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Convection patterns in end-heated inclined enclosures
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The natural convection in inclined side-heated rectangular boxes with adiabatic walls is theoretically and
numerically investigated. The study is focused on the characterization of the convection patterns arising at the
core of the basic steady unicellular flow and covers the whole range of Prandtl numbers (0<Pr<`) and
inclinations~from a50°, heated-from-below vertical cavities, toa5180°). The onset of the flow instabilities
depends on the core Rayleigh numberR[K Ra, defined in terms of the local streamwise temperature gradient,
KDT/L. The critical value ofR for transversal and longitudinal modes is determined by the linear stability
analysis of the basic plane-parallel flow, which also provides the stability diagram in the (Pr2a) chart.
Anyhow, the effect of confinement can decisively change the stability properties of the core: if the steady
unicell reaches the boundary layer regime~BLR! the local temperature gradient vanishes at the core leaving a
completely stable core region. A theoretical determination of the frontier of the BLR in the space of parameters
(a, R, and cavity size! yields an extra criterion of stability that has been displayed in the stability diagram. As
confirmed by numerical calculations, the core-flow instabilities can only develop for Pr,O(1) whereas, at
larger Pr the core region remains stable and the instabilities may only develop at the boundary layers. The
analysis of the instability mechanisms reveals several couplings between the momentum and temperature fields
that are not possible in the horizontal (a590°) or vertical limits. For instance, by tilting the cavity with respect
to a50°, the ~Rayleigh-Bérnard! stationary thermal mode is suppressed in cavities whose depth is smaller
than a theoretically predicted cutoff wavelength. The inclination also alters the properties of the oscillatory
longitudinal instability, extensively investigated in the horizontal Hadley configuration at low Pr~liquid met-
als!. An analytical relationship for its frequency in terms ofa, Ra, and Pr is derived. Throughout the paper,
numerical calculations in two- and three-dimensional enclosures illustrate each type of multicellular flow and
examples of instability interactions near the codimension-2 lines predicted by the theory.

DOI: 10.1103/PhysRevE.64.016303 PACS number~s!: 47.15.Fe, 47.15.Rq, 47.20.Bp, 47.20.Ft
e
ct
ar
on
p
cl
th
a
ha

r
e
n
c
tu
e

o
sit

o
ri
e

by
se
ul-
in-
for-

s-
ady

as

al
vely

r

the
I. INTRODUCTION

Natural convection in slender cavities driven by impos
end-to-end temperature differences has been the subje
theoretical and experimental works since the last 30 ye
Practically all the published works have considered horiz
tal or vertical cavities, although in most of the practical a
plications in both industrial and natural processes, the in
nation plays a very important role. A relevant example is
process of crystal growth from melts. Recent numerical c
culations on the vertical Bridgman setup have shown t
experimentally unavoidable tilt angles as small asa50.5°
cause nonaxisymmetric growth conditions@1#. Also, by
slightly tilting the horizontal Bridgman configuration large
mass transport rates are obtained@2#. In the same manner, th
heat transfer in heat exchangers and thermosiphons ca
enhanced by selecting the optimum inclination, and in fa
their efficiency has been improved by using an inclined se
@3#. The relation between the inclination and the Nuss
number has also a direct interest for reducing the loss
energy in honeycomb solar collector plates. The problem
convective transport appears also in many geophysical
ations occurring in mining and geological process@4#. A par-
ticular important problem in this field is the transport rate
spread of passive contaminants such as radioactive mate
in long rock fractures arbitrarily inclined with respect to th
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gravity vector. As shown in Ref.@4#, owing to the earth’s
inner temperature gradient, the transport of contaminants
convection is much faster than by diffusion. In any of the
applications it is rather important to control the onset of m
ticellular or time dependent flow because it has a direct
fluence on the heat and mass transport rates. Practical in
mation concerning this point is given in this paper.

Figure 1 shows the geometry of the problem and illu
trates the simplest convection pattern of the system: a ste
unicellular flow that comes up for any not vertical position
a response of any small enough temperature differenceDT.
The unicellular flow in the horizontal configuration~the so-
called Hadley cell! impelled the largest number of theoretic
and experimental papers: since the first comprehensi
work by Cormack and co-workers~see@5#! to the clarifying
study done by Boehrer@6#. Briefly, as the Rayleigh numbe

FIG. 1. The geometry of the problem and the structure of
basic unicell.
©2001 The American Physical Society03-1
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increases the unicellular flow evolves from a conductive
gime to a boundary layer regime in which almost all t
temperature drop and the vorticity production are localiz
in thin layers adjacent to the end walls. The effect of t
inclination on the unicellular flow has received much le
attention in the past literature and one can only find emp
cal fits of the heat@7# or mass transfer@2# obtained from
numerical calculations. The recent work presented in Ref.@8#
provides a theoretical description on how the inclinati
modifies the structure of the steady unicellular flow and
heat transfer regimes, and presents analytical trends fo
Nusselt number, maximum velocities and thickness of
boundary layers, corroborated by numerical calculations
~two-dimensional! 2D end-heated enclosures.

Although it is possible to find studies on the effect
inclination on the flow bifurcations in squared geometr
~e.g., see@9# and references therein!, the stability of the basic
unicell in long side-heated enclosures has been hitherto
sidered for vertical or horizontal configurations. In a lo
heated-from-below vertical cavity (a50°) the rest solution
breaks down at a certain Pr-independent critical Rayle
number owing to a long-wavelength stationary longitudin
thermal mode whose motion occupies the whole extensio
the cavity in a unique cell~see Ref.@10#!. Concerning the
stability of the basic flow in the horizontal configuration (a
590°) the first experimental@11# and theoretical studie
@12,13# were in part motivated by the control of time depe
dent flow in crystal growth process. The linear stabil
analysis of the basic parallel flow~see Refs.@13–15#! pre-
dicts that the stationary transversal~ST! rolls are the most
dangerous ones for Pr,0.034 whereas the oscillatory long
tudinal ~OL! instability dominates at larger Prandtl numbe
0.034,Pr,0.2. The ST instability is driven by the mea
shear stress while, as shown by Gill@12# and Hart@13#, the
OL instability arises as a consequence of a dynamical c
pling between the mean shear stress and the buoyancy f
In a horizontal enclosure with adiabatic walls there is a s
den increase of stability for Pr.O(0.1), owing to the pres-
ence of a completely stable cross-stream stratification
particular, for Pr.0.12, the flow becomes stable to transv
sal modes@14–16# and although previous stability analys
of the plane-parallel flow~in unbounded domain! predicted
the possible onset of stationary longitudinal sho
wavelength (SLs) rolls at least until Pr;1 @15#, these rolls
have not been observed in any experiment or numerical
culation on the pre-boundary-layer regime. On the contra
for larger Prandtl number (Pr.0.2) anda590°, the break-
down of the steady unicell takes place inside the bound
layers developed at larger values of Ra. As a conseque
previous experiments in horizontal cavities concerned w
the investigation of core-flow instabilities worked with liq
uids metals (Pr;1022), whereas those interested in boun
ary layer instabilities used gases or liquids, with larger
~see@17# and references therein!. It is interesting enough~see
Ref. @18#! that if the cavity is inclined and heated from belo
(a,90°), the stationary transversal rolls can be still o
served in gases (Pr50.7) together with a buoyancy drive
long-wavelength oscillatory transversal (OTl) instability.
These results come out from a previous study on the tra
01630
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versal perturbations in the 2D flow~Ref. @18#!. The present
paper extends the results of Ref.@18# to confined~2D and
3D! geometries and also considers the stability propertie
the basic flow subject to longitudinal perturbations in ter
of the inclination angle and the Prandtl number.

