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Cyclic Motion of a Grafted Polymer under Shear Flow
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The long-time dynamics of a single end-tethered chain under shear flow are studied using molecular
and Brownian dynamics simulations of a flexible polymer. As observed in previous experiments with
tethered DNA [Phys. Rev. Lett. 84, 4769 (2000)], under a flow sheared at constant rate _� the chain
performs a cyclic motion. But, contrary to what has been previously suggested, a well-defined character-
istic period exists and it is clearly revealed in the cross spectra of the chain extension along flow and
gradient directions. The main cycling time scales like the time needed to stretch the polymer by
convection, being about 10 times the relaxation time of the chain in flow. This coherent recursive motion
introduces long memory in the fluid and suggests resonance effects under periodic external forcing.
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FIG. 1 (color online). Tethered polymer under shear flow from
a MD simulation with Wi � 2. Each figure shows 25 successive
superimposed snapshots of the chain, covering a time interval of
�t; t� 9:375�. The sequence (a)–(e) illustrates the ‘‘cyclic dy-
namics’’ observed at time scales longer than its relaxation time,
which for this case is 1250�. Time is given in LJ units (�).
The ability to visualize individual polymers via fluores-
cent staining [1] has revealed that many nontrivial macro-
scopic properties of polymeric fluids cannot be inferred
from ensemble averages alone, but rather from the indi-
vidual chain dynamics [2]. Strikingly, the behavior of
individual chains in nonequilibrium can greatly differ
from one to another, providing extremely rich dynamics
when exposed to shear [3] or elongational flow [1]. One
related fact is that the chain-flow interaction can be articu-
lated over long characteristic times, much longer than the
natural relaxation time of the chain. These long character-
istic times are directly related to many properties of poly-
meric systems such as fluid memory or the strong
resonance observed in polymer brushes [4], single tethers
[5], or proteins [6], under periodic external perturbations.

Tether polymers provide an excellent illustration of the
above ideas. For instance, tethers are relevant in several
biological processes, such as the ligand-receptor binding
[5,7] whereby the chains need to extend well beyond their
equilibrium conformation to promote the adhesion of ad-
jacent cells. Interestingly, the efficiency of this process
depends more on the long-time dynamics of the tethering
chain via the occurrence of ‘‘rare’’ extended conforma-
tions, rather than on its equilibrium conformation [7]. As
shown in recent simulations, flow disturbances may also
have a significant effect as the radius of gyration of the
tether can dramatically increase if an external oscillatory
force with a low enough frequency is imposed in the
normal-to-wall direction [5].

The dynamics of tether chains under flow are relevant
for many other technological applications, such as stabili-
zation of colloidal suspensions, lubrication, chromatogra-
phy, adhesion [2], or drag reduction. Albeit most previous
experiments and numerical simulations focused on the
effect of flow on static properties [8–10], a more recent
experimental study on the dynamics of individual DNA
chains under steady shear, by Doyle et al. [2], demon-
strated that the chain performs cyclic dynamics arising
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from a complex chain-flow interaction. These authors sug-
gested that the cyclic dynamics are aperiodic, as the power
spectrum of the chain extension along flow direction does
not exhibit distinct peaks. This Letter reconsiders this issue
by analyzing the cross correlation of chain extension in
orthogonal directions. An important question is to deter-
mine whether the chain-flow interaction is completely
aperiodic or articulated within well-defined characteristic
times. Contrary to previous suggestions, this work presents
a clear indication that the long-time dynamics of the tether
has a preferential cycling time. These low frequencies
could be the origin of resonant effects, which are known
to occur in many different contexts such as those reported
for brushes in oscillatory shear flow [4].

