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Convection patterns in end-heated inclined enclosures
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The natural convection in inclined side-heated rectangular boxes with adiabatic walls is theoretically and
numerically investigated. The study is focused on the characterization of the convection patterns arising at the
core of the basic steady unicellular flow and covers the whole range of Prandtl numisePs<®) and
inclinations(from «=0°, heated-from-below vertical cavities, &0=180°). The onset of the flow instabilities
depends on the core Rayleigh numBesK Ra, defined in terms of the local streamwise temperature gradient,
KAT/L. The critical value ofR for transversal and longitudinal modes is determined by the linear stability
analysis of the basic plane-parallel flow, which also provides the stability diagram in thea{Pchart.
Anyhow, the effect of confinement can decisively change the stability properties of the core: if the steady
unicell reaches the boundary layer regitB&.R) the local temperature gradient vanishes at the core leaving a
completely stable core region. A theoretical determination of the frontier of the BLR in the space of parameters
(e, R, and cavity sizgyields an extra criterion of stability that has been displayed in the stability diagram. As
confirmed by numerical calculations, the core-flow instabilities can only develop foOPt) whereas, at
larger Pr the core region remains stable and the instabilities may only develop at the boundary layers. The
analysis of the instability mechanisms reveals several couplings between the momentum and temperature fields
that are not possible in the horizontal € 90°) or vertical limits. For instance, by tilting the cavity with respect
to a=0°, the (Rayleigh-Benard stationary thermal mode is suppressed in cavities whose depth is smaller
than a theoretically predicted cutoff wavelength. The inclination also alters the properties of the oscillatory
longitudinal instability, extensively investigated in the horizontal Hadley configuration at lofligRid met-
als). An analytical relationship for its frequency in terms @f Ra, and Pr is derived. Throughout the paper,
numerical calculations in two- and three-dimensional enclosures illustrate each type of multicellular flow and
examples of instability interactions near the codimension-2 lines predicted by the theory.
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I. INTRODUCTION gravity vector. As shown in Ref4], owing to the earth’s
inner temperature gradient, the transport of contaminants by
Natural convection in slender cavities driven by imposedconvection is much faster than by diffusion. In any of these
end-to-end temperature differences has been the subject applications it is rather important to control the onset of mul-
theoretical and experimental works since the last 30 yeardicellular or time dependent flow because it has a direct in-
Practically all the published works have considered horizonfluence on the heat and mass transport rates. Practical infor-
tal or vertical cavities, although in most of the practical ap-mation concerning this point is given in this paper.
plications in both industrial and natural processes, the incli- Figure 1 shows the geometry of the problem and illus-
nation plays a very important role. A relevant example is theirates the simplest convection pattern of the system: a steady
process of crystal growth from melts. Recent numerical calunicellular flow that comes up for any not vertical position as
culations on the vertical Bridgman setup have shown tha@ response of any small enough temperature differéxite
experimentally unavoidable tilt angles as smalleas0.5°  The unicellular flow in the horizontal configuratigthe so-
cause nonaxisymmetric growth conditiof$]. Also, by called Hadley cejlimpelled the largest number of theoretical
slightly tilting the horizontal Bridgman configuration larger and experimental papers: since the first comprehensively
mass transport rates are obtaifigfl In the same manner, the Work by Cormack and co-workefsee[5]) to the clarifying
heat transfer in heat exchangers and thermosiphons can Btidy done by Boehrd6]. Briefly, as the Rayleigh number
enhanced by selecting the optimum inclination, and in fact,
their efficiency has been improved by using an inclined setup
[3]. The relation between the inclination and the Nusselt
number has also a direct interest for reducing the loss of
energy in honeycomb solar collector plates. The problem of
convective transport appears also in many geophysical situ-
ations occurring in mining and geological procg$k A par-
ticular important problem in this field is the transport rate of
spread of passive contaminants such as radioactive materials
in long rock fractures arbitrarily inclined with respect to the

FIG. 1. The geometry of the problem and the structure of the
*Email address: rafa@fisfun.uned.es basic unicell.
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increases the unicellular flow evolves from a conductive reversal perturbations in the 2D flo@Ref. [18]). The present
gime to a boundary layer regime in which almost all thepaper extends the results of Rg18] to confined(2D and
temperature drop and the vorticity production are localized3D) geometries and also considers the stability properties of
in thin layers adjacent to the end walls. The effect of thethe basic flow subject to longitudinal perturbations in terms
inclination on the unicellular flow has received much lessof the inclination angle and the Prandtl number.
attention in the past literature and one can only find empiri- Owing to the great variety of instabilities revealed, the
cal fits of the hea{7] or mass transfef2] obtained from Hadley configuration was soon also thought of as a practical
numerical calculations. The recent work presented in F8f. support for investigating the interaction between hydrody-
provides a theoretical description on how the inclinationnamic instabilities and new possible routes to chaos. Numeri-
modifies the structure of the steady unicellular flow and thecal calculations in 2D geometries showed that ¥KPr025, a
heat transfer regimes, and presents analytical trends for theopf bifurcation follows the onset of the stationary shear
Nusselt number, maximum velocities and thickness of theolls and also that the flow may gain in complexity by pass-
boundary layers, corroborated by numerical calculations inng through several oscillatory branchee[19] and refer-
(two-dimensional 2D end-heated enclosures. ences therein Anyhow relatively more recent numerical cal-
Although it is possible to find studies on the effect of culations in 3D geometries showed that in low-Pr fluids the
inclination on the flow bifurcations in squared geometriesthird dimension enables completely different scenarios to
(e.g., se¢9] and references thersirthe stability of the basic those reported in 2D(see [20,21)). In fact, around Pr
unicell in long side-heated enclosures has been hitherto con-0.025 rather complex dynamics may arise because the
sidered for vertical or horizontal configurations. In a longtransversal and oscillatory longitudinal rolls are triggered at
heated-from-below vertical cavitys(=0°) the rest solution relatively close values of Ra. This is a favorable situation for
breaks down at a certain Pr-independent critical Rayleigtany experiment concerned with the characterization of new
number owing to a long-wavelength stationary longitudinalroutes to chaogsee[22—24) for which part of the endeavor
thermal mode whose motion occupies the whole extension afonsists of finding lines of the space of parameters where
the cavity in a unique cellsee Ref[10]). Concerning the two different type of bifurcations intersect. In order to make
stability of the basic flow in the horizontal configuratioa ( this situation feasible, a required procedure is to increase the
=90°) the first experimenta11l] and theoretical studies codimension space of the experimental system. This can be
[12,13 were in part motivated by the control of time depen- done via the Hartman number, i.e., by introducing a variable
dent flow in crystal growth process. The linear stability magnetic field perpendicular to the basic fldgee Refs.
analysis of the basic parallel floygee Refs[13—-13) pre-  [23,24)). Alternatively, as shown in Ref22], it is also pos-
dicts that the stationary transvergd&T) rolls are the most sible to vary the Prandtl number of the working fluid
dangerous ones for R10.034 whereas the oscillatory longi- (0.015<Pr<0.022) to explore a region of the Pr-Gr space.
tudinal (OL) instability dominates at larger Prandtl number, As a result, in these experiments new types Hopf-Hopf in-
0.034<Pr<0.2. The ST instability is driven by the mean teraction were reported. A third alternative is to change the
shear stress while, as shown by GilP] and Hart[13], the inclination of the cavity. This possibility was proposed in
OL instability arises as a consequence of a dynamical couref.[21], which presents numerical calculations in a 3D cav-
pling between the mean shear stress and the buoyancy fordey inclined ata=80° and filled with a P+0.025 fluid, and
In a horizontal enclosure with adiabatic walls there is a sudillustrates the underlying flow structure at the onset of the
den increase of stability for BrO(0.1), owing to the pres- biperiodic regime. In that configuration, the onset of the os-
ence of a completely stable cross-stream stratification. Igillatory flow is due to the OL instability and the origin of
particular, for P-0.12, the flow becomes stable to transver-the secondary frequency was shown to be a consequence of
sal modeq14-14 and although previous stability analyses the interaction between OL rolls and a transversal wave
of the plane-parallel flowin unbounded domajnpredicted  formed by shear rolls. In the numerical calculations of Ref.
the possible onset of stationary longitudinal short-[21], the choice of the inclination angle was done according
wavelength (SL) rolls at least until Pr 1 [15], these rolls  to the stability results presented in this work, which predict a
have not been observed in any experiment or numerical catodimension-2 line formed by the OL and ST branches pass-
culation on the pre-boundary-layer regime. On the contrarying through that set of parameters, (@r=(0.025,80°).
for larger Prandtl number (Br0.2) anda=90°, the break- This paper also presents the derivation of an analytical trend
down of the steady unicell takes place inside the boundarjor the OL frequency, which sucessfully reproduces the pri-
layers developed at larger values of Ra. As a consequencmary frequency reported in the numerical calculations of
previous experiments in horizontal cavities concerned withRef.[21]. In summary, the results of Rdf21] indicate that
the investigation of core-flow instabilities worked with lig- the inclined Hadley configuration can be used as a relatively
uids metals (Pr10 2), whereas those interested in bound-simple setup to make feasible the investigation of instability
ary layer instabilities used gases or liquids, with larger Piinteractions by a suitable choice of the inclination angle. Fur-
(see[17] and references thergirt is interesting enougksee  ther examples are given in this paper.
Ref.[18]) that if the cavity is inclined and heated from below  The rest of the paper proceeds as follows. The basic
(@<<90°), the stationary transversal rolls can be still ob-steady unicellular flow is described in Sec. I, where the flow
served in gases (Pr0.7) together with a buoyancy driven profiles at the core and the local axial temperature gradient at
long-wavelength oscillatory transversal (QTinstability.  the core KAT/L, are expressed in terms of the aspect ratio,
These results come out from a previous study on the trand®Rayleigh number, and the inclination. Section Ill presents
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the linear stability analysis of the basic flow in terms of the 5.0 . T L . .
local Rayleigh number at the cole=K Ra. The map of (a) Bb(x) (b)
instabilities in thea-Pr chart is then constructed. The rest of
the paperSecs. IV-VII)) is devoted to each flow instability, =
discussing the mechanisms underlying each type of perturba
tion and the effect of confinement. Throughout Secs. IV— 1.0
VIII, flow calculations in 2D and 3D cavities, based on the
numerical methods presented in the Appendix, illustrate eact
type of multicellular flow and some examples of interaction 10r