Owing to the great variety of instabilities revealed, t
Hadley configuration was soon also thought of as a pract
support for investigating the interaction between hydrod
namic instabilities and new possible routes to chaos. Num
cal calculations in 2D geometries showed that if Pr,0.025, a
Hopf bifurcation follows the onset of the stationary she
rolls and also that the flow may gain in complexity by pas
ing through several oscillatory branches~see@19# and refer-
ences therein!. Anyhow relatively more recent numerical ca
culations in 3D geometries showed that in low-Pr fluids t
third dimension enables completely different scenarios
those reported in 2D~see @20,21#!. In fact, around Pr
;0.025 rather complex dynamics may arise because
transversal and oscillatory longitudinal rolls are triggered
relatively close values of Ra. This is a favorable situation
any experiment concerned with the characterization of n
routes to chaos~see@22–24#! for which part of the endeavo
consists of finding lines of the space of parameters wh
two different type of bifurcations intersect. In order to ma
this situation feasible, a required procedure is to increase
codimension space of the experimental system. This can
done via the Hartman number, i.e., by introducing a varia
magnetic field perpendicular to the basic flow~see Refs.
@23,24#!. Alternatively, as shown in Ref.@22#, it is also pos-
sible to vary the Prandtl number of the working flu
(0.015<Pr<0.022) to explore a region of the Pr-Gr spac
As a result, in these experiments new types Hopf-Hopf
teraction were reported. A third alternative is to change
inclination of the cavity. This possibility was proposed
Ref. @21#, which presents numerical calculations in a 3D ca
ity inclined ata580° and filled with a Pr50.025 fluid, and
illustrates the underlying flow structure at the onset of
biperiodic regime. In that configuration, the onset of the
cillatory flow is due to the OL instability and the origin o
the secondary frequency was shown to be a consequen
the interaction between OL rolls and a transversal wa
formed by shear rolls. In the numerical calculations of R
@21#, the choice of the inclination angle was done accord
to the stability results presented in this work, which predic
codimension-2 line formed by the OL and ST branches pa
ing through that set of parameters, (Pr,a)5(0.025,80°).
This paper also presents the derivation of an analytical tr
for the OL frequency, which sucessfully reproduces the p
mary frequency reported in the numerical calculations
Ref. @21#. In summary, the results of Ref.@21# indicate that
the inclined Hadley configuration can be used as a relativ
simple setup to make feasible the investigation of instabi
interactions by a suitable choice of the inclination angle. F
ther examples are given in this paper.

The rest of the paper proceeds as follows. The ba
steady unicellular flow is described in Sec. II, where the fl
profiles at the core and the local axial temperature gradien
the core,KDT/L, are expressed in terms of the aspect ra
Rayleigh number, and the inclination. Section III prese
3-2
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CONVECTION PATTERNS IN END-HEATED INCLINED . . . PHYSICAL REVIEW E64 016303
the linear stability analysis of the basic flow in terms of t
local Rayleigh number at the coreR5K Ra. The map of
instabilities in thea-Pr chart is then constructed. The rest
the paper~Secs. IV–VIII! is devoted to each flow instability
discussing the mechanisms underlying each type of pertu
tion and the effect of confinement. Throughout Secs. I
VIII, flow calculations in 2D and 3D cavities, based on t
numerical methods presented in the Appendix, illustrate e
type of multicellular flow and some examples of interacti
between instabilities. Conclusions are given in the last s
tion.

II. UNICELLULAR FLOW

Let us consider the flow in the cavity of Fig. 1. The d
mensions of the cavity alongx, y, and z directions~width,
depth, and length! are, respectively,H52h, D, andL. Thez
axis is inclined an anglea with respect to the gravity vecto
g5geg with eg5sin(a)i2cos(a)k, and a temperature differ
enceDT is imposed between thez5$0,L% walls. An incom-
pressible fluid with thermal expansion coefficientb, kine-
matic viscosityn, and thermal diffusivityk, fills the cavity
and its motion is governed by the Navier-Stokes and h
transport equations with the Boussinesq approximation.
boundary conditions correspond to adiabatic rigid wa
~nonslip assumed!. The governing equations@Eqs. ~A1!–
~A3!# and boundary conditions@Eqs.~A4!–~A6!# are shown
in the Appendix and have been nondimensionalized by us
h, h2/n, gbDTh3/Ln, DT, and rogbDTh2/L as scales of
length, time, velocity, temperature, and pressure. The dim
sionless parameters are the inclination anglea, the aspect
ratios Az5H/L and Ay5H/D, the Rayleigh number Ra
5gbDTh4/Lnk, and the Prandtl number Pr5n/k.

For any not vertical position the mechanical equilibriu
is not possible and any externally imposed temperature
ference leads to a clockwise cellular flow whose simpl
form is illustrated in Fig. 1 in a cavity withAz,1. The flow
at the core region is nearly plane-parallel and turns aroun
the end regions, at a distance of orderO(Az) adjacent to the
z5$0,2Az

21% walls. The lateral walls aty56Ay
21 impose an

even modulation in the flow amplitude, which is only re
evant at diffusive layers of thicknessO(Ay) @see Fig. 8~a!,
below#. As discussed in Ref.@25#, in wide enough cavities
(Ay,1) and away from these layers, one can neglect
flow y dependence and describe the basic circulation a
two-dimensional steady flow in theXZ plane governed by
the equation for they component of vorticity (vy5]u/]z
2]w/]x) and the heat equation,

]vy

]t
1Ra Pr21v•“vy5¹2vy2

2

Az
S cosa

]T

]x
1sina

]T

]zD ,

~1!

Pr
]T

]t
1RaS u

]T

]x
1w

]T

]zD5¹2T. ~2!

At the core region we assume that the flow can be
scribed by a plane-parallel solution whose structure at
steady state is the following:
01630
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v5Kwb~x!k, T5
KAz

2
@z1ub~x!1b#, ~3!

where K is the ratio between the streamwise temperat
gradient at the core and the externally imposed tempera
gradient. The validity of Eq.~3! is analyzed afterwards. By
substituting Eq.~3! into Eqs. ~1!, ~2! and considering the
boundary conditions@Eqs.~A4!–~A6!#, one obtains a system
of ordinary equations for the velocity and temperature p
files at the core,wb(x) and ub(x). For a fixed angle, the
shape and intensity of the basic profiles are governed by
local Rayleigh number at the core,R[K Ra, and the func-
tional form of the analytical solutions is: wb
5sinaf(x;Rcosa) andub5sinag(x;Rcosa). The interested
reader is referred to@8# for the explicit analytical expression
of the core-flow profiles at arbitrarya. The evolution of the
flow profiles with the Rayleigh number~see Fig. 2! is ruled
by the balance of dissipation and production of vorticity
buoyant forces. At low values of Ra, in the conducting
gime the cross-stream temperature gradient is vanishin
small and the vorticity is generated by the cross-stream c
ponent of gravity, at a rate given by sina]T/]z @see Eq.~1!#.
This induces a clockwise cellular flow whosex dependence
coincides with the Hadley profile fora590°: wb(x)
5sina(x32x)/6 and ub(x)52sina(x5/1202x3/361x/24).