Methods.—The system considered is depicted in
Fig. 1(a). A fluid fills the space between two walls and,
due to the motion of the upper wall, is subject to a constant
shear. A single polymer is tethered to the bottom wall and
explicitly interacts with solvent particles (Lennard-Jones
fluid) and wall atoms [11]. The present setup contrasts with
previous published simulations [8–10], which considered
purely reflecting walls and no explicit solvent. The poly-
mer is modeled using the bead-spring model of Kremer and
Grest [12]: the nonextensible chain is formed by N � 60
monomers linked by the finite extensible nonlinear elastic
potential Unn�rij� � �

1
2 kR

2
0 ln�1� �rij=R0�

2� (where rij
3-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.088303


C
X

X
(t

)

-0.2

0

0.2

0.4

0.6

1

0 10 000 20 000
time

0.8

C
X

Y
(t

)

(a)

time
-30 000 -10 000 0 10000 30 000

-0.4

-0.2

0

0.2

0.4
(b)

FIG. 2. (a) The normalized autocorrelation of the chain exten-
sion along flow direction X. (b) The cross correlation between X
and the chain extension in gradient direction Y. Results are
obtained from MD simulations of one chain at Wi � 2 and
during a sampling time of 105�; error bars come from the
standard deviation of �X�t��Y�0�.
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is the distance between neighboring beads, R0 � 1:5�,
k � 30�=�2). The mass, length, energy, and time scales
are set by the standard Lennard-Jones (LJ) units:m (mono-
mer mass), �, �, and � � �

����������
m=�

p
, respectively. Further

details on the molecular dynamics (MD) model are given
in Barsky et al. [13]. Simulations were carried out using
standard MD in a slit of dimensions �38� 50� 33�� and
using the hybrid particle-continuum model developed by
Delgado-Buscalioni et al. [14]. The hybrid method reduces
the MD domain to a small volume around the chain while
the solvent flow outside is solved using continuum fluid
dynamics (see [13,14] for details). As in previous works
[13] on the polymer structure, the hybrid model is found to
be in perfect agreement with standard MD results, so in the
foregoing discussion they will be both referred to as
‘‘MD.’’ As a qualitatively different model, we also per-
formed Brownian dynamics (BD) simulations of free
draining chains interacting with the same potential used
in the MD simulations. The bead diffusion constant was set
to 0.42. Analysis of the long-time dynamics required quite
long trajectories: more than 1000 times the BD chain
relaxation time under shear flow and more than 500 in
the case of the MD chain.

Relaxation times.—The dynamics of a single polymer
under flow is determined by the Weissenberg number,
Wi 	 _��0�0�, which gives the ratio of �0�0�, the polymer
relaxation time at equilibrium ( _� � 0), and the flow char-
acteristic time 1= _�. The longest relaxation time of the
chain is given by the decorrelation time of the lowest
normal mode. In the linear approximation to the chain
dynamics, the normal coordinates [15] for a tether are
[16] R̂p�t� � �1=N�

PN
n�0 Rn�t� sin��p� 1=2��n=N�,

where Rn denotes the positions of the chain beads. The
longest polymer relaxation time was estimated from simu-
lations by fitting the autocorrelation of X̂0 	 R̂0 
 i to a
single exponential function (similar relaxation times,
within error bars, were obtained from the decorrelation
time of the end-to-end vector.) The resulting values under
no flow condition were used to calculate the Weissenberg
number for each model. For chains with N � 60 beads, we
obtained �0�0� � �4000� 200�� and �2000� 500�� in
BD and MD simulations, respectively. Consistently with
the free draining limit [16], in BD simulations, the relaxa-
tion times of the faster modes (p > 0) were observed to
decay like �p�0� � �p� 1=2��2:1�0:1. By contrasts, MD
simulations give �p�0� � �p� 1=2��1:6�0:1, indicating
the presence of hydrodynamic interactions induced by
the explicit solvent. However, as shall be shown below,
the main features of the chain dynamics occurring at longer
time scales, are not related to solvent induced hydrody-
namic interactions.

