pressure drops to zero �27�.

However, with a negative pressure, as may, for instance,
occur in water in narrow conduits, the present algorithm will
not work and must be replaced by schemes that add particles
in dense regions �22,26�. Theoretically, it is not known how
the imposition of the exact energy flux or preservation of
local equilibrium may be achieved in these cases, although
as shown in Ref. �22�, the system relaxes to the expected
equilibrium state within a few collision times if the correct
amount of potential energy is released upon each particle
insertion.

IV. APPLICATIONS AND EQUILIBRIUM ENSEMBLES

The model may now be applied in various ways. As men-
tioned already it solves the problem of flux imposition in
hybrid schemes where j� and jp are provided as time depen-
dent boundary conditions by some continuum solver.

As a means to simulate equilibrium ensembles the bound-
ary condition most naturally realizes the grand canonical en-
semble. By taking j�=−��T−T0� where � is a relaxation pa-
rameter that plays the role of a heat conductivity, and the
temperature is defined by the relation T= 	mv2 /2
, we simu-
late a heat bath of temperature T0. By setting jp=np we fix
the pressure p. The freely adjustable particle number N will
then equilibrate around an average that is governed by the
chemical potential ��p ,T0�. The bulk part of the system
which has fixed volume also has fixed external T0 and �, and
is thus described by the grand canonical ensemble.

Other choices are of course possible too. By setting j�

=0, p fixed and specifying the Maxwell-Boltzmann distribu-
tion for the added particles by the internal temperature T, one
defines an ensemble where energy and pressure are fixed but
where N and T are fluctuating. Likewise, one could fix the
enthalpy H of the total system by setting j�=M	v
 ·F, or
equivalently �E+ p�V=�H=0. However, the system is still
open, so this choice does not correspond to an insulated sys-
tem. Hence these two latter ensembles may be of theoretical
interest only as it is unclear how one would realize them
experimentally.
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V. ACCURACY ENHANCEMENT AND STABILITY OF
THE FLUX BOUNDARY SCHEME

Particle addition and removal cannot be done in a simple
way without causing discontinuous jumps in Fi. While this is
not a problem in principle it reduces the numerical accuracy
of the scheme. In order to smooth these jumps and improve
the numerical accuracy we introduce the reservoir variables,
�Pr and �Er for momentum and energy. The idea is that
when a particle is removed or added the corresponding mo-
mentum and energy correction is returned to the system
gradually, rather than in a single punch.

For this purpose the following fluxes are defined to enter
in Eqs. �8� and �11�

j̃p = jp −
�Pr

�r A
and j̃� = j� −

�Er

�r A
, �25�

where �r is a time scale larger than dt but smaller than any
relevant hydrodynamic time scale. The momentum and en-
ergy added to the particles from the reservoir variables over
a time step dt are −�Prdt /�r and −�Erdt /�r, respectively.
Correspondingly, these variables are updated according to
the rules

�Pr → �Pr − �Pr
dt

�r
+ �

i�

��mvi�� ,

�Er → �Er − �Er
dt

�r
+ �

i�

��i�. �26�

Initially, �Pr and �Er are both 0. While the scheme of Eqs.
�3� and �4� leads to fixed momentum and energy fluxes into
the system, the present scheme delays the compensation of
the momentum and energy input associated with particle
addition/removal by a characteristic time �r. If no more par-
ticles are added or removed �Pr and �Er will decrease ex-
ponentially on the time scale �r. Hence the variables �Pr and
�Er act to smooth Fi as a function of time while the total
momentum and energy input instead become �slightly� dis-
continuous with particle addition/removal. If we set �r=dt
we recover the original scheme and the actual fluxes will
again exactly equal the prescribed ones.

What are the stability criteria of the above algorithm?
Two types of instabilities have been observed, one linked to
overheating at the dilute end of the system, and one associ-
ated with the effect of cooling the system below the available
thermal energy.

Since the mean free time � that controls the relaxation rate
to local equilibrium increases with decreasing density, it will
become large at the far end of the buffer region where the
density is low. Since Fi�	vi� hot particles here may become
increasingly hot and escape due to lack of equilibration. If
this happens the distribution of Eq. �15� breaks down and the
velocity distribution becomes position dependent. This prob-
lem may be dealt with by increasing M. When the magnitude
of j� may be chosen at will, say by changing � in our case,
one may also decrease j� thus lowering the heating per par-
ticle.

However, this is not a major problem, and even far from
equilibrium simulations are stable and converge to equilib-
rium, as is described below. The parameter � sets the time
needed to relax the buffer to any desired value of T0. The
simulations described below were all stable and the choice of
� corresponds to a relaxation time smaller than a few �’s, and
thus corresponds to relatively strong heating/cooling.

Finally, if j� and jp are set to maintain a state for which
j�� 	v
 · jp, i.e., where the overall energy input is less than
the work done by jp, the system will be unstable. The physi-
cal reason is that more energy is extracted than added, and
the thermal velocities will decay to zero. Physical consider-
ations would normally exclude such a boundary condition.