FIG. 2. ~a! Basic velocity~in units ofk/h2) and~b! temperature
profiles ~in units of KDTh/L) for a5120° at several values ofR.
~c! Flow profiles fora550° andR510 and~d! the maximum value
of wb(x) ~in units of Rk/h) againstR.
3-3
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As Ra increases the streamwise advection creates an inc
ing ~negative! temperature gradient along thex axis, which
acts as another source of motion owing to the presence o
streamwise component of buoyancy. As shown in Eq.~1!,
this term produces vorticity at a rate given by cosa]T/]x and
hence its effect greatly depends on the range of the incl
tion angle. If the cavity is heated from above (a.90°), both
terms, cosa]T/]x and sina]T/]z, have opposite signs mean
ing that the streamwise buoyant force tends to reduce
convection. As seen in Fig. 2~a!, this reduction occurs mostly
around the center of the layer where]T/]x is larger. On the
contrary, if the cavity is heated from below (a,90°), both
sources of vorticity have the same sign and as Ra increas
positive feedback loop betweenwb(x) andub(x) occurs: any
increment of the flow intensity increases the cross-stre
temperature gradient, which in turn, enhances the intensit
the clockwise flow. A consequence of this feedback coupl
is that the analytical solution forwb and ub diverges at a
discrete set of values ofR cosa, the lowest one beingR0
.31.285@see Fig. 2~d!#.

In order to understand how the divergence of the pla
parellel flow analytical solution affects the behavior of t
total flow, one has to consider the effect of confinement
matching the flow at the core with the flow at the end
gions. This task have been solved by using an integ
method similar that of Bejan and Tien@26#, which yields the
value ofK in terms of Ra,a, andAz . This calculation pro-
vides the proper increase rate of the flow intensity in terms
the externally imposed Rayleigh number Ra and, as
cussed in Ref.@8#, valuable information concerning the flow
and heat transfer regimes of the unicellular flow. Here we
interested in the relation of the governing core-flow para
eter, R5K Ra with the external parameters~Ra, a, Az),
which is illustrated in Fig. 3. The first important conclusio
arising from Fig. 3 is that, for anya,90° or anyAz,1, the
value of the local Rayleigh number at the coreR is bounded
and tends asymptotically toR0 /cosa. On the contrary, for

FIG. 3. The local Rayleigh number at the core,R5K Ra, versus
the external Rayleigh number Ra. Circles corresponds to the
merical solution of the flow at several values of Pr and lines to
theoretical model.
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a.90°, K reaches a minimum and tends to 1 at large Ra@8#,
thus when heating from above,R.Ra. In conclusion, the
domain of values ofR to be considered in the stability analy
sis of the core flow isR.0 for a>90° or a50° and 0
,R,R0 /cosa for a,90°. Note in passing that although a
upper limit for R is also to be found in other configuration
with two components of buoyancy, this fact was not tak
into account in previous works@10,4#, which therefore re-
ported unphysical divergences of mean flow properties
several values of the Rayleigh number. Also, the existenc
an upper bound forR is related to an important differenc
between the inclined (a,90°) and horizontal configura
tions. Fora590° the conducting regime (K'1) holds for
Ra,6.25Az

21 @26#, so in large cavities (Az!1), the equality
R.Ra stands until very large values of Ra. As seen in Fig
for a,90° this conclusion is no longer valid because,
gardless of the size of the cavity,K largely differs from 1
once the transition regime is established at Ra.R0 /cosa. In
summary, for a,90° a careful evaluation of R
5R(Ra,Az ,a) is required in order to apply the stability pre
dictions at the core~given in terms onR) to any realistic
closed configuration.

The solution derived from Eq.~3! is strictly valid at the
core of a infinity long and wide cavity (Az→0, Ay→0) ~see
Ref. @5#!. In a finite cavity the flow at the core can be d
scribed by Eq.~3! while it is possible to neglect the inertia
terms in the momentum equation and the cross-stream
vection in the heat equation~i.e., u]T/]x!w]T/]z). As
shown in Ref.@8#, both conditions are satisfied in the co
ducting and transition regimes but fail at large Ra, in t
boundary layer regime. In the boundary layer regime B
the isothermals at the core region are almost parallel to thz
axis (¹2T.0) and although at the coreu!w the balance of
heat flux yieldsu]T/]x;2w]T/]z for any a,90°. The
BLR appears only ifa<90°: at Ra.625Az

21 for a590° @6#
and at Ra.10R0 /cosa for a,90° @8#. We refer to Ref.@8#
for a description of the BLR in the tilted geometry.

III. LINEAR STABILITY ANALYSIS

In order to study the stability of the flow at the core r
gion, it is convenient to use the proper local temperaturz
gradient at the coreKDT/L in the temperature scaling. B
doing this the scale of temperature in the perturbation eq
tions is (KDT/L)h and the basic velocity and temperatu
fields arev5wb(x)k and Tb52z1ub(x). The linearized
equations for the perturbative flow are obtained in the us
way: inserting each flow variable as the sum of the me
flow quantity and a small perturbation into Eqs.~A1!–~A3!
and neglecting products of perturbative quantities. At t
stage of the analysis, the modulation of the basic flow in
z and y directions shall not be taken into account and t
perturbative quantities can be expressed as normal mod

$vp ,Tp ,Pp%5$v~x!,u~x!,p~x!%exp~ imy1 ikz1lt !.
~4!

The subscript ‘‘p’’ refers to perturbation quantities,m andk
are real wave numbers andl5l r1 il i is the complex

u-
e

3-4
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TABLE I. Trends of the critical parameters of each type of instability. Those given for the SLs and OL
instabilities corresponds toa590° and fit to the linear stability results within deviations of about 2%.~See
Sec. III A for nomenclature.!

Critical R Critical wave no. Critical frequency

ST Pr!1, RST.495 Pr/sina kST.1.35 0
Pr;1 (a,90°), RST.R0 /cosa kST.1.6 0

OTl ROTl
.R0 /cosa kOTl

;0.3 fOTl
.0.91S 12

0.08

Pr Dwb,max

SLl RSLl
50 mSLl

50 0

SLs RSls
.

1160 Pr1/2

~0.82Pr!2
mSLs

.2.9 0

OL ROL.
47.27 Pr1/2

~0.212Pr!1/2
mOL.

~0.212Pr!0.4

0.25 Pr21/2

f OL.
1.24

~0.212Pr!0.1
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growth rate. As shown by Laure and Roux@14# and Kuo and
Korpela@15#, oblique perturbations (k,mÞ0) do not appear
in the horizontal case and we have not found this type
perturbations in the inclined geometry. Therefore we sh
focus our attention on longitudinal (k50) and transversa
(m50) modes.

The transversal perturbations are independent of they co-
ordinate and are essentially bidimensional modes. Its fl
can be described by a perturbative stream funct
C(x,z,t)5w(x)exp(ikz1lt), which satisfiesup5]Cp /]z,
wp52]Cp /]x. By taking the curl in the equation of pertu
bative momentum and substituting Eq.~4! in the resulting
equation one obtains

l¹2w5¹4w2 ik Gr~wb¹2w2wb9w!

2@cos~a!u81 ik sin~a!u#, ~5!

Prlu5¹2u2R~ ikub8w1w81 ikwbu!, ~6!

w5w85u850 at x561. ~7!

The longitudinal perturbations are helicoidal mod
whose motion can be represented by the perturbative ve
ity along the z axis and a perturbative stream functio
Fp(x,y,t)5c(x)exp(imy1lt) that describes the flow in th
XY plane (up52]Fp /]y and vp52]F/]x). The equa-
tions for the amplitude of longitudinal perturbations are

lw5¹2w1 imRPr21wb8c1cos~a!u, ~8!

l¹2c5¹4c1 im sin~a!u, ~9!