At Wi> 1 the flow starts to stretch the polymer average
configuration [2,9,13], because the fluid elements deform
faster than the polymer can possibly relax. As it will soon
come clear, the dependence of the longest relaxation time
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on the Weissenberg number, �0 � �0�Wi� is also important
to understand the chain dynamics at longer time scales. For
Wi> 2, the best fits to the simulation results are �0�Wi� ’
1:6�0�0�Wi�0:70 and �0�Wi� ’ 0:9�0�0�Wi�0:78 in the case
of MD and BD simulations, respectively. These slopes are
in agreement with the following scaling argument.
Assuming that the chain deforms affinely with the fluid
element, the average time required by the shear flow to
stretch the chain a fraction � of its contour length L is
given by ts ’ �L=�hYi _��, with hYi being the average ex-
tension of the polymer in the gradient direction (Y 	
maxfYig �minfYig, where Yi is the y coordinate of the
ith monomer in the chain). From MD and BD simulations
hYi � _��0:32 and hYi � _��0:23, respectively. These slopes
are consistent [17] with the theoretical scalings for hYi
proposed in the literature [9,18–20] and provide ts �
Wi�0:68 and ts �Wi0:77, in good agreement with the trends
obtained for the relaxation time for MD and BD simula-
tions, respectively. This simple scaling indicates that in
steady shear flow the relaxation time of a tethered chain
scales nearly like the convective time required by the flow
drag to stretch it. As an aside, experiments on conforma-
tional dynamics of individual free flexible polymers in
steady shear flow [3] also reported a slope close to �2=3
for the relation between the chain relaxation time and Wi.

Cyclic dynamics.—At time scales much larger than its
longest relaxation time the anchored polymer describes a
continuous recirculating motion which, after the experi-
ments with tethered DNA by Doyle et al. [2], is known as
cyclic dynamics. Figure 1 illustrates one cycle of a chain at
Wi � 2 obtained from MD simulations, covering a time
interval of about 9000� [note that for Wi � 2 the chain
relaxation time is �0 � �1250� 100��]. In Fig. 1(a) the
polymer starts in a coiled configuration and eventually
experiences a thermal fluctuation along y direction. This
leads to a slightly extended configuration, like that in
Fig. 1(b). The flow drag increases linearly with the y
coordinate and therefore any expansion in the gradient
direction induces a rapid elongation along the flow direc-
tion [Fig. 1(c)]. While being extended, the flow drag and
3-2



FIG. 3 (color online). CPSD of the chain extension in flow and
gradient directions, X and Y. Frequencies are scaled with the
relaxation time in flow �0�Wi� (values indicated in the figure)
and the CPSD are normalized with the maximum value (some
curves has been displaced for clarity). Diamonds corresponds to
a chain with N � 30 beads, while the rest to N � 60.
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FIG. 4. Reciprocal of the peak frequency !�1
peak of the cross

power spectral density (circles) and the chain longest relaxation
time in flow �0�Wi� (triangles) versus the Weissenberg number.
Times are scaled with �0�0� � 2000� (MD results) or
�0�0� � 4000� (BD results). Solid lines (best fits to BD results)
are 0:9Wi�0:78 and 12Wi�0:78 and dashed lines 1:6Wi0:70 and
19Wi0:70.
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the constraint to the wall creates a pair of forces which
induce the subsequent rotation of the polymer towards the
surface [Fig. 1(d)]. There, the flow drag vanishes and the
polymer coils back to the configuration of Fig. 1(e). It is
noticed that this recursive coil-stretching transition does
not produce any periodic behavior in the time series asso-
ciated with the polymer extension along any direction (not
shown). Also, Doyle et al. [2] pointed out that the power
spectra of the time series obtained from the polymer ex-
tension along flow direction do not present any distinct
peaks. In fact, as shown in Fig. 2(a), the long-time behavior
of the autocorrelation of the maximum chain extension in
flow direction X � maxfXig �minfXig does not clearly
indicate a characteristic recursion time. However, such
quantity is not the best suited to characterize the mecha-
nism involved in the cycling dynamics. As explained, the
polymer successively ‘‘flaps’’ in the flow-gradient plane
(xy), so a more natural measure for the analysis of the
cycling motion is the cross correlation between the chain
extension along flow and gradient directions, calculated as

CXY�t� 	
h�X�t��Y�0�i
������������������������������������
h�X�0�2ih�Y�0�2i

p : (1)