) Iy - . . —— R=62.5
between instabilities. Conclusions are given in the last sec- oo RG2S

tion. 30 [ —— R=I875

II. UNICELLULAR FLOW

Let us consider the flow in the cavity of Fig. 1. The di-
mensions of the cavity along, y, and z directions(width,
depth, and lengthare, respectivelyli=2h, D, andL. Thez
axis is inclined an angle with respect to the gravity vector
g=gey With g;=sin(a)i — cos@)k, and a temperature differ- 0.1
enceAT is imposed between the={0,L} walls. An incom-
pressible fluid with thermal expansion coefficig®t kine-
matic viscosityr, and thermal diffusivityx, fills the cavity
and its motion is governed by the Navier-Stokes and heat
transport equations with the Boussinesq approximation. The-0.1
boundary conditions correspond to adiabatic rigid walls
(nonslip assumed The governing equationfEgs. (Al)— 02
(A3)] and boundary condition€Egs. (A4)—(A6)] are shown
in the Appendix and have been nondimensionalized by usinc
h, h?/v, gBATh3/Lv, AT, and p,gBATh?/L as scales of
length, time, velocity, temperature, and pressure. The dimen- FIG. 2. (a) Basic velocity(in units of x/h?) and(b) temperature
sionless parameters are the inclination anglethe aspect profiles(in units of KATh/L) for «=120° at several values &
ratios A,=H/L and A,=H/D, the Rayleigh number Ra (c) Flow profiles fora=50° andR= 10 and(d) the maximum value
=gBATh*/Lvk, and the Prandtl number Pw/ . of wy(x) (in units of R«/h) againstR.

For any not vertical position the mechanical equilibrium
is not possible and any externally imposed temperature dif-
ference leads to a clockwise cellular flow whose simplest
form is illustrated in Fig. 1 in a cavity witlh,<1. The flow

at the core region is nearly plane-parallel and turns around gfnere K is the ratio between the streamwise temperature
the end regions, at a distance of or@A,) adjacent to the gradient at the core and the externally imposed temperature
z={0,2A, '} walls. The lateral walls ay=+ A, * impose an  gradient. The validity of Eq(3) is analyzed afterwards. By
even modulation in the flow amplitude, which is only rel- substituting Eq.(3) into Egs. (1), (2) and considering the
evant at diffusive layers of thicknes3(A,) [see Fig. 8,  boundary condition§Eqgs.(A4)—(AB)], one obtains a system
below]. As discussed in Ref25], in wide enough cavities of ordinary equations for the velocity and temperature pro-
(Ay<1) and away from these layers, one can neglect théiles at the corew,(x) and 6,(x). For a fixed angle, the
flow y dependence and describe the basic circulation as ghape and intensity of the basic profiles are governed by the
two-dimensional steady flow in th¥Z plane governed by |ocal Rayleigh number at the corB=K Ra, and the func-
the equation for they component of vorticity oy,=dJu/dz  tional form of the analytical solutions is: wy

0.0

KA,
v=Kw,(x)k, T:T[Z+ 0,(x) +b], 3)

—awl/dx) and the heat equation, =sinaf(x;Rcosa) and 6,=sinag(x;Rcosa). The interested
5 9 - . reader is referred tf8] for the explicit analytical expressions
Wy ~1 _v2 ( ; of the core-flow profiles at arbitrary. The evolution of the
—+RaPrv-Vo,=V°w,— —| cosa—+sina—|, _ . . I
at @y @y A, “ ax “ oz flow profiles with the Rayleigh numbésee Fig. 2 is ruled
(2) by the balance of dissipation and production of vorticity by
buoyant forces. At low values of Ra, in the conducting re-
aT aT JT i h -st temperature gradient is vanishingl
it (LI et gime the cross-stream p g gly
Pr ot + R% u IX tw az) =VT. 2) small and the vorticity is generated by the cross-stream com-

ponent of gravity, at a rate given by sidT/dz [see Eq(1)].

At the core region we assume that the flow can be deThis induces a clockwise cellular flow whozelependence
scribed by a plane-parallel solution whose structure at theoincides with the Hadley profile fora=90°: wy(X)
steady state is the following: =sina(*—x)/6 and Op(x) = —sina(x’/120— x3/36+ x/24).
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100 | K=1/ R /coso Az a>90°, K reaches a minimum and tends to 1 at largd &a
N ° N\ Il thus when heating from abov&=Ra. In conclusion, the
domain of values oR to be considered in the stability analy-
sis of the core flow iSR>0 for «=90° or «=0° and O
<R<Rg/cosa for «<90°. Note in passing that although an
upper limit for R is also to be found in other configurations
with two components of buoyancy, this fact was not taken
into account in previous workglL0,4], which therefore re-
ported unphysical divergences of mean flow properties at
several values of the Rayleigh number. Also, the existence of
A 0.143 an upper bound foR is related to an important difference
o Pr=0.7 0=20 between the inclined <90°) and horizontal configura-
o Pr=6.7 tions. Fora=90° the conducting regimeK(=1) holds for
Ra<6.25A, * [26], so in large cavitiesA,<1), the equality
0 : , , R=Ra stands until very large values of Ra. As seen in Fig. 3,
0 100 200 300 for a<90° this conclusion is no longer valid because, re-
Ra gardless of the size of the cavitl largely differs from 1

FIG. 3. The local Rayleigh number at the cdRes K Ra, versus ~ ONce the transition regime is established at-fig /cosa. In
the external Rayleigh number Ra. Circles corresponds to the nisummary, for «<90° a careful evaluation ofR
merical solution of the flow at several values of Pr and lines to the= R(RaA,, @) is required in order to apply the stability pre-
theoretical model. dictions at the cordgiven in terms onR) to any realistic

. . ) ) closed configuration.
As Ra increases the streamwise advection creates an increas-the solution derived from Eq?3) is strictly valid at the

ing (negative temperature gra}dient glong theaxis, which e of a infinity long and wide cavityA,—0, A,—0) (see
acts as gnother source of motion owing to the presence of trﬁef. [5]). In a finite cavity the flow at the core can be de-
streamwise component of buoyancy. As shown in B9, gerihed by Eq(3) while it is possible to neglect the inertial
this term produces vorticity at a rate given by e@8/xand  terms in the momentum equation and the cross-stream ad-
hence its effect greatly depends on the range of the inclingjaction in the heat equatiofi.e., UdT/Ix<waT/dz). As
tion angle. If the cavity is heated from abovex 90°), both  gho\wn in Ref[8], both conditions are satisfied in the con-
terms, cosdT/ox and sinadT/dz, have opposite signs mean- qycting and transition regimes but fail at large Ra, in the
ing that' the streamvylse' buoyant force Fends to reduce thBoundary layer regime. In the boundary layer regime BLR
convection. As seen in Fig(@, this reduction occurs mostly e isothermals at the core region are aimost parallel ta the
around the center of the layer whef€/Jx is larger. On the  5yig (V2T=0) and although at the core<w the balance of
contrary, if the cavity is heated from below{90°), both  Laat flux yieldsudT/ax~ —wdT/dz for any a<90°. The
sources of vorticity have the same sign and as Ra increasessg p appears only ifr<90°: at Ra>625A, * for ar=90° [6]

" z

positive feedback loop betweew,(x) and 6,(x) occurs: any and at Ra 10R,/cosa for a<90° [8]. We refer to Ref[8]
increment of the flow intensity increases the cross-strea r a description of the BLR in the tilted geometry.