Pr lu5¹2u1R~w1 imub8c!, ~10!

c5c85u850 at x561, ~11!

where in Eqs.~8! and~9! the pressure has been eliminated
cross derivation in thex andy projections of the perturbative
momentum equation.
01630
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The eigenvalue problems for both transversal@Eqs. ~5!–
~7!# and longitudinal perturbations@Eqs.~8!–~11!# have been
solved by a Tau-Chebyshev method. The number of b
functions for the amplitude of velocity and temperature p
turbationsN was chosen to preserve accuracies~in eigen-
value and eigenfunction! of less than 1% and typically varie
from N515 for low Pr toN525 for large Pr anda. At the
minima of each branch of the neutral curve~determined by
l r50) one obtains the critical parameters (R and wave
number! and the critical frequency~from the corresponding
value of l i). Our stability results have been validated b
comparison with those reported by Laure and Roux@14# and
Kuo and Korpela@15# for a590°. Differences of less than
2% in the critical Rayleigh number, wave number, and f
quency are found in the worst cases.

A. Nomenclature and type of instabilities

Table I shows the trends of the critical parameters of
several instabilities found for 0<Pr<` and 0°<a<180°.
The nomenclature used for labeling each instability has
subsequent capital letters that, respectively, describe the
poral and spatial behavior of its associated perturbationsO,
oscillatory (ul i u.0) or S, stationary (l i50) andL, longitu-
dinal (k50) or T, transversal (m50). In some cases an
extra~lowercase! label is needed to distinguish between pe
turbations withshort ~s! or long ~l! wavelength compared to
the width of the cavity, 2h.

The stability diagram of Fig. 4 indicates with bold letter
the instability with the lowest critical Rayleigh number
each region in the Pr-a chart. Those with the second lowe
critical Rayleigh number are noted in italics and betwe
parenthesis. This diagram shows also information concern
the onset of the boundary layer regime. As shown below
the BLR the structure of the unicell changes in such a w
that the core region remains stable and the instabilities m
only develop at the boundary layers and at relatively la
values of Ra~see Ref.@25#!. Therefore, if for a set ofa, Pr,
andAz , the BLR takes place atR5RBLR the core-flow shall
be stable to a certain type of instability if its critical Rayleig
3-5
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number ~say Rcrit) is such thatRcrit.RBLR . The dashed
lines in the stability diagram of Fig. 4 show the locus of th
stability criterion~with ‘‘ crit ’’ standing for the ST and OTl
instabilities! in cavities with several aspect ratios. The val
of RBLR is directly obtained from RaBLR ~given in Ref.@8#!:
the BLR holds forK,0.1 @26,8#, henceRBLR50.1 RaBLR .
Figure 5 shows the groupRBLR cosa/R0 versusa for several
values ofAz .

FIG. 4. The stability diagram. The instability with the lowe
critical Rayleigh number is indicated with bold letters and that w
the second lowest criticalR is labeled in italics and between pare
thesis~see Sec. III A for nomenclature!. The lines noted by~a! and
~b! are placed atRBLR5RST, with RBLR calculated~a! for Az

51/10 and~b! for Az51/50. Line ~c! corresponds toRBLR5ROTl

for Az51/50. For Pr larger than the locus of~a!, ~b!, or ~c!, the core
region is stable to the indicated type of instability.

FIG. 5. The local core Rayleigh number at the onset of
boundary layer regime (RBLR) scaled with R0 /cos(a) (R0

531.285).
01630
B. The vertical unstable configuration,aÄ0°

Some comments on the unstable vertical configuration
needed before presenting the general inclined case.
a50°, the basic state is the purely conductive rest solut
whose stability was studied by Gershuni and Zhukhovits
@10#. Convection takes place if the unstable temperat
stratification exceeds a critical Pr-independent value that
pends on the aspect ratios and the thermal boundary co
tions. In the limitAz→0 andAy→0 ~vertical parallel plates!,
the stability problem has an exact analytical solution@10#.
For both transversal and longitudinal perturbations, the m
ginal Rayleigh number increases monotonically with t
wave number and the critical modes have a vanishing w
number~plane parallel disturbances!. In the case of adiabatic
walls and for transversal and longitudinal modes, the criti
Rayleigh numbers areR0

tr531.285 andR0
lon50, respec-

tively. In our notation, the longitudinal mode fora50° cor-
responds to the stationary longitudinal long-wavelen
(SLl) instability, henceRSLl(0°)50. In finite cavities with
Az,1, the critical Rayleigh number increases approximat
like Ay

4 , due to the diffusion at the lateral walls@25#. The
flow associated with the longitudinal long-wavelength mo
in a vertical cavity withAz,1 resembles that illustrated i
Fig. 8~b!. It consists of a unicell that flows in theYZ plane
and fills the whole extension of the cavity.

IV. THE STATIONARY LONGITUDINAL
LONG-WAVELENGTH INSTABILITY „SLL…

The SLl instability appears for anya,90° and has essen
tially the same origin as the critical mode of the unsta
vertical configuration. This is clearly revealed in the valu
of the critical Rayleigh number and critical wave numbe
RSLl

(a)50 andmSLl
(a)50. In fact, a general relationshi

valid for any type of thermal boundary conditions
RSLl

(a)5RSLl
(0°)/cosa ~see Ref.@25#! meaning that the

onset of the SLl perturbation occurs once the vertical proje
tion of the temperature stratification, cosaDT/L, reaches the
same critical value for the vertical configuration. In the pa
ticular case of adiabatic walls (RSLl

50) the critical Rayleigh

number for the SLl instability is the lowest one for any
heated-from-below configuration~see Fig. 4!. In view of this
result, our first impression was that for anya,90°, the SLl
perturbation would soon be superposed onto the basic
thus making it impossible or very difficult to observe the re
of the predicted instabilities in 3D inclined cavities. Neve
theless, as shown in the neutral curves of Fig. 6~a!, there is
an important difference between the inclined and the vert
configurations. In a vertical cavity, any SLl modes with ar-
bitrary wave numberm can become unstable provided
large enough value ofR. But if the cavity is inclined, the SLl
instability presents a cutoff wave number such that pertur
tions with m.mCUT are damped. The value ofmCUT is
shown in Fig. 6~b! againsta and Pr. By increasinga or
decreasing Pr, the flow becomes stable to SLl perturbations
with larger wavelengths. This result suggests the possib
of filtering the SLl instability in closed tilted 3D cavities by
choosing a depthD, smaller than the cutoff wavelength

e

3-6
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2ph/mCUT ~i.e., Ayp.mCUT). This possibility was con-
firmed by numerical calculations presented soon afterwa

Let us first explain how the inclined geometry enables
suppression of SLl perturbations. The SLl-flow is schemati-
cally represented in Fig. 7. Most part of the perturbat
current is driven by the streamwise component of the bu
ant force and consists of a unique cell that flows in theYZ
plane filling the whole extension of the cavity. This curre
converts the potential energy stored in the perturbative t
perature field~shown in Fig. 7 by different shading! into
kinetic energy at a rate given by1 cosa^wpTp&. If the cavity is
inclined, the temperature variation along theXY plane in-
duces also a cross-stream flow~illustrated with solid lines in
Fig. 7!, which obtains kinetic energy via thex component of
buoyancy at a rate given by sina^upTp&. Owing to the mean
stable stratification along thex axis, the cross-stream flow
reduces the buoyant excess that drives the perturbation
revealed in a negative rate of production of temperature v
ance,̂ upTpub8&,0. As a increases, the mean stable strat
cation increases (ub8;sina) and the streamwise buoyan
force decreases so SLl perturbations with longer wavelengt
are damped. This stabilizing mechanism has a thermal or
and is dominant at large or moderate Pr. At low Pran
number the stabilization has a hydrodynamic origin, the R
nolds energy is negative (2R Pr21^upwpwb8&,0) meaning
that in its motion along thex direction, the perturbation

1The operator̂ •& denotes the average along thex direction for
one wavelength. For a derivation of the balance equations for
perturbative kinetic energy and temperature variance see R
@15,18#.