VI. SIMULATIONS

In these simulations Newtons second law is integrated
using the velocity-Verlet algorithm and an interparticle po-
tential U�r�d�= �k /2��d−r�2 where d is the particle diam-
eter, r the center separation, and k a spring constant.

The simulation domain includes a bulk particle region at
−xB�x�xB and −ymax�y�ymax. At y= ±ymax periodic
boundary conditions are applied and at x=xB the particles
bounce back with reversed velocities, thus conserving en-
ergy.

In the simulations the length unit is the particle diameter d
and the unit of time the inverse frequency �m /k associated
with the potential. This implies the unit kd2 for energy.

The velocity Verlet scheme is as follows:

ri�t + �t� = ri�t� + vi�t +
Fi�t�
2m

�t2 + o��t3� ,

vi�t +
�t

2
� = vi�t� +

Fi�t�
2m

�t ,

vi�t + �t� = vi�t +
�t

2
� +

Fi�t + �t�
2m

�t + o��t3� . �27�

This is the standard scheme �4�. Note, however, that since Fi
depends not only on position but also on velocities we have
to use

Fi�t + �t� = Fi„�r j�t + �t��,�v j + �1/m�F j�t��t�… �28�

in order to get third order accuracy in vi�t+�t�.
In summary the model is implemented by the repeated

performance of the following three steps.
1. Propagate the particle positions and velocities using

Eq. �28� with the current values of F and Fi� given by Eqs.
�8� and �11�.

2. Update the momentum and energy reservoirs, Eqs.
�26�, and the fluxes j̃p and j̃�, Eq. �25�.

3. Update the forces Eqs. �8� and �11� and return to 1.
First, the stability and accuracy of the scheme is tested.

Every simulation was started with particles in the buffer zone
only, and then the system was left to relax. Initially, a fixed
j�=0.5 was applied and then replaced by j�=−��T−T0� with
�=0.5. Figure 2 shows the relaxation of such a free expan-
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sion simulation where initially there were only �randomly
placed� particles in the buffer. The stability of such a freely
expanding system is of interest for the study of shock fronts.
The error in energy �E is defined as the difference between
the measured energy, which includes �Er, and the prediction
E0+�dtAj�, where E0 is the initial energy.

Figures 3 and 4 show the resulting error after t=400 as
functions of dt and M, respectively. When dt�0.01 the error
scales roughly as dt3. When dt�0.01 the round-off errors
appear to dominate. The variations with M are small down to
the M =64 value below which the heat capacity of the buffer
starts to become too small to accommodate the variations in
the flux j�.

In Fig. 5 we have plotted the density and temperature
profiles throughout the buffer region. The solid line repre-
sents a best fit to an exponential in the buffer region. Due to
the presence of interactions between particles, this fitted
curve decays somewhat more slowly than the low density
profile of Eq. �17�. However, in the dilute tail of the curve
the measured decay rate of ��x� agrees well with the predic-
tion of Eq. �17�. In the ��0.1 region the discrepancies be-
tween the predicted decay coefficient in the exponential,
pA / �MT0�, and the measured one were smaller than 5%.

The result of Fig. 5 is less obvious than it may appear.
The fact that the temperature is roughly constant throughout
the buffer and bulk particle region, and that the density falls
off exponentially in the buffer region is drastically changed if
the particle addition/removal scheme is changed. For in-

FIG. 2. Snapshots of a free expansion simulation at t=0, 10, 30,
50, and 70 where initially only the buffer zone contained particles.
The error in energy is given as a fraction of the total energy. Here
xB=−12, M =200, dt=0.02, p=1.0, �=1.0, T0=0.5, and �r=1.

FIG. 3. The relative error in energy after t=400 as a function of
dt when �=0.5, �r=1, and M =200. The dashed line has slope 3.

FIG. 4. The relative error in energy after t=400 as a function of
M when �=0.5, �r=1.

FIG. 5. The particle density ��x� ��� and temperature T�x� ���
as a function of −x. The full line shows a best fit to an exponential
in the buffer region. The profile was averaged over time 500� t
�4000. Except for the value xB=−6 parameters are as in Fig. 2.
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stance, by inserting and removing particles at different aver-
age energies, or at different average locations, the profiles are
significantly changed.

The results of Figs. 4 and 5, which show the numerical
accuracy and the proximity of equilibrium in the simulations,
dictate the choice of M. These results reflect what is happen-
ing in the buffer, so this choice does not depend on the num-
ber of bulk particles. In practice one needs M �60.