temperature gradient, which in turn, enhances the intensity o
the clockwise flow. A consequence of this feedback coupling
is that the analytical solution fow, and 6, diverges at a
discrete set of values dRcosa, the lowest one beingRy In order to study the stability of the flow at the core re-
=31.285[see Fig. 2d)]. gion, it is convenient to use the proper local temperature
In order to understand how the divergence of the planegradient at the cor&AT/L in the temperature scaling. By
parellel flow analytical solution affects the behavior of thedoing this the scale of temperature in the perturbation equa-
total flow, one has to consider the effect of confinement bwigns is (KAT/L)h and the basic velocity and temperature
matching the flow at the core with the flow at the end re-fields arev=w,(x)k and T,=—z+ 6,(X). The linearized
gions. This task have been solved by using an integragquations for the perturbative flow are obtained in the usual
method similar that of Bejan and Ti¢@6], which yields the  \ay: inserting each flow variable as the sum of the mean
value ofK in terms of Ra,«, andA,. This calculation pro-  f|ow quantity and a small perturbation into Eq&1)—(A3)
vides the proper increase rate of the flow intensity in terms ofnd neglecting products of perturbative quantities. At this
the externally imposed Rayleigh number Ra and, as disstage of the analysis, the modulation of the basic flow in the
cussed in Refl8], valuable information concerning the flow z andy directions shall not be taken into account and the

and heat transfer regimes of the unicellular flow. Here we argerturbative quantities can be expressed as normal modes,
interested in the relation of the governing core-flow param-

eter, R=K Ra with the external parametetRa, a, A,), Vo T, Py ={Vv(x), 6(x),p(x) explimy+ikz+\t).
which is illustrated in Fig. 3. The first important conclusion (4)
arising from Fig. 3 is that, for ang<<90° or anyA,<1, the

value of the local Rayleigh number at the cétés bounded The subscript p” refers to perturbation quantitiesn andk
and tends asymptotically tBy/cosa. On the contrary, for are real wave numbers and=\,+i\; is the complex

IIl. LINEAR STABILITY ANALYSIS
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TABLE I. Trends of the critical parameters of each type of instability. Those given for theu®i OL
instabilities corresponds te@=90° and fit to the linear stability results within deviations of about 23ee

Sec. Il A for nomenclature.

Critical R Critical wave no. Critical frequency
ST Pr<1, Rg7=495 Pr/sinx kst=1.35 0
Pr~1 («<90°), Rgt=Ry/cosa kgt=1.6 0
0.08
OoT, ROTI:RO/COSa k0T|~O.3 fOleo_gl( 1— W)Wb,max
SL| RSL| = 0 mSLI = 0 O
1160 P}H?
SLS RSI ~_~— mSLSZZ.g 0
S (0.8-Pn?2
47.27 PH?2 (0.21— P24 o= e v
oL e 17 Sr— (0.21-Pn®1h?
(0.21-Pr) 0.25Pr

growth rate. As shown by Laure and Ro@4] and Kuo and
Korpela[15], oblique perturbationsk{m+0) do not appear

The eigenvalue problems for both transverdzds. (5)—
(7)] and longitudinal perturbatiorj&gs.(8)—(11)] have been

in the horizontal case and we have not found this type obolved by a Tau-Chebyshev method. The number of basis
perturbations in the inclined geometry. Therefore we shalfunctions for the amplitude of velocity and temperature per-

focus our attention on longitudinak&0) and transversal

(m=0) modes.
The transversal perturbations are independent of tte

turbationsN was chosen to preserve accurac{gs eigen-
value and eigenfunctigrof less than 1% and typically varied
from N=15 for low Pr toN=25 for large Pr andr. At the

ordinate and are essentially bidimensional modes. Its flowninima of each branch of the neutral curidetermined by
can be described by a perturbative stream functiol\,=0) one obtains the critical parameterR @nd wave

W (x,2,t) = ¢(x)expkz+At), which satisfiesu,=d¥,/dz,

w,=—dW,/x. By taking the curl in the equation of pertur-

bative momentum and substituting E@) in the resulting
equation one obtains

AV2p=V4p—ik GI‘(WbVZqD—quD)

—[cog a) 8’ +ik sin(a) 6], (5)
PrA0=V20—R(ik 6o+ ¢’ +ikwy6), (6)
p=¢'=0'=0 at x==1. (7)

numbej and the critical frequencyfrom the corresponding
value of \;). Our stability results have been validated by
comparison with those reported by Laure and R4 and
Kuo and Korpeld15] for a«=90°. Differences of less than
2% in the critical Rayleigh number, wave number, and fre-
quency are found in the worst cases.

A. Nomenclature and type of instabilities

Table | shows the trends of the critical parameters of the
several instabilities found for @Pr<o and 0°<«=<180°.
The nomenclature used for labeling each instability has two
subsequent capital letters that, respectively, describe the tem-

The longitudinal perturbations are helicoidal modespora| and spatial behavior of its associated perturbations:
whose motion can be represented by the perturbative Velo‘E)‘sciIIatory (\;|>0) orS stationary §;=0) andL, longitu-
ity along the z axis and a perturbative stream function gina| (k=0) or T, transversal fi=0). In some cases an
Dp(x,y,1) = h(x)exp{my-+At) that describes the flow in the exira(lowercasg label is needed to distinguish between per-

XY plane (p,=—0®,/dy andv,=—JdP/ix). The equa-
tions for the amplitude of longitudinal perturbations are

Aw=V2w+imRPr tw] ¢+ cog @), (8
AV2y=V*+imsin(a)0, 9)
Pr\0=V20+R(W+iméyy), (10

Y=y '=6'=0 at x==1, (11

turbations withshort (s) or long (I) wavelength compared to
the width of the cavity, B.

The stability diagram of Fig. 4 indicates with bold letters,
the instability with the lowest critical Rayleigh number in
each region in the Pa- chart. Those with the second lowest
critical Rayleigh number are noted in italics and between
parenthesis. This diagram shows also information concerning
the onset of the boundary layer regime. As shown below, in
the BLR the structure of the unicell changes in such a way
that the core region remains stable and the instabilities may
only develop at the boundary layers and at relatively large

where in Egs(8) and(9) the pressure has been eliminated byvalues of Ra(see Ref[25]). Therefore, if for a set of, Pr,
cross derivation in th& andy projections of the perturbative andA,, the BLR takes place &= Rg g the core-flow shall

momentum equation.

be stable to a certain type of instability if its critical Rayleigh
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150 B. The vertical unstable configuration, «=0°

Some comments on the unstable vertical configuration are
needed before presenting the general inclined case. For
a=0°, the basic state is the purely conductive rest solution
whose stability was studied by Gershuni and Zhukhovitskii
[10]. Convection takes place if the unstable temperature
stratification exceeds a critical Pr-independent value that de-
pends on the aspect ratios and the thermal boundary condi-
tions. In the limitA,— 0 andA,— 0 (vertical parallel plates
the stability problem has an exact analytical solutjag)].

For both transversal and longitudinal perturbations, the mar-
ginal Rayleigh number increases monotonically with the
wave number and the critical modes have a vanishing wave
number(plane parallel disturbancedn the case of adiabatic
walls and for transversal and longitudinal modes, the critical
Rayleigh numbers ar®Y=31.285 andR"=0, respec-
tively. In our notation, the longitudinal mode far=0° cor-
responds to the stationary longitudinal long-wavelength
critical Rayleigh number is indicated with bold letters and that with(SL') mStab'I_'tY’ henceR_S,_|(O°)=0. _In finite cavities W'th

the second lowest critic& is labeled in italics and between paren- A,<1, the critical Rayleigh number increases approximately

thesis(see Sec. 11l A for nomenclatureThe lines noted bya) and  like Ay, due to the diffusion at the lateral wall25]. The
(b) are placed aRg g=Rs7, With Rg g calculated(a) for A,  flow associated with the longitudinal long-wavelength mode

stable

100

50 -

FIG. 4. The stability diagram. The instability with the lowest

=1/10 and(b) for A,=1/50. Line (c) corresponds t&Rg r=Ror, in a vertical cavity withA,<1 resembles that illustrated in
for A,=1/50. For Pr larger than the locus @i, (b), or (c), the core ~ Fig. 8(b). It consists of a unicell that flows in theZ plane
region is stable to the indicated type of instability. and fills the whole extension of the cavity.