FIG. 6. ~a! Neutral curve for SLl perturbations fora50° and
a550°, Pr→`. ~b! The cutoff wave numbermCUT versusa ~bo-
tom axis! and versus Pr fora570° ~upper axis!.
01630
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works against the mean shear stress. This fact explains
for Pr,1, mCUT decreases with Pr as seen in Fig. 6~b!.

1. Numerical calculations

Several numerical calculations of the flow in closed 3
cavities were carried out to confirm the possibility of filterin
the SLl instability. Table II summarizes the results. In the
calculations, Ra was increased up to or near the bound
layer regime in order to be sure of the stability properties
the core. As seen in Table II, the SLl instability did not
appeared in any of the configurations that satisfied the sta
ity criteria, Ayp.mCUT , while it developed in the othe
cases. This result confirms that the conditionAyp.mCUT

yields the appropriate value ofAy to inhibit SLl perturba-
tions. A particularly interesting case corresponds to the
Pr56.7, Ay52/3, Az51/10, a520°, for whichpAy is quite
close tomCUT ~see Table II!. Two sets of calculations were
carried out, differing in the interval of Ra between consec
tive runs,D Ra. Using the above-mentioned set of para
eters andD Ra510, the flow became unstable for the Sl
instability whereas forD Ra550, it maintained the basic uni
cellular flow and reached the BLR at large Ra. This m
indicate that forAy.mCUT /p, the SLl flow coexists with the
basic unicell in the space of stable solutions. A future inv
tigation by means of a continuation technique in the spac
parameters is planned to determine the branches of solu
and their stability in cavities withAy;mCUT /p.

Figure 8 illustrates the flow induced by the SLl instability
and its further evolution in a configuration with Pr56.7, a
520° andAz51/7, Ay51/3. The snapshots corresponds
calculations done with a mesh of 15335345 and a time step
1023h2/n. Concerning the accuracy, variations of less th
6% are found in the velocity and temperature fields wh
comparing with calculations done with a double number
calculation cells in they or z direction. At Ra525 we ob-
served the onset of the fundamental SLl mode formed by a
unique cell in theYZ section@Fig. 8~b!#. The perturbative
circulation on theXY plane is shown in Fig. 8~d!. At Ra
530 a secondary~stationary! mode composed by two pair
of counter-rotating cells in theYZ plane is superposed to th
primary mode giving a flow illustrated in Fig. 8~c!.

e
fs.

FIG. 7. Schematic view of the perturbative motion originated
the SLl instability. The arrows indicates the sense of the pertur
tive flow. Darker shading corresponds to colder regions and v
versa.
3-7
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TABLE II. Details of the primary instability encountered in 3D numerical calculations. The range o
for the first transition is noted by Ra(1st). The number of longitudinal and transversal perturbative cells at
core region,ny and nz , respectively, and the cutoff wavelength for SLl disturbances,p/mCUT , are also
indicated.

Configuration Details of multicellular flow
Pr a Az

21 Ay
21 p/mCUT Flow type Ra(1st) ny ,nz

0.05 10 10 1 2.09 ST (45,50# 0, 2
0.025 80 4 6 8.97 ST1OL (40,46# 3, 1
0.7 70 10 4 3.14 SLl (90,100# 1, 0
0.7 70 10 2 3.14 unicell 0, 0
0.7 70 10 1 3.14 unicell 0, 0
6.7 20 7 1.5 1.74 unicell/SLl -/(40,50# 0, 0/1, 0a

6.7 20 7 3 1.74 SLl (20,25# 1, 0

aThe flow is conditionally unstable to SLl disturbances and the resulting flow depends on the heating rate~see
text!.
gy
io

r-
tu
om

m
a
c

s
on

e

ll

ef-
to

like
cts
val

ive
-
a-
s a
the

er
V. THE STATIONARY TRANSVERSAL INSTABILITY „ST…

The ST instability takes most part of its kinetic ener
from the mean shear stress and therefore in the prev
studies for the horizontal case~see, for instance, Refs.@13–
15#!, it has been usually called ‘‘shear instability.’’ Neve
theless, if two components of buoyancy exist, the ST per
bations can obtain a large amount of its kinetic energy fr
the thermal field as shall be discussed below~see also Ref.
@18#!.

Let us first discuss the hydrodynamic limit (Pr→0 and
R→0) for arbitrary inclination. In this limit the governing
parameter is the Grashof number Gr5R/Pr, which controls
the ratio between the inertial and viscous forces. The te
perature disturbances are homogenized instantaneously
therefore, in regard to the perturbative flow, the buoyan
forces are absent. In the formal Pr→0 andR→0 limit, the
basic profiles arewb(x)5sina(x32x)/6 and ub(x)50 and
the equation for the amplitude of transversal perturbation
the well-known Orr-Sommerfeld equation whose soluti
gives GrST5495/sina and kST51.345. The asymptotic
trends for Pr→0 of GrST and kST are shown with dashed
lines in Fig. 9~a,b! together with the values obtained from th
01630
us
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solution of Eqs.~5!–~7! at several values of Pr anda.
It is remarked that the asymptotic limit fails for sma

enough inclinations and for Pr.0.05 @this is clearly seen in
Fig. 9~b!#. As the Prandtl number increases the thermal
fects becomes increasingly important. The time needed
homogenize a temperature excess in a fluid parcel goes
O(Prh2/n) and therefore, at larger Pr, the buoyant force a
on the differentially heated particles during a larger inter
of time. An inspection in the trend forkST versus Pr in Fig.
9~b! indicates that the effect of buoyancy in the perturbat
flow becomes relevant for Pr.0.05 and depends on the in
clination angle. Ata590°, the mean cross-stream stratific
tion is stable and buoyancy acts as a restoring force. A
consequence, as Pr increases, the critical ST rolls reduce
relative amount of cross-stream flow (kST decreases! and the
ST perturbation is finally damped for Pr.0.12 ~this fact is
confirmed also by numerical calculations@16#!. For a.90°,
the fluid is also stably stratified along thez direction and as
shown in Fig. 4, the ST rolls are damped at even low
values of Pr.