Figure 6 shows the results of measuring the pressure as
function of time. The pressure is measured as the momentum
change per unit area per unit time at the right hand wall
where particles are subject to the bounce back condition.
When averaged the pressure is indeed seen to conform to the
imposed value. The initial overshoot is associated with the
free-expansion phase before the system reaches equilibrium.
Figure 7 shows the local distributions of kinetic energy. The
curves in Fig. 7 are averaged over sections of the buffer
region. The lowest curve corresponds to an average over
particles located at −50�x+xB�−40, the next curve to par-
ticles in −40�x+xB�−30 and so forth to the upper curve
which is obtained from particles in −10�x+xB�0. The
probabilities are not normalized by the local density, hence
the shift between the curves directly corresponds to the de-
crease in ��x�, which is almost two orders of magnitude less

for the lower than for the upper curve. It is seen from Fig. 7
that

T0 log�Px�EK�� = const − EK �29�

to a good approximation, i.e., that the Boltzmann distribution
Px�EK�	exp�−EK /T0� is satisfied locally. To quantify this
statement the slopes of the curves in Fig. 7 are plotted in Fig.
8. The expected slopes are −1, while the actual slopes mea-
sure −T0 /T where T is the local temperature. The local value
of T does not fluctuate significantly beyond expected equi-
librium fluctuations. It is reassuring that the system is well
equilibrated even within the low density tail as the consis-
tency of the model relies on this property.

Figure 9 shows the particle number as a function of time.
In the very first stages t�50, there is a rapid increase in N�t�
as the system fills up with particles. After the free expansion
phase a density wave and hydrodynamic oscillations in N�t�
are seen. After t=500 the wave that is caused by the filling
process decays and we are left with the equilibrium fluctua-
tions.

To investigate whether the flux boundary conditions really
play the role of an extended particle system, we measure the
fluctuations in N at constant T0. According to the standard of
statistical mechanics �23�

	�N2
 = �N − M�T� ��

�p
�

T

, �30�

where N−M is the bulk particle number. In the ideal gas
limit this reduces to 	�N2
=N−M, which is the result we

FIG. 6. The time-averaged pressure as a function of time at the
rightmost wall, x=xB divided by the imposed P= jp ·n, correspond-
ing to the simulation in Fig. 2. The dashed line shows the instanta-
neous pressure, averaged only over the time dt while the full line
shows the corresponding running average over a time window �t
=50. The straight line is the expected value.

FIG. 7. The probability Px�EK� of finding the kinetic energy EK

as a function of EK for different values of x ���. The straight lines
are linear fits. Here xB=−6 and the other parameters are as in Fig. 2.

FIG. 8. The temperature as a function of density. T0=0.5 and
T /T0 are the slopes in Fig. 7 in the buffer region.

FIG. 9. The particle number N as a function of time. Except for
the value xB=−6 parameters are as in Fig. 2.
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expect for low pressures. For higher pressures the repulsive
interparticle potential is felt and 	�N2
�N−M.

In an independent set of measurements using periodic
boundary conditions in all directions the constant tempera-
ture equation of state p= p��� was measured. From these
measurements �� /�p�T was obtained, both from finite differ-
encing the p��� data and from the derivative of a polynomial
fit to p���. In Fig. 10 	�N2
 / �N−M� is compared to
T�� /�p�T. It is seen that the fluctuations conform to the pre-
diction within the noise which is intrinsic both to the equa-
tion of state measurements and the measurements of 	�N2
.
In other words, as far as particle number fluctuations go the
effect of our flux boundary conditions is the same as that of
an extended particle system.

Finally, we briefly examine the case where there is a shear
imposed on the system. Figure 11 shows a shear flow where
the average velocity reaches the thermal velocity over a few
mean free paths. The velocity profile is quite linear within
the bulk particle region as one would expect from hydrody-
namics. Also the buffer density profile is still close to expo-
nential, and the temperature profile roughly constant as in
equilibrium. Interestingly the particle number fluctuations
	�N2
 �not shown� have decayed to half the equilibrium
value in these nonequilibrium simulations.

VII. CONCLUSIONS

We have proposed a scheme that has been used to impose
arbitrary energy and momentum fluxes across the boundaries
of an open particle system. This scheme relies on the com-

bination of a buffer force and particle addition/removal, and
it may be used to impose any thermodynamic state on the
particle system, both at and away from equilibrium. This
algorithm and the fact that it closely approximates a particle
reservoir when applied to reversible processes is the main
outcome of the paper. The algorithm may be used in con-
junction with continuum solvers to carry out hybrid compu-
tations of far from equilibrium processes where no adequate
continuum description exists, for instance, transitions to
boundary shear localization, the moving contact line, or the
molecular hydrodynamics around nanostructures.

The present simulation scheme has been shown to be
stable and accurate to less than 1% in errors of energy in all
2D simulations studied here, both near and far from equilib-
rium. The scheme can easily be generalized to 3D by the
simple replacement T→ �3/2�T for the average kinetic en-
ergy.

Work is in progress to implement the present scheme in
hybrid simulations that hitherto have lacked an accurate
scheme for flux imposition which maintains the particle do-
main in a close to equilibrium state.
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