IV. THE STATIONARY LONGITUDINAL

number (say R.,i;) is such thatR.;>Rg r. The dashed
(say Reri) crit’” " BLR LONG-WAVELENGTH INSTABILITY  (SL,)

lines in the stability diagram of Fig. 4 show the locus of this
stability criterion(with “ crit” standing for the ST and QT The S, instability appears for ang<90° and has essen-
instabilities in cavities with several aspect ratios. The valuetially the same origin as the critical mode of the unstable
of Rg_ R is directly obtained from Ra y (given in Ref.[8]):  vertical configuration. This is clearly revealed in the values
the BLR holds forK<0.1[26,8], henceRg r=0.1Rg . of the critical Rayleigh number and critical wave number:
Figure 5 shows the grouRg  r COsa/R, versusa for several  Rsy,(@)=0 andmg (a)=0. In fact, a general relationship
values ofA, . valid for any type of thermal boundary conditions is
Rsi,(a) =Rg,(0°)/cose (see Ref.[25]) meaning that the
onset of the S|perturbation occurs once the vertical projec-
tion of the temperature stratification, c@&T/L, reaches the
same critical value for the vertical configuration. In the par-
ticular case of adiabatic WaII$Rg,_I =0) the critical Rayleigh

number for the SL instability is the lowest one for any
heated-from-below configuratidsee Fig. 4. In view of this
result, our first impression was that for any<90°, the Sl
perturbation would soon be superposed onto the basic cell
thus making it impossible or very difficult to observe the rest
of the predicted instabilities in 3D inclined cavities. Never-
theless, as shown in the neutral curves of Figy,6here is
an important difference between the inclined and the vertical
configurations. In a vertical cavity, any Smodes with ar-
bitrary wave numbem can become unstable provided a
large enough value d®. But if the cavity is inclined, the SL
instability presents a cutoff wave number such that perturba-
tions with m>m¢c,r are damped. The value ohcyt is
shown in Fig. €b) againsta and Pr. By increasingr or
decreasing Pr, the flow becomes stable t |@trturbations
FIG. 5. The local core Rayleigh number at the onset of thewith larger wavelengths. This result suggests the possibility
boundary layer regime Rg r) scaled with Ry/cos@) (R,  Of filtering the Sl instability in closed tilted 3D cavities by
=31.285). choosing a depttD, smaller than the cutoff wavelength,

1.00

0.90

0.70

0.60

o4
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(a)

Unstable 3
P E to SL1 d

‘ 10° FIG. 7. Schematic view of the perturbative motion originated by
(b) the Sl instability. The arrows indicates the sense of the perturba-
0 | tive flow. Darker shading corresponds to colder regions and vice
| versa.
= 10 L works against the mean shear stress. This fact explains that
for Pr<1, meyt decreases with Pr as seen in Figo)6
o.o 1. Numerical calculations
O 20 24O SO sSO0 200

b Several numerical calculations of the flow in closed 3D
FIG. 6. (a) Neutral curve for S| perturbations forx=0° and  Cavities were carried out to confirm the possibility of filtering
a=50°, Pr>c. (b) The cutoff wave numbemc versusa (bo-  the Sk instability. Table Il summarizes the results. In these
tom axi9 and versus Pr forr=70° (upper axis. calculations, Ra was increased up to or near the boundary
layer regime in order to be sure of the stability properties at

27himeyr (ie., Aym>meyr). This possibility was con- the core. As seen in Table II, the Sinstability did not

firmed by numerical calculations presented soon afterward&PPeared in any of the configurations that satisfied the stabil-
Let us first explain how the inclined geometry enables thdly criteria, Aym>mcyr, while it developed in the other
suppression of Slperturbations. The Stflow is schemati- ¢ases. This result confirms that the conditi@pm>mcyt
cally represented in Fig. 7. Most part of the perturbativeyields the appropriate value @, to inhibit SL; perturba-
current is driven by the streamwise component of the buoytions. A particularly interesting case corresponds to the set
ant force and consists of a unique cell that flows in Y@  Pr=6.7,A,=2/3, A,=1/10, «=20°, for whichmA, is quite
plane filling the whole extension of the cavity. This currentclose tomgt (see Table . Two sets of calculations were
converts the potential energy stored in the perturbative temearried out, differing in the interval of Ra between consecu-
perature field(shown in Fig. 7 by different shadingnto  tive runs, A Ra. Using the above-mentioned set of param-
kinetic energy at a rate given bgosa(w,T,). If the cavity is  eters andA Ra= 10, the flow became unstable for the SL
inclined, the temperature variation along tk& plane in-  instability whereas foA Ra= 50, it maintained the basic uni-
duces also a cross-stream floMustrated with solid lines in  cellular flow and reached the BLR at large Ra. This may
Fig. 7), which obtains kinetic energy via thecomponent of  ingicate that forA,=mc 1/, the Sl flow coexists with the
buoyancy at a rate given by sifupT,). Owing to the mean pagic unicell in the space of stable solutions. A future inves-
stable stratification along the axis, the cross-stream flow (gation by means of a continuation technique in the space of
reduces the buoyant excess that drives the perturbation, 38 ameters is planned to determine the branches of solutions
revealed in a’ negative rgte of production of temperature variz g their stability in cavities witih,~mc /7.
ance,(UpT,0,)<<0. As a increases, the mean stable stratifi-  igre g jllustrates the flow induced by the,Shstability
cation increases ¢,~sina) and the streamwise buoyant gnq jts further evolution in a configuration with 6.7, «
force decreases so Sperturbations with longer wavelength — 5qe° andA,=1/7, A,=1/3. The snapshots corresponds to
are damped. This stabilizing mechanism has a thermal origig|culations done with a mesh of ¥35% 45 and a time step
and is dominant at large or moderate Pr. At low Prandtlig-3n2/,,. Concerning the accuracy, variations of less than
number the stabilization has a hydrodynamic origin, the Reygos are found in the velocity and temperature fields when
nolds energy is negative-(R Pr~(u,wywy)<0) meaning  comparing with calculations done with a double number of
that in its motion along thex direction, the perturbation ¢gjculation cells in they or z direction. At Ra=25 we ob-
served the onset of the fundamental, $iode formed by a
unique cell in theY Z section[Fig. 8b)]. The perturbative
The operator(-) denotes the average along tkalirection for ~ Circulation on theXY plane is shown in Fig. @). At Ra
one wavelength. For a derivation of the balance equations for the= 30 a secondarystationary mode composed by two pairs
perturbative kinetic energy and temperature variance see Ref€f counter-rotating cells in th¥ Z plane is superposed to the
[15,18. primary mode giving a flow illustrated in Fig(®.
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TABLE II. Details of the primary instability encountered in 3D numerical calculations. The range of Ra
for the first transition is noted by &Y. The number of longitudinal and transversal perturbative cells at the
core region,n, andn,, respectively, and the cutoff wavelength for,Slisturbancesg/mcyr, are also

indicated.
Configuration Details of multicellular flow

Pr a Al A Moyt Flow type R&SY ny.n,
0.05 10 10 1 2.09 ST (45,%0 0,2
0.025 80 4 6 8.97 STOL (40,46 3,1
0.7 70 10 4 3.14 SL (90,1009 1,0
0.7 70 10 2 3.14 unicell 0,0
0.7 70 10 1 3.14 unicell 0,0
6.7 20 7 15 1.74 unicell/SL -/(40,50 0, 0/1, G
6.7 20 7 3 1.74 SL (20,25 1,0

&The flow is conditionally unstable to $Histurbances and the resulting flow depends on the heatingseste
text).

V. THE STATIONARY TRANSVERSAL INSTABILITY  (ST) solution of Eqs.(5)—(7) at several values of Pr and

The ST instability takes most part of its kinetic energy It is remarked that the asymptotic limit fails for small

from the mean shear stress and therefore in the previod?s{'Ough inclinations and for §|0.05_[this Is clearly seen in
studies for the horizontal cagsee, for instance, Ref§13— Fig. 9b)]. As the Prandtl number increases the thermal ef-

15)), it has been usually called “shear instability.” Never- fects becomes increasingly important. The time needed to

theless, if two components of buoyancy exist, the ST perturlomogenize a temperature excess in a fluid parcel goes like
bations can obtain a large amount of its kinetic energy fromO(Prh?/v) and therefore, at larger Pr, the buoyant force acts
the thermal field as shall be discussed belsee also Ref. ©0n the differentially heated particles during a larger interval
[18)). of time. An inspection in the trend fd{sy versus Pr in Fig.

Let us first discuss the hydrodynamic limit (B0 and  9(b) indicates that the effect of buoyancy in the perturbative
R—0) for arbitrary inclination. In this limit the governing flow becomes relevant for Br0.05 and depends on the in-
parameter is the Grashof number=GR/Pr, which controls  clination angle. Ate=90°, the mean cross-stream stratifica-
the ratio between the inertial and viscous forces. The temtion is stable and buoyancy acts as a restoring force. As a
perature disturbances are homogenized instantaneously andnsequence, as Pr increases, the critical ST rolls reduce the
therefore, in regard to the perturbative flow, the buoyancyrelative amount of cross-stream flows decreasesand the
forces are absent. In the formal-PO andR—O0 limit, the ST perturbation is finally damped for P0.12 (this fact is
basic profiles arav,(x)=sina(x*—x)/6 and 6,(x)=0 and confirmed also by numerical calculatiofis]). For «>90°,
the equation for the amplitude of transversal perturbations ighe fluid is also stably stratified along tzedirection and as
the well-known Orr-Sommerfeld equation whose solutionshown in Fig. 4, the ST rolls are damped at even lower
gives Ggr=495/sicx and kst=1.345. The asymptotic values of Pr.
trends for P+~0 of Grgy and kgt are shown with dashed According to the stability analysis, fow<<90° the ST
lines in Fig. 9a,b together with the values obtained from the rolls can be observed at relatively large values of Pr1]

(a) (b) (c)

FIG. 8. Cuts of the velocity field ak=
—0.15h obtained for Pe6.7, a=20°, A,
=1/3, andA,=1/7 and at(a) Ra= 25 (basic uni-
cell); (b) Ra=30 (primary Sl mode; and (c)
Ra= 35 (the secondary mode(d) The projection
of the velocity field az=0.47_ and Ra= 30.
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Fig. 4. Note that the destabilizing effect of the streamwise
component of buoyancy is enhanced if the cavity is made
larger. For instance, foA,=1/50 a small inclination(of

élo about 4°) with respect to the horizontal position is enough to
;% enable ST rolls in gases (P14).