According to the stability analysis, fora,90° the ST
rolls can be observed at relatively large values of Pr (;1)
FIG. 8. Cuts of the velocity field atx5
20.152h obtained for Pr56.7, a520°, Ay

51/3, andAz51/7 and at:~a! Ra525 ~basic uni-
cell!; ~b! Ra530 ~primary SLl mode!; and ~c!
Ra535 ~the secondary mode!. ~d! The projection
of the velocity field atz50.47L and Ra530.
3-8
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and with larger wave numbers@see Fig. 9~b!#. As discussed
in Ref. @18#, this is a consequence of the following therm
mechanism: owing to the mean cross-stream temperature
ference, fluid particles moving alongx direction carry their
local temperature to a new thermal surrounding where t
are accelerated by the streamwise buoyancy force, w
draws within an unstable stratification. Anyhow, at Pr→`,
RST→R0 /cosa, which corresponds to Ra→` ~see Fig. 3!.
Hence, as Ra is increased, in an enclosure filled with a la
enough Pr fluid, the BLR shall appear before the ST ins
bility can develop (RBLR,RST). In this case, the streamwis
temperature gradient vanishes at the core region and
above-explained thermal mechanism is absent; as a co
quence the ST rolls are damped. The frontier of this criter
is shown for different aspect ratios in the stability map

FIG. 9. ~a! The critical Grashof number GrST5RST/Pr versusa.
~b! The critical wave numberkST versus Pr.
01630
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Fig. 4. Note that the destabilizing effect of the streamw
component of buoyancy is enhanced if the cavity is ma
larger. For instance, forAz51/50 a small inclination~of
about 4°) with respect to the horizontal position is enough
enable ST rolls in gases (Pr;1).

1. Numerical calculations

Table III compares the main numerical results concern
the onset of multicellular flow in 2D cavities. In these n
merical calculations, accuracies of about 1% in the fl
quantities were ensured by successive mesh refinement~see
Ref. @25# for details!. The wave number was obtained fro
the maximum amplitude peak in the the Fourier spectra
the z dependence of several flow quantities. Calculatio
made for Pr50.7 confirmed the possibility of finding ST
rolls in gas-filled heated-from-below inclined cavities. F
Pr50.7, the multicellular flow developed gradually abo
values of Ra slightly smaller than the predicted critical on
~see Table III!. These transitions are examples of imperfe
bifurcations induced by recirculation eddies formed near
end walls and are quite similar to those reported by H
@13#. Using Pr50.7 andAz51/10, the ST rolls were ob-
served at inclinations up toa570°. At a580°, the Rayleigh
number was increased up to Ra52.03103, but no trace of
ST rolls was found. Instead, the unicell reached a fully d
veloped BLR above Ra.1.33103. This result agrees quite
well with the stability criteria derived according to the ons
of the BLR (Rcrit.RBLR), which predicts that the ST rolls
cannot develop fora.75° ~see Fig. 4!. Also, for Pr56.7,
the ST rolls did not appeared for any value ofa, neither in
the 2D cavity (Az51/7) nor in the 3D one (Az51/7, Ay
52/3).

In order to investigate the effect of the third dimensio
numerical calculations were carried out in a 3D cavity w
Az51/10 andAy51, using Pr50.05 anda510°. Results
obtained with 15315345 calculation cells agreed within
about 6% with those obtained with 15315390. The time
step was about 1023h2/n. At Ra550 (R537.5), the basic
flow was disrupted by two stationary shear rolls. As illu
trated in Fig. 10~b! the resulting bicellular flow maintains
essentially a bidimensional structure. The wavelength of
transversal rolls is approximately 6H, which gives a wave
number (k50.52) smaller than the prediction forAy→0
multi-
is
TABLE III. Comparison between numerical results and theoretical predictions at the onset of 2D
cellular flow. The frequency is in units of (h2/n). The theoretical critical external Rayleigh number
Racrit5Rcrit /K, where ‘‘crit ’’ stands for OTl or ST.

Configuration Numerical results Theoretical prediction
Pr a Az

21 Ra(1st) Wave no. Freq. K Racrit kcrit f crit Instability

0.025 10° 30 ~24,27# 1.31 - 0.92 26.94 1.35 ST
0.7 20° 10 .110 1.5 0.27 119.07 1.52 ST
0.7 50° 10 .160 1.5 0.25 178.72 1.47 ST
0.7 70° 10 .700 1.4 0.11 727.18 1.41 ST
0.7 20° 50 45 0.35 0.87 0.70 44.57 0.35 0.68 OTl

0.7 50° 50 75 0.31 1.15 0.58 73.75 0.31 0.96 OTl

0.3 12° 60 ~35,38# 1.53/0.25 -/0.82 0.84 36.42 1.53 -/0.76 ST1OTl
3-9
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(kST51.35). The increase of lateral confinement impl
larger momentum dissipation and therefore an increase o
critical Rayleigh number and wavelengths. In particular, o
result for the 3D configuration is in concordance with t
results of Nikitin et al. @27# who obtained a wavelength o
6H for a Pr50 fluid in a horizontalAy51/10 cavity.

The 3D calculations revealed a subtle three-dimensio
effect that induces flow along they direction once the two-
vortex pattern is developed. This flow, shown in Fig. 10, c
be explained by considering the low pressure spots gener
around the core of each vortex@at x50, y50, and z
.$0.67,0.32%(L/h)#. Figures 10~a! and 10~c! illustrate the
distortion of pressure field by showing the isovalues of¹2P.
Note that the pressure decreases inwards~towards the cente
of the cavity! where¹2P.0 ~lighter regions! and outwards
where¹2P,0 ~darker regions!. Near each vortex, the low
pressure spots generate a suction force that impels flow a
the y direction towards the center of each roll@see Fig.
10~c!#. At the inter-vortex region, conservation of mass
quires outflow towards they561 walls. Moreover, at this
region the two corotating rolls collide with oppositex ~in-
wards! velocities and therefore the pressure locally increa
(¹2P,0) producing an outward pressure force that dra
flow towardsy561. The resulting velocity pattern in th
YZ sections@shown in Figs. 10~c! and 10~d!# has a sinu-
soidal structure around thex50 plane, which gradually re
covers a Poiselle-like profile nearx561, i.e., away from the
vortex core. Two new transitions were observed at relativ
small increases of Ra (D Ra55). An analysis of these tran

FIG. 10. Snapshots of the 3D stationary flow for Pr50.05, a
510°, Ay51, Az51/10 at Ra550. ~a! Isovalues of the field“2P
~dark regions corresponds to“2P,0 and vice versa!. ~b! The ve-
locity field in the same plane of~a!, y50.09.~c! Isovalues of“2P
in thex50.09 plane showing also the velocity field.~d! The veloc-
ity field in the planex50.27.
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sitions shall be presented elsewhere and we refer to Ref.@25#
for illustrations. Briefly, at Ra575 the two cells merge to a
unique stationary roll centered atz50.5L/h ~a flow essen-
tially similar to that inferred by the experiments of Ref.@28#!
and at Ra580 an oscillatory and three-dimensional flo
~composed by the centered shear roll and one perpendic
roll in the YZ plane! was developed.

The numerical results indicate that thea,90° configura-
tion enables the oscillation of transversal rolls at values o
larger than those found for the horizontal configuration a
that asa decreases, successive scenarios are separate
tween relatively shorter intervals of Ra. For instance, no
cillatory regimes were found in the experimental and n
merical work by Braunsfurthet al. @28# ~they used Pr
50.015 in a 13134 cavity!. Still for a590°, Skeldonet
al. @19# found that increasing Pr up to Pr50.025 inhibits the
onset of oscillations, but Ref.@21# reports that a Hopf bifur-
cation occurs for Pr50.025 if the configuration used in@19#
is tilted toa580°. Also, the 3D configuration presented he
indicates that fora510°, several multicellular patterns an
oscillatory flow can be observed at least until Pr50.05. For
a,90° the cutoff for the oscillation of transversal rolls
shifted towards larger values of Pr, surely as a conseque
of the above-mentioned destabilizing coupling between thz
component of buoyancy and the cross-stream advect
Anyhow a study of the inclination effect on the Hop
bifurcation branches at low and moderate Pr number is
yond the scope of this paper and it is left for future work

VI. THE OSCILLATORY TRANSVERSAL
LONG-WAVELENGTH INSTABILITY „OTL…

A detailed description of the OTl instability including the
energetics of critical perturbations can be found in Re
@18,25#!. Here, we shall briefly discuss the origin of the Ol
instability and present further results on the nature of
oscillations. Numerical calculations, showing the flow pr
duced by OTl instability in several 2D configurations sha
be also presented.