Here �X�t� � X�t� � hXi and h
i denotes time average.
Figure 2(b) shows that the cross correlation between chain
extension in flow and gradient directions reveals surpris-
ingly well the presence of a characteristic period. Let us
call Tcycle the main period of the cross correlation CXY .
During the first part of the cycle, CXY�t�> 0, so a chain
stretched in the gradient direction [�Y�0�> 0] will, most
probably, become stretched [�X�t�> 0] at lagging times
0< t < Tcycle=2. During the second half of the cycle,
CXY�t�< 0, indicating that the polymer coils back
[�X�t�< 0]. This oscillation of CXY�t� is also consistent
with a chain that starts close to the surface [�Y�0�< 0],
retracts to a coiled state [�X�t�< 0] over t < Tcycle=2 and
stretches during t > Tcycle=2. In conclusion, CXY�t� indi-
cates a clockwise chain recirculation in the xy plane. As an
aside, we observed that the polymer motion produces a
smaller but significant cross correlation in the (xz) flow-
vorticity plane (not shown). Many experiments using fluo-
rescence videomicroscopy can only observe a projection of
the instantaneous polymer configurations in this plane, so
this fact could facilitate the experimental confirmation of
the present findings.

In order to investigate large scale structural correlations
of the chain we calculated the cross power spectral density
(CPSD) [21] associated with the chain extension in flow
and gradient direction. As shown in Fig. 3 a peak is clearly
observed in CPSD obtained from MD and BD simulations.
It is noted that frequencies in Fig. 3 have been scaled with
the chain relaxation time in flow �0� _��. As in previous
works [18], at moderate and large frequencies !�0�0�> 1
the slope of the power spectra depends on Wi and on the
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presence of hydrodynamic interactions. However, upon
scaling, the peak frequency obtained for different Wi and
draining regimes merges to a similar value, !peak�0 �

0:07� 0:02. This is also shown in Fig. 4 where !�1
peak

and �0�Wi� are shown to scale similarly with Wi.
Interestingly, MD simulations (including explicit solvent)
and BD simulations of a free draining chain yield the same
value of!peak�0: 0.08(4) and 0.07(5), respectively. In order
3-3



PRL 96, 088303 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006
to check any dependence on the chain length N we per-
formed BD simulations with N � 30, obtaining a similar
outcome !peak�0 � 0:06 (see Fig. 3). These facts indicate
that the resonant mechanism illustrated in Fig. 1 is quite
general and it fixes a similar ratio between the preferred
cycling period and the chain relaxation time, in chains of
different length and, with or without explicit solvent
representation.

Another quantity of interest is the spread of the CPSD
around the peak frequency. As an estimation, we calculated
the ratio of the cross power at the peak frequency!peak and
that at 0:2!peak. This ratio reaches a maximum value
around Wi � 10 and substantially decreases at the longest
Wi considered (see the CPSD for Wi � 100 in Fig. 3).
Thus, the cycling behavior of the tethered polymers under
shear is best observed at 2<Wi < 20, while at large
enough Wi >O�100� the range of cycling times broadens
and the cross spectra does not present such a clear domi-
nant frequency.

To conclude, the analysis of the long-time dynamics of a
tethered chain in shear flow demonstrates the existence of a
characteristic cycling time, revealed in the cross power
spectra of the chain extension in flow and gradient direc-
tions. Both the main cycling time !�1

peak and the longest
chain relaxation time in flow �0 scale like the time needed
to stretch the chain by convection, ts / � _�hYi��1. However,
the main cycling period is comparatively larger, !�1

peak ’

14�0. The ratio between the main cycling time and the
relaxation time is found to be similar in free draining
chains, chains in explicit solvent, and chains of different
lengths, meaning that these recursive dynamics are quite
general.

Long recursive times introduce memory into the fluid,
with important consequences in non-Newtonian rheology
(for instance, a stronger flow-gradient correlation explains
why grafted chains create larger normal stress than free
chains in shear flow [10].) Long characteristic times asso-
ciated with this coil-stretch recursive dynamics favor fric-
tion reduction at solid-fluid surfaces: grafted chains,
strained by the flow, exert their elastic stress back to the
fluid within delay times longer than their relaxation time.
Also, as suggested by previous authors [2], the large in-
crease in normal stress at certain resonant frequencies in
oscillatory shear flow [4] could be related to the excitation
of low frequencies of polymer dynamics. Knowledge on
these frequencies offers important clues for the investiga-
tion of these puzzling effects.
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