11

z 1. Numerical calculations
“10?

Table Ill compares the main numerical results concerning
the onset of multicellular flow in 2D cavities. In these nu-
O 30 60 90 120 150 180 merical calculations, accuracies of about 1% in the flow
quantities were ensured by successive mesh refinefaeat
Ref. [25] for detailg. The wave number was obtained from
the maximum amplitude peak in the the Fourier spectra of
the z dependence of several flow quantities. Calculations
made for P=0.7 confirmed the possibility of finding ST
rolls in gas-filled heated-from-below inclined cavities. For
Pr=0.7, the multicellular flow developed gradually above
values of Ra slightly smaller than the predicted critical ones
(see Table Ill. These transitions are examples of imperfect
bifurcations induced by recirculation eddies formed near the
end walls and are quite similar to those reported by Hart

(02

kST

1.1 Ll [13]. Using P=0.7 andA,=1/10, the ST rolls were ob-
107 107 10" 10° 10' 10° served at inclinations up t@=70°. At «=80°, the Rayleigh
Pr number was increased up to Ra.0x 10°, but no trace of

ST rolls was found. Instead, the unicell reached a fully de-
FIG. 9. (a) The critical Grashof number Gf=Rst/Prversusr.  veloped BLR above Ral.3x10%. This result agrees quite

(b) The critical wave numbeksy versus Pr. well with the stability criteria derived according to the onset

of the BLR (R¢;it>Rg_r), Which predicts that the ST rolls
and with larger wave numbefsee Fig. ®)]. As discussed cannot develop fow>75° (see Fig. 4 Also, for P=6.7,
in Ref.[18], this is a consequence of the following thermal the ST rolls did not appeared for any value afneither in
mechanism: owing to the mean cross-stream temperature dithe 2D cavity A,=1/7) nor in the 3D one A,=1/7, A,
ference, fluid particles moving alongdirection carry their  =2/3).
local temperature to a new thermal surrounding where they In order to investigate the effect of the third dimension,
are accelerated by the streamwise buoyancy force, whichumerical calculations were carried out in a 3D cavity with
draws within an unstable stratification. Anyhow, at-Pr, A,=1/10 andAy=1, using P+0.05 anda=10°. Results
Rst— Rg/cosa, which corresponds to Rax (see Fig. 3. obtained with 1% 15X 45 calculation cells agreed within
Hence, as Ra is increased, in an enclosure filled with a largabout 6% with those obtained with ¥8.5X90. The time
enough Pr fluid, the BLR shall appear before the ST instastep was about IGh?/v. At Ra=50 (R=237.5), the basic
bility can develop Rg r<Rs7). In this case, the streamwise flow was disrupted by two stationary shear rolls. As illus-
temperature gradient vanishes at the core region and theated in Fig. 10b) the resulting bicellular flow maintains
above-explained thermal mechanism is absent; as a consessentially a bidimensional structure. The wavelength of the
guence the ST rolls are damped. The frontier of this criteriortransversal rolls is approximatelyHg which gives a wave
is shown for different aspect ratios in the stability map ofnumber k=0.52) smaller than the prediction fok,—0

TABLE lll. Comparison between numerical results and theoretical predictions at the onset of 2D multi-
cellular flow. The frequency is in units ofh{/v). The theoretical critical external Rayleigh number is
Ra.;i:= R it /K, where “crit” stands for OT or ST.

Configuration Numerical results Theoretical prediction

Pr a A RAd™  waveno. Freq. K Rayic  Keie  ferir Instability
0.025 10° 30 (24,27 1.31 - 092 2694 1.35 ST
0.7 20° 10 >110 1.5 0.27 119.07 152 ST
0.7 50° 10 >160 1.5 0.25 178.72 1.47 ST
0.7 70° 10 >700 1.4 0.11 727.18 141 ST
0.7 20° 50 45 0.35 087 070 4457 035 0.68 | OT
0.7 50° 50 75 0.31 1.15 0.58 73.75 0.31 0.96 ,OT

0.3 12° 60 (35,3 1.53/0.25 -/0.82 0.84 36.42 153 -/0.76 BT,
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(d) sitions shall be presented elsewhere and we refer to] R&f.
for illustrations. Briefly, at R& 75 the two cells merge to a
unique stationary roll centered a&0.5./h (a flow essen-
tially similar to that inferred by the experiments of RE18])
and at Ra&80 an oscillatory and three-dimensional flow
(composed by the centered shear roll and one perpendicular
roll in the Y Z plane was developed.
The numerical results indicate that the<90° configura-
tion enables the oscillation of transversal rolls at values of Pr
larger than those found for the horizontal configuration and
that asa decreases, successive scenarios are separated be-
tween relatively shorter intervals of Ra. For instance, no os-
cillatory regimes were found in the experimental and nu-
merical work by Braunsfurthet al. [28] (they used Pr
=0.015 in a IX1X4 cavity). Still for «=90°, Skeldonet
al. [19] found that increasing Pr up to £0.025 inhibits the
onset of oscillations, but Reff21] reports that a Hopf bifur-
cation occurs for Pr 0.025 if the configuration used [19]
is tilted to@=80°. Also, the 3D configuration presented here
indicates that fore=10°, several multicellular patterns and
oscillatory flow can be observed at least untiER.05. For
a<90° the cutoff for the oscillation of transversal rolls is
shifted towards larger values of Pr, surely as a consequence
FIG. 10. Snapshots of the 3D stationary flow for=R05, « of the above-mentioned destabilizing coupling betweenzth_e
=10°, Aj=1, A,=1/10 at Ra50. (a) Isovalues of the field72P component of buoyancy _anq th_e cross-stream advection.
(dark regions corresponds ®?P<0 and vice versa (b) The ve- Anyhow a study of the inclination effect on the Hopf-
locity field in the same plane a8), y=0.09. (c) Isovalues ofv2p  bifurcation branches at low and moderate Pr number is be-
in the x=0.09 plane showing also the velocity field) The veloc-  Yond the scope of this paper and it is left for future work.
ity field in the planex=0.27.

VI. THE OSCILLATORY TRANSVERSAL

(ks7=1.35). The increase of lateral confinement implies LONG-WAVELENGTH INSTABILITY  (OT,)
larger momentum dissipation and therefore an increase of the ) o o )
critical Rayleigh number and wavelengths. In particular, our A detailed description of the Qnstability including the
result for the 3D configuration is in concordance with the€nergetics of critical perturbations can be found in Refs.
results of Nikitin et al. [27] who obtained a wavelength of [18,25). Here, we shall briefly discuss the origin of the OT
6H for a Pr=0 fluid in a horizontala,=1/10 cavity. instability and present further results on the nature of the

The 3D calculations revealed a subtle three-dimensiong@scillations. Numerical calculations, showing the flow pro-
effect that induces flow along thedirection once the two- duced by OT instability in several 2D configurations shall
vortex pattern is developed. This flow, shown in Fig. 10, carP€ also presented.
be explained by considering the low pressure spots generated The OT instability is a standing wave with a rather long
around the core of each vortepat x=0, y=0, andz  Wavelengthitypically 9H) and it only comes up if the cavity
={0.67,0.32(L/h)]. Figures 10a) and 1@c) illustrate the IS inclined and heated from below (6°@<<90°). The per-
distortion of pressure field by showing the isovalue§8p.  turbation gains the most part of its kinetic energy from the
Note that the pressure decreases inwéuisards the center Streamwise buoyant force. Far—0°, the OT critical per-
of the cavity whereV2P>0 (lighter region and outwards turbation recovers the critical transversal mode in the vertical
where V2P<0 (darker regions Near each vortex, the low Cavity: Ror —Ro, kot —0, andfor —0. The value oRor,
pressure spots generate a suction force that impels flow alorig slightly smaller thaiR,/cos« and does not greatly depend
the y direction towards the center of each r¢fiee Fig. on Pr[18]. The critical wave number reaches its maximum
10(c)]. At the inter-vortex region, conservation of mass re-value (kg7=0.36) ata=20° and P=1 and decreases to
quires outflow towards thg=*1 walls. Moreover, at this zero for «=90° or Pr~{0~}. The cross-stream motion
region the two corotating rolls collide with opposixe(in- takes energy out from the mean shear stress and also from
wards velocities and therefore the pressure locally increasethe coupling between the cross-stream advection and the
(V2P<0) producing an outward pressure force that drawsstreamwise buoyancy force. This latter mechanism is essen-
flow towardsy==*=1. The resulting velocity pattern in the tially the same as that explained for the ST instability at Pr
Y Z sections[shown in Figs. 1&) and 1Qd)] has a sinu- ~1
soidal structure around the=0 plane, which gradually re- In relation to the origin of the oscillation, it can be proven
covers a Poiselle-like profile near= +1, i.e., away from the (see Ref[10]) that in the case of an odd basic profile, the
vortex core. Two new transitions were observed at relativelyoscillatory perturbations are standing waves composed by
small increases of RaA(Ra=5). An analysis of these tran- the superposition of a couple of traveling modes with equal
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and opposite sign phase velocities. In the case of the OT
instability the ratio between the phase velocity and the maxi-
mum value of the basic veIocityOTlEwaOleaTlllwb'maX,

only depends on the fluid diffusivitie@.e., on Py and does
not vary with the inclination. Its value is less than 1 and fits
to cor,=0.91(1-0.08 Pr*) for Pr>0.1. This fact indicates

that the oscillation is essentially driven by the mean flow
drag, which carries the pair of traveling modes in opposite
senses of the direction.