The OTl instability is a standing wave with a rather lon
wavelength~typically 9H) and it only comes up if the cavity
is inclined and heated from below (0°,a,90°). The per-
turbation gains the most part of its kinetic energy from t
streamwise buoyant force. Fora→0°, the OTl critical per-
turbation recovers the critical transversal mode in the vert
cavity: ROTl

→R0 , kOTl
→0, andf OTl

→0. The value ofROTl

is slightly smaller thanR0 /cosa and does not greatly depen
on Pr @18#. The critical wave number reaches its maximu
value (kST50.36) at a.20° and Pr.1 and decreases t
zero for a590° or Pr→$0,̀ %. The cross-stream motion
takes energy out from the mean shear stress and also
the coupling between the cross-stream advection and
streamwise buoyancy force. This latter mechanism is es
tially the same as that explained for the ST instability at
;1

In relation to the origin of the oscillation, it can be prove
~see Ref.@10#! that in the case of an odd basic profile, th
oscillatory perturbations are standing waves composed
the superposition of a couple of traveling modes with eq
3-10
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and opposite sign phase velocities. In the case of thel
instability the ratio between the phase velocity and the ma
mum value of the basic velocitycOTl

[2p f OTl
kOTl

21 /wb,max,

only depends on the fluid diffusivities~i.e., on Pr! and does
not vary with the inclination. Its value is less than 1 and fi
to cOTl

50.91(120.08 Pr21) for Pr.0.1. This fact indicates
that the oscillation is essentially driven by the mean fl
drag, which carries the pair of traveling modes in oppos
senses of thez direction.

1. Numerical results

The OTl cells has been observed in numerical calculatio
carried out at several inclinations~details can be found in
@29#!. As seen in Table III, the stability analysis correct
predicts the Rayleigh number and the wave number at
onset of the OTl wave. Nevertheless, if the onset of the i
stability occurred well inside the transition regime, the fr
quency of the oscillation greatly differed from the stabili
analysis prediction~in worst cases about a 30% differenc
see Table III!. In order to understand why the confineme
has a significant influence only on the frequency, the ra
between the phase velocity and the maximum mean fl
streamwise velocity obtained from the numerical outpuc
was compared with the stability predictioncOTl

. In all cases,
both values agreed at the onset of the multicellular flo
Therefore, the relevant parameter for the oscillation is
ratio c, and one can forecast the oscillation frequency in
closed geometry byf OTl

5cOTl
(Pr)wb,max, wherewb,max was

given in Ref.@8# in terms of Ra,a, andAz .
In order to investigate the interaction between the ST

OTl instabilities calculations were carried out for Pr50.3
anda512°; a point placed at the codimension-2 line for t
ST-OTl instabilities ~see Fig. 4!. The oscillatory flow ap-
peared at 35,Ra<38 ~see Table II! and it is illustrated in
Fig. 11 showing several snapshots along a cycle. A fine m
with 313261 collocation points has to be used to capture
details of this multicellular flow and ensure accuracies
about 2%. As shown in Fig. 11~b!, the wave number spectr
of the stream function presents two peaks at values ofk that
coincide exactly with the prediction for ST and OTl cells:
kST51.53 andkOTl

50.25. At the onset of multicellular flow
the center of each shear roll remains fixed in space and
oscillation is governed by theOTl wave withc50.69. At a
slightly larger value of Ra, the position of the shear ro
begins also to oscillate leading to successive transition
quasiperiodic flow and finally to a chaotic time signal f
Ra>42. Details on these transitions are given in Ref.@25#.

VII. THE STATIONARY LONGITUDINAL
SHORT-WAVELENGTH INSTABILITY „SLS…

As seen in the stability diagram of Fig. 4, the SLs insta-
bility only takes place if the inclination is near or equal
a590°. The SLs instability was predicted in previous linea
stability analysis made for the horizontal configuration@15#,
but it has not been explicitly reported in numerical calcu
tions or experiments. In what follows we present the tren
01630
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of the critical parameters, explain the physical origin of t
instability, and finally give a further requirement for the o
set of the SLs instability, which depends on the aspect ra
of the cavity.

Table I gives a fit toRSLs
and mSLs

, for a590° within

about 3% of error. For Pr,0.1, the critical Rayleigh fits to
RSLs

.1700 Pr1/2 and mSLs
.2.9. For a<90°, the flow be-

comes stable to SLs perturbations at Pr.1, while for
a.90°, the stabilization occurs at much lower values of
~for instance, ifa593° for Pr.0.1).

Figure 12 illustrates the perturbative SLl flow by showing

FIG. 11. Above: snapshots of the stream function along a cy
of oscillation (f 50.823n/h2) observed for Pr50.3, a512°, Az

51/60, and Ra538. Below: wave number spectra along thez di-
rection ~the dashed lines indicate the critical wave numbers p
dicted by the stability analysis!.
3-11



s
-
w
e

a

p
re

ti
o
of
f

r

io
e
a

le

P

y
a

n

s

ive
e a
es

tive
the

al

nd
f
of

a
a-

lity

-
nce

tion
fu-
ns
ed
nt
s of
be-

sti-

ical

e

a-

s
(

R. DELGADO-BUSCALIONI PHYSICAL REVIEW E64 016303
the critical mode for Pr50.3 anda590°. The wavelength is
approximately the semiwidthh5H/2, but the perturbation is
localized at layers near thex561 walls whose thickness i
about 0.25H. The SLs instability is generated by a mecha
nism that couples the mean shear stress and the stream
temperature gradient and takes place at unstable lay
wherewb8.0. The perturbative momentum along thez direc-
tion is driven by a shear force triggered by the cross-stre
perturbative flow@2R Pr21upwb8 , see Eq.~8!#. Note that at
the unstable layers,upwp,0 @see Figs. 12~b! and 12~c!# and
hence the Reynolds energy (2R Pr21^upwpwb8&) is positive.
Owing to the mean streamwise temperature gradient, the
turbative advection in thez direction generates a temperatu
pattern in theXY plane @see Fig. 12~a!# that activates lift
forces along the cross-stream direction and a perturba
flow in theXY plane, which in turn feeds the shear force. F
Pr.1, the SLs instability is damped because of the effect
the cross-stream stable stratification and the decrease o
inertial forces.