1. Numerical results

The OT, cells has been observed in numerical calculations
carried out at several inclination(gletails can be found in
[29]). As seen in Table lll, the stability analysis correctly
predicts the Rayleigh number and the wave number at the
onset of the OTwave. Nevertheless, if the onset of the in-
stability occurred well inside the transition regime, the fre-
qguency of the oscillation greatly differed from the stability
analysis predictior(in worst cases about a 30% difference,
see Table Il). In order to understand why the confinement
has a significant influence only on the frequency, the ratio
between the phase velocity and the maximum mean flow
streamwise velocity obtained from the numerical output
was compared with the stability predictic@Tl. In all cases,

both values agreed at the onset of the multicellular flow.
Therefore, the relevant parameter for the oscillation is the
ratio ¢, and one can forecast the oscillation frequency in a
closed geometry b]‘/Olecoﬂ(Pr)wb'max, Wherewy, axwas

given in Ref.[8] in terms of Ra,«, andA,.

In order to investigate the interaction between the ST and *°
OT, instabilities calculations were carried out for=F0.3
anda=12°; a point placed at the codimension-2 line for the
ST-OT, instabilities (see Fig. 4. The oscillatory flow ap-
peared at 35 Ra<38 (see Table Il and it is illustrated in o8 [
Fig. 11 showing several snapshots along a cycle. A fine mesh
with 31X 261 collocation points has to be used to capture the
details of this multicellular flow and ensure accuracies of ' '
about 2%. As shown in Fig. 1), the wave number spectra I 1 L I -
of the stream function presents two peaks at valudstbat o.0 1.0 k 2.0 3.0
coincide exactly with the prediction for ST and Qdells:

kst=1.53 andk0T|:O'25' At the onset of multicellular flow FIG. 11. Above: snapshots of the stream function along a cycle
the center of each shear roll remains fixed in space and thef oscillation (f=0.823/h?) observed for P£0.3, a=12°, A,
oscillation is governed by th®T| wave withc=0.69. Ata  =1/60, and Ra 38. Below: wave number spectra along thei-
slightly larger value of Ra, the position of the shear rollsrection (the dashed lines indicate the critical wave numbers pre-
begins also to oscillate leading to successive transitions tdicted by the stability analysis

quasiperiodic flow and finally to a chaotic time signal for

Ra=42. Details on these transitions are given in Rag).  of the critical parameters, explain the physical origin of the
instability, and finally give a further requirement for the on-
set of the Si instability, which depends on the aspect ratio

VII. THE STATIONARY LONGITUDINAL of the cavity.

SHORT-WAVELENGTH INSTABILITY  (SLs) Table | gives a fit toRg,_ andmg, for a=290° within

As seen in the stability diagram of Fig. 4, the Shsta-  about 3% of error. For Rr0.1, the critical Rayleigh fits to
ili i inclination is ne Rg. =1700 P2 and mg, =2.9. For a<90°, the flow be-
bility only takes place if the inclination is near or equal to Rsig SL, ;
a=90°. The Si instability was predicted in previous linear comes stable to SL perturbations at RPrl, while for
stability analysis made for the horizontal configuratjds, a>90°, the stabilization occurs at much lower values of Pr
but it has not been explicitly reported in numerical calcula-(for instance, ifa=93° for Pr>0.1).
tions or experiments. In what follows we present the trends Figure 12 illustrates the perturbative Slow by showing

k4
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layer of a 1x2.08x 1 cavity filled with water. These authors
showed that, for this value of P(7), the perturbation is
mainly driven by a Rayleigh-Beard-like mechanism arising
at the unstably stratified layer formed inside the intrusive
layer although they indicate that shear effects may have a
certain destabilizing contribution. This contribution comes
out from the above-mentionedT/dz]-[ dw/dx) coupling
and a possible way to experimentally measure its relative
importance is to find the trace of the sinusoidal pattern of the
perturbative streamwise velocity in th€Y plane[see Fig.
12(c)], which would be completely absent if the longitudinal
rolls were uniquely driven by a Rayleigh-Bard-like insta-
bility [25].

(a)
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FIG. 12. (a) Isocontours of the perturbative temperatilirg (b)
stream functiond,,, and(c) axial velocityw, of the critical Slg VIII. THE OSCILLATORY LONGITUDINAL INSTABILITY
disturbance for Pr 0.3, «=90°. In(a) and(c), darker regions cor- (OL)
respond, respectively, f,>0 andw,>0. The critical wave num-

ber ismg,_=2.33. The OL instability arises at low enough Pr number and

typically for «<<115° (see Fig. 4 Table | shows the trend of
the critical parameters with Pr, fitted within about 3% of
deviation to the stability results obtainedat 90° and Fig.
13 plots the values oRg,, Mg, and fo, againsta for

the critical mode for P+ 0.3 anda=90°. The wavelength is
approximately the semiwidth=H/2, but the perturbation is
localized at layers near the= =1 walls whose thickness is different values of Pr. The OL instability is damped at a

about 0.251. The Sl instability is generated by a mecha- certain cutoff value of Pr, which decreases with the inclina-

nism that couples the mean shear stress and the streamwhsgn angle. For example, far=90° and 80°, OL perturba-

'fons are damped for Br0.21 and P#0.26, respectively.
The basic mechanism that originates the OL instability
n be explained by considering the limitP@ with finite R

wherew;>0. The perturbative momentum along theirec-
tion is driven by a shear force triggered by the cross-stream

perturbative flow —RPr*uw;,, see Eq/(8)]. Note that at (Gr—). In this limit, v—0, k— and the characteristic
the unstable layersi;w, <0 [see Figs. 1) and 120)] and  yean diffusion time ih?/(vi) 2 Gill [12] considered the
hence the Reynolds energy R Pr (upwywy)) is positive.  forma) equations at this PO limit concluding that dissipa-
Owing to the mean streamwise temperature gradient, the pefiyn of momenta vanishe/@v— 0) and therefore the oscil-
turbative advection in thedirection generates a temperature latory flow arises as a consequence of a dynamical balance
pattern in theXY plane[see Fig. 1Ba)] that activates lift pheyeen the inertial and buoyant forces. Also, the advection
forces along the cross-stream direction and a perturbativgs neat is balanced instantaneously with the thermal diffu-
flow in the XY plane,_v_vh|_ch in turn feeds the shear force. Forsion, gT/at—0. Hart[13] proposed another set of equations
Pr>1, the Sl instability is damped because of the effect of to; pr_.0. The momentum equation agreed with that derived
the cross-stream stable stratification and the decrease of t|59 Gill, but the energy equation was treated in a different
inertial forces. _ _ ___way. Hart assumed that heat is transfered without any loss of
~ The above-described mechanism makes possible, in priRsnergy by conduction and hence that the perturbation be-
ciple, the onset of SLrolls in the transition regiméTR) of  L5ves like a pure thermal waviee., dT/dt=0). Although a
a flow within a completely stable cross-stream stratification, ,mber of numerical and experimental works have investi-
(i.e., with adiabatic walls Nevertheless, consideration of the gated the OL wavésee e.g.[20,22 and references thergin
finite size of the cavity leads to the conclusion that for aany explanation on the discrepancies of both theoretical
broad range of values of the aspect ratip, the boundary yodels could be found in the literature.
layer regime appears before the onset of the i8tability In what follows, an analytical approach inspired in the
(ReLr<Rst,). To show this fact, let us consider a favorable gpproximation done by Gil[12] is presented. It intends to
case: a horizontal configuration filled with a gas with Prgive an insight into the effect of inclination on the OL insta-
=0.7 (for which the OL or ST rolls cannot develpgdn this  bility and also provides a criteria for the validity of Gill's
case Rg = 10* andRg g=62.5A, ) the requiremenRg, and Hart's approaches. Following Gill2], we consider the
<Rg_g is only fulfilled in cavities with at leasf,<10 2  following simplification of the disturbance, which mimics

(L>107H). In smaller cavities the Slinstability is unlikely ~ the perturbative flow around the central part of the layer (

to be observed in the TR, although once the boundary Iaye?0)5
regime is developed, short-wavelength longitudinal rolls may

appear at the intrusion layers near the +1 walls where Wp(X,y,2)=cog dyx)cogmy)wy(t),

ow/ dx is rather large and a negative valueddf/ 9z is main- _

tained by the streamwise advectif8]. Schopf and Stiller D y(x,y,z)=cogdyXx)sin(my)upy(t),

[17] have experimentally found a set of longitudinal station- 5

ary rolls of wavelength~0.125% arising at the intrusion To(X,y,z)=cog drx)cogmy)T,(t). (12
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=t shall be described by expanding the equations for the
longitudinal disturbance$Egs. (8)—(10)] to first order in
time. This leads to

PrH2T,+n3T ot =wp(to) t, (13)

nyU,= —m?R Pr%sina T, dt, (14)

=Wp(to) +Up|Wh|R Pr 26t (15)
It is remarked that in Eq$13)—(15) and in what follows, the
following scales for velocity, temperature, and time shall be
used:R«/h, Rh(AT/L), andh/(vk)>.

In Eqg. (15 the mean shear has been substituted by an
averaged value that gives a larger weight in the central part

of the layer(e.g., wb S owp(x)’ co§(7rx/2)dx) Note that

aroundx=0, the mean shear is negative amgi: |wb| In

Eqg. (13) the heat advected along thedirection has been
neglected. As discussed by both Gi2] and Hart[13], this
term is negligible at low Pfits contribution goes like PP

and at larger Pr it has a stabilizing effect. The basic mecha-
nism of the oscillation is deduced from E¢&3)—(15). Con-
sider an initial velocity disturbance in thedirection with

W, (tp)>0. The disturbance carries heat and locally increases

the temperatur@Tp>0 in Eg. (13)]. As a consequence lift
forces are activated alongdirection: fluid particles ascend
[Ep<0 in Eq.(14)] and counter-rotating rolls are created by
1 ‘ ‘ continuity in theXY plane. The flow along the& direction
70 80 90 100 110 120 induces a shear force along thelirection that has a sign
o opposite tow,(to) [see Eq(15)]. At a quarter of cyclew,
changes sign driven by the shear force and so does the
streamwise advection, leading i’q3<0. At this point, the
buoyant force acts against the ascendinipw and finally
changes its sensé];(>0). The same process takes place
along the other half of the cycle but with all the perturbative
quantities having a changed sign. In particular, for the initial
condition proposed above, the change of sigﬁlpbccurs at
a quarter of a cycle so to obtain an estimation for the fre-
guency one can Ietv =0 at st=f"Y/4 in Egs.(13—(15).
After some algebra th|s leads to

+ Pr=0.1

10

FIG. 13. (a) The critical Rayleigh numbefleft axis) and wave
number(right axis of the OL instability, both scaled with B%. (b)
The critical frequencyfy, againsta [points correspond to the sta-
bility results and dashed lines correspond to EdS¥) and (18)
evaluated with the critical parameters obtained for B1025. Both
theoretical trends have been divided by a factor of 2.2.

In Egs.(12) we have introduced scalars representing the
effective temperature and momentum diffusion along xhe
direction,d; andd), . Gill [12] useddy,= 7/2, which guar-
antees the Dirichlet boundary conditionxat + 1 for w, and
U,=dP,/dy but not forv,=—dd,/dx+#0. Nevertheless,
the simplified flow given by Eq(12) is useful enough to
draw the main characteristics of the perturbation aroxnd
~0, away from the thin Stokes layers near the walls whosdhe trend forf depends on the relative importance of the two
thickness{ O(Pr*/?)] vanishes as P#0. Gill [12] also used terms of the left-hand side of E¢L6). The termn%f2 comes
dr=m/2, which adequately represents the perturbative temeut from the the thermal diffusion and 442 from the
perature field inside perfectly conducting walli®., Dirich-  explicit time derivative of the temperature. Their ratio is
let thermal boundary conditionsAs shown below, a coher- fr,, where, in units oh?/(vk)Y?, 74=4 P n? is approxi-
ent choice of the value ad; depends on the type of walls. mately the time needed by diffusion to homogenize the tem-
From Eq. (12) the Laplaman operator simplifies to a scalar perature fluctuation along one wavelengbhh(zlnTK) Two
g|ven bynM m?+dy for momentum related quantities and ifferent situations arise. If >n2/4 P2 the characteristic
ni=m?+d for the temperature. diffusion time is long compared to the period of the oscilla-

Consider a positive disturbance of velocity along the tion and the amount of energy diffused along each cycle can
axis,va(to)>0, made at an instari around the center of be neglected. In the opposite caﬁgn$/4 P2 thermal dif-
the layer =0, y=0). The perturbative flow at a time  fusion balances almost instantaneously with advection in

R?m?sina|wy)|

16
4%n, (19

n$f2+4 prif3=
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perturbative axial velocity{?T,=w,). In view of Eq.(16),

one should expect that this former condition stands for Pr
—0 as stated by Gill12]. But in the case of adiabatic walls
at low Pr, the isothermals of the critical disturbances are e N >
nearly parallel to the directiorf leaving a vanishingly small ; o
thermal diffusion along thes direction[i.e., dr=0 in Eq.
(12) and n%z m?]. Under this situation we have verified that,
even for Pe-0, the inequalityf o, >m3, /4 P2 holds for the
whole range ofx and hence the term proportional t can
be neglected from Eq16). This leads to the following trend
that coincides with that proposed by Hat3] for «=90°,

such a way that the temperature perturbation is slaved to the 15— g T L -
;&\QL-—un able.

(17 ] étable

(overdamped)

4

. _ 1/3
1 ( R?m?sina Pr l’2|wt’,|)

2
Nw

It is remarked that Eq17) does not take into account the

effect of the streamwise component of the buoyant force. In 0.6 ' 0.7 ' 0.8 " o.ss
order to include it in the theoretical model of E$3)—(15), m

the term P¥?RcosaT,, has to be added to EGL5). This FIG. 14. Neutral curve and isovalues of the imaginary part of
leads to the growth rate\; for Pr=0.02 anda=50°. The dashed line at

Rn?=4.47 indicates the exchage of stability from=0 to \;#0.

4

1 ( R?m?sina Pr- Y3 wy)| ) v . . :
—4fRcosa| . (18 R or m, the streamwise buoyancy is able to damp the oscil-
latory modes. This fact can be seen in Fig. 14 where the
isovalues of the imaginary part of the complex growth rate
The relations of Eq917) and(18) can be used to analyze \;, are drawn in theR-m chart. According to Eq(18) the
the dependence of critical frequency en Figure 13b)  oscillatory ~ perturbations  disappear  for Rn?
shows the values df againsta for several Pr. The dashed ~f Pr”2cota/jw;), a trend that qualitatively agrees with the
lines in Fig. 13b) are obtained by inserting the values of the results of the linear stability analysis.
critical parameters for Rr0.025 into Eqs(17) and(18) and
then dividing by a factor of 2.2. As shown in Fig. (b3 for 1. Numerical calculations
a=90°, the incrementy, with « agrees quite well with the
trend proposed in Eql7). Even for the largest anglea(

i

Numerical simulations for a Pr0.025 fluid (mercury

. ) 3 were carried out in a 3D cavity with,=1/4, A,=1/6, and
=115°), the correction of Eq18) is smaller than 10% and , _gp°. The numerical details and a discussion of the non-

thusfo, can be adequately described by ELy). In view of  |inaar evolution of this flow can be found in RéR1]. Ac-

Eg. (18), this means that the critical frequency is much larger. racies of about 5% were guaranteed by comparing the re-
than (Rcosa)Y¥4, which [in units of (v«)“?h?] corre-

: =" sults of the oscillatory flow obtained with ¥46Xx 35,
sponds to the Brunt Vaisala cutoff frequency for excitationq gy 6% 71, and 1%91x35 calculation cells and using
of internal gravity waves in a the cavity with stable vertical {je steps about 100 smaller than the fundamental period.
stratification. . _ The basic unicellular flow breaks down owing to a ST
On the contrary, forr<90° the streamwise buoyant "as a ghear rol| that for Ra 15 gradually develops at the center
relevant effect n the critical period. As shown in Fig.(88 a1t of the cavity according to an imperfect bifurcation in-
for « below 90° the value of o, decreases faster than pre- g, ced by the confinement. The flow remains bidimensional
dicted by Eq/(17) and fits much better to the trend given by 5 stationary until an oscillatory 3D instability develops at
Eq. (18)._ Note that if the cavity is heated from belpw the 40 Ra<47. The resulting flow is composed by three longi-
streamwise buoyant force amplifies the perturbative flowgina| (counter-rotatingrolls along they direction and it is
along thez direction if w,T,>0. This occurs along almost jjystrated in Fig. 15 for a slightly greater value of Ra. At
the whole cycle because at low R, andT, oscillate prac-  Ra—47 the local Rayleigh number at the coreRs-K Ra
tically in phase(see[12]). Hence, in that part of the pycle =40, the wavelength is approximately44(m=0.785) and
when the mean shear tends to change the sigm,dcting e frequency is,,,= 3.27v/h?. According to the linear sta-
as a restoring foroethe axial buoyant force pulls in the op- iy analysis, the frequency of the OL disturbance at these

posite sense and as a consequence, the period of oscillatigq es ofR andmis f,=3.450/h2, very close to the outcome
increases. Owing to this mechanism, at low enough values Qft the numerical calculation. '

As Ra is increased, the fundamental frequency of the flow
obtained from the numerical calculations fits tQm
2Note that this is not possible in the conducting case considereds 0.10 R&"(v«)Y?/h? within less than 2% of error. Let us
by Gill [12]. compare this trend with the theoretical predictions in Egs.
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IX. CONCLUSIONS

This investigation concerns the primary flow instabilities
arising on the core of rectangular inclined boxes with an
imposed end-to-end temperature differefsee Fig. 1. Con-
sideration is made of the whole range of the Prandtl number
0=<Pr= and inclinations 0% «<180°. The linear stability
analysis of the basic plane-parallel flow predicts a set of
instabilities whose properties are summarized in Table I. The
stability diagram of Fig. 4 shows the most dangerous kind of
disturbance at each point of the Rrspace. The onset of
instabilities at the core region of the cavity depends on a
flow-dependent parametéthe local core Rayleigh number,
R=K Ra) that has been calculated as a function of&rand
the cavity size by means of an analytical model for the con-
fined mean flow. This calculation not only permits to state
the stability results in terms of flow-independent parameters,
but gives further relevant information concerning the
<90° case. For this range of inclinations and regardless of
the cavity size, as Rax, R tends asymptotically to a con-

FIG. 15. Snapshots of the flow induced by the OL instability in stant value,Ry/cosa (Ry=31.285). Also, above a calcu-

a cavity withA,=1/6, A,=1/4, Pr=0.025, =80°, and R&62.  lated value ofR (R>Rg g=R,/cosa) the steady unicell

(a), (b), and (c) show cuts of the vector field at, respectively, changes gradually to a boundary layer regime in which the
=cte, z=cte, andx=0 planes. In(d), four snapshots of the iso- core region remains stable to any type of perturbation. By
thermals atx=0 along a semiperiod of the cyc[éime increases comparing the criticaR for each instability withRg, g we

f_rom left to right and from top t_o bottom; the upper left isothermal phave obtained a stability criteria, which not only depends on
field corresponds to the same instant(@f (b), and(c)]. Pr anda but also on the aspect ratf,. The resulting fron-

(17) and (18). First, in order to evaluat®=K Ra, we have tier of stgbility hag beeq valio[ated byonumerica}l qalculations.
measuredK by averaging the temperature gradient at the In_ a tiited configuration W'tha<9.0 ' Fhe fluid is stably
core(between./4<z<3L/4) along one oscillation cycle. As strat!f!ed glong the cross_-stream d|reqt|on _vvhereas un_stably
shown in[21], the result fits tok = 2.6 Ra 27 within about stratified in the perpendiculaistreamwisg direction. This

5% of error. The maximum value of the mean streamwisé:\?vcetein?hb;esei'thhr%;tsi\t/aeb';Zéﬁeg[u(:ﬁss?g“g%g g:)alfcﬁlrlggjvr?ii-h
velocity increases likewy, ;,.,=0.31 R4 x/h [8] and it is P P :

- i are not possible in the vertical or horizontal limit. In particu-
located near|x|=1/2, Ahence|Wb|22Wb,max- Introducing |5y, for «<90° and PEO(1), transversal perturbations take
these trends foK and|wy| andm=0.785 into Eq(18), one  kinetic energy out from the buoyant excess generated by the
obtains that at Ra47, the term proportional to casis less  cross-stream perturbative advection. As a consequence the
than 0.03 times the term proportional to @inMoreover, ST rolls become unstable even in gases~(P). Also, for
both terms increase, respectively, like®Rand R&”7, so the 0°<a<90° and moderate Pr, an oscillatory transversal in-
correction associated with the streamwise component dftability (OT,) is observed with a wavelength of about ten
buoyancy can be neglected. The trend resulting from Edtimes the width of the cavity and with a phase velocity pro-
(17) yields f=0.28 Rd'"(v«x)¥?/h?, which fits to the power portional to the mean flow drag. On the contrary, tilting the
law observed in the numerical -calculationst,,, cavity towardsa<<90° has a stabilizing effect on the long
=0.10R&"(v«)Y%h2. Remark that the theoretical approxi- wavelength stationary thermal mode, which arises in the un-
mation (17) overestimates,,,, and fy, [see Fig. 1&)] in  stably stratified vertical cavitycq=0°). In theinclined con-
relatively close factors, respectively, 2.8 and 2.2. figuration these type of perturbations are damped for wave
It is interesting enough that foee=80°, the correction numbers larger that a predicted cutoff valua(). An
proportional toR cose in Eq. (18), is significant for the val- important consequence of this fact is that in inclined long
ues of the critical parametersng, =0.3 andRg, =13) but  cavities the Rayleigh-Beard instability can be avoided by
results negligible in the confined configuratidar which the  usingA,>mc /7, as confirmed by numerical calculations
instability was observed ab=0.78 andR>40). This means in 3D geometries.
that the slowing down of the OL oscillations due to the effect In relation to the oscillatory longitudindDL) instability,
of the streamwise buoyant force can be only observed inve have derived an analytical approach that yields a criterion
wide enough cavitiegA,=0(10)], which enable the devel- for the applicability of the previous theoretical trends pro-
opment of the critical mode with a rather long wavelength.posed for the OL frequenchl3,12. In particular the trend
This phenomenon could be relatively easy to observe in aproposed by Harf13] is applicable when the period of the
experimental set up although it demands a relatively larg®©L wave is smaller than the characteristic thermal diffusion
computational effort for a numerical investigation in view of time along a wavelength: a situation that arises in the case of
the large depths required. adiabatic walls. The theoretical model also gives insight into
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the effect of inclination. Foer™>90°, the streamwise buoyant V.v=0, (A1)
force has no direct influence on the critical frequency, which

grows like (R3,sin@)*. The reason for this fact is that the v ) .

critical frequency is much larger than the Brunt-Vaisala cut- ot +GIv-Vv=—VP+VV—-2A, "Te, (A2)

off frequency for excitation of internal gravity waves. On the

contrary, fora<90° the streamwise buoyant force tends to oT

reduce the critical frequency as decreases. Anyhow, its PrE+Rav-VT=V2T. (A3)
relative contribution to the frequency goes like

Pr’cota/Rn? and turns out negligible in the cavity consid- The boundary conditions corresponds to adiabatic rigid walls
ered for numerical calculationA\¢=1/4, A,=1/6, «=80°, (no-slip condition assumed

and Prk=0.025) because of the large valuesmfand R at

which the OL instability appears. v=0 at x=x1, y= iA;l, z={0,2A; 1},

As a final conclusion, the inclined configuration intro- (A4)
duces a new dimension in the space of parameters and per- 1
mits access to several lines of codimension-2 by a suitable T=0 at z=0, T=-1 at z=2A,", (A5
choice of the operating parameters. As proved by previous R
experiments and numerical calculations of this type of flow VT-n=0 at x=*1 andy= iAy‘l (AB6)

[22-24,2], a rich dynamical behavior arises around these ~

lines as a consequence of the competition between severaheren is the surface unitary vector at the lateral walls.
type of instabilities. By indicating the locus of the primary  The 2D flow in theXZ plane can be described by the
instabilities in the space of parametdRr, «, and aspect equation for they component of the vorticity», and the heat
ratios, one of the motivations of this work is to provide the equation, Egs(1) and(2). A stream function can be de-
necessary information for this kind of investigations in anfined in such a way thavz\lfzmy, and at the walls¥
alternative experimental setup that may be simpler than those V¥ .n=0. The resulting equations written in vorticity-

currently used in the literature22,24). stream function variables have been solved by means of a
Chebyshev-collocation method. The code was developed ac-
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. . . (see Ref[30]). The spatial approximation in both directions
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APPENDIX: GOVERNING EQUATIONS AND NUMERICAL algorithm[31] to couple the pressure and the velocity fields.

METHODS Details of the meshes, time step, and accuracies were given
The nondimensional continuity, Navier-Stokes and energy" the text for every specific 2D and 3D calculations.

equations have been obtained by usiny h?%/v,

gBATh3/Ly, AT, and p,gBATh?/L as scales of length,

time, velocity, temperature, and pressure, 3CFD2000, Adaptive Research, Pacific Sierra Corp., 1997.
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