The above-described mechanism makes possible, in p
ciple, the onset of SLs rolls in the transition regime~TR! of
a flow within a completely stable cross-stream stratificat
~i.e., with adiabatic walls!. Nevertheless, consideration of th
finite size of the cavity leads to the conclusion that for
broad range of values of the aspect ratioAz , the boundary
layer regime appears before the onset of the SLs instability
(RBLR,RSLs

). To show this fact, let us consider a favorab

case: a horizontal configuration filled with a gas with
50.7 ~for which the OL or ST rolls cannot develop!. In this
case (RSLs

.104 andRBLR.62.5Az
21) the requirementRSLs

,RBLR is only fulfilled in cavities with at leastAz,1022

(L.102H). In smaller cavities the SLs instability is unlikely
to be observed in the TR, although once the boundary la
regime is developed, short-wavelength longitudinal rolls m
appear at the intrusion layers near thex561 walls where
]w/]x is rather large and a negative value of]T/]z is main-
tained by the streamwise advection@8#. Schopf and Stiller
@17# have experimentally found a set of longitudinal statio
ary rolls of wavelength;0.125h arising at the intrusion

FIG. 12. ~a! Isocontours of the perturbative temperatureTp , ~b!
stream functionFp , and ~c! axial velocity wp of the critical SLs
disturbance for Pr50.3, a590°. In ~a! and~c!, darker regions cor-
respond, respectively, toTp.0 andwp.0. The critical wave num-
ber ismSLs

52.33.
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layer of a 132.0831 cavity filled with water. These author
showed that, for this value of Pr(;7), the perturbation is
mainly driven by a Rayleigh-Be´nard-like mechanism arising
at the unstably stratified layer formed inside the intrus
layer although they indicate that shear effects may hav
certain destabilizing contribution. This contribution com
out from the above-mentioned (]T/]z#-@]w/]x) coupling
and a possible way to experimentally measure its rela
importance is to find the trace of the sinusoidal pattern of
perturbative streamwise velocity in theXY plane @see Fig.
12~c!#, which would be completely absent if the longitudin
rolls were uniquely driven by a Rayleigh-Be´nard-like insta-
bility @25#.

VIII. THE OSCILLATORY LONGITUDINAL INSTABILITY
„OL …

The OL instability arises at low enough Pr number a
typically for a,115° ~see Fig. 4!. Table I shows the trend o
the critical parameters with Pr, fitted within about 3%
deviation to the stability results obtained ata590° and Fig.
13 plots the values ofROL , mOL , and f OL againsta for
different values of Pr. The OL instability is damped at
certain cutoff value of Pr, which decreases with the inclin
tion angle. For example, fora590° and 80°, OL perturba-
tions are damped for Pr>0.21 and Pr>0.26, respectively.

The basic mechanism that originates the OL instabi
can be explained by considering the limit Pr→0 with finite R
(Gr→`). In this limit, n→0, k→` and the characteristic
mean diffusion time ish2/(nk)1/2. Gill @12# considered the
formal equations at this Pr→0 limit concluding that dissipa-
tion of momenta vanishes (“2v→0) and therefore the oscil
latory flow arises as a consequence of a dynamical bala
between the inertial and buoyant forces. Also, the advec
of heat is balanced instantaneously with the thermal dif
sion,]T/]t→0. Hart @13# proposed another set of equatio
for Pr→0. The momentum equation agreed with that deriv
by Gill, but the energy equation was treated in a differe
way. Hart assumed that heat is transfered without any los
energy by conduction and hence that the perturbation
haves like a pure thermal wave~i.e., dT/dt50). Although a
number of numerical and experimental works have inve
gated the OL wave~see e.g.,@20,22# and references therein!,
any explanation on the discrepancies of both theoret
models could be found in the literature.

In what follows, an analytical approach inspired in th
approximation done by Gill@12# is presented. It intends to
give an insight into the effect of inclination on the OL inst
bility and also provides a criteria for the validity of Gill’s
and Hart’s approaches. Following Gill@12#, we consider the
following simplification of the disturbance, which mimic
the perturbative flow around the central part of the layerx
;0):

wp~x,y,z!.cos~dMx!cos~my!w̃p~ t !,

Fp~x,y,z!.cos~dMx!sin~my!ũp~ t !,

Tp~x,y,z!.cos~dTx!cos~my!T̃p~ t !. ~12!
3-12
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In Eqs. ~12! we have introduced scalars representing
effective temperature and momentum diffusion along thx
direction,dT anddM . Gill @12# useddM5p/2, which guar-
antees the Dirichlet boundary condition atx561 for wp and
up5]Fp /]y but not for vp52]Fp /]xÞ0. Nevertheless,
the simplified flow given by Eq.~12! is useful enough to
draw the main characteristics of the perturbation arounx
;0, away from the thin Stokes layers near the walls wh
thickness@O(Pr1/2)# vanishes as Pr→0. Gill @12# also used
dT5p/2, which adequately represents the perturbative te
perature field inside perfectly conducting walls~i.e., Dirich-
let thermal boundary conditions!. As shown below, a coher
ent choice of the value ofdT depends on the type of walls
From Eq.~12!, the Laplacian operator simplifies to a sca
given bynM

2 5m21dM
2 for momentum related quantities an

nT
25m21dT

2 for the temperature.
Consider a positive disturbance of velocity along thez

axis, w̃p(t0).0, made at an instantt0 around the center o
the layer (x50, y50). The perturbative flow at a timet

FIG. 13. ~a! The critical Rayleigh number~left axis! and wave
number~right axis! of the OL instability, both scaled with Pr1/2. ~b!
The critical frequencyf OL againsta @points correspond to the sta
bility results and dashed lines correspond to Eqs.~17! and ~18!
evaluated with the critical parameters obtained for Pr50.025#. Both
theoretical trends have been divided by a factor of 2.2.
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5dt shall be described by expanding the equations for
longitudinal disturbances@Eqs. ~8!–~10!# to first order in
time. This leads to

Pr1/2T̃p1nT
2T̃pdt5w̃p~ t0!dt, ~13!

nM
2 ũp52m2R Pr1/2sinaT̃pdt, ~14!

w̃p5w̃p~ t0!1ũpuŵb8uR Pr21/2dt. ~15!

It is remarked that in Eqs.~13!–~15! and in what follows, the
following scales for velocity, temperature, and time shall
used:Rk/h, Rh(DT/L), andh/(nk)1/2.

In Eq. ~15! the mean shear has been substituted by
averaged value that gives a larger weight in the central

of the layer ~e.g., wb8̂[*0
1wb(x)8 cos2(px/2)dx). Note that

aroundx50, the mean shear is negative andwb8̂52uwb8̂u. In
Eq. ~13! the heat advected along thex direction has been
neglected. As discussed by both Gill@12# and Hart@13#, this
term is negligible at low Pr~its contribution goes like Pr1/2)
and at larger Pr it has a stabilizing effect. The basic mec
nism of the oscillation is deduced from Eqs.~13!–~15!. Con-
sider an initial velocity disturbance in thez direction with
wp(t0).0. The disturbance carries heat and locally increa
the temperature@ T̃p.0 in Eq. ~13!#. As a consequence lif
forces are activated alongx direction: fluid particles ascend

@ ũp,0 in Eq. ~14!# and counter-rotating rolls are created b
continuity in theXY plane. The flow along thex direction
induces a shear force along thez direction that has a sign
opposite tow̃p(t0) @see Eq.~15!#. At a quarter of cycle,w̃p
changes sign driven by the shear force and so does
streamwise advection, leading toT̃p,0. At this point, the
buoyant force acts against the ascendingx flow and finally
changes its sense (ũp.0). The same process takes pla
along the other half of the cycle but with all the perturbati
quantities having a changed sign. In particular, for the ini
condition proposed above, the change of sign ofw̃p occurs at
a quarter of a cycle so to obtain an estimation for the f
quency one can letw̃p50 at dt5 f 21/4 in Eqs.~13!–~15!.
After some algebra this leads to

nT
2 f 214 Pr1/2f 35

R2m2sinauwb8u

42nM
2

. ~16!

The trend forf depends on the relative importance of the tw
terms of the left-hand side of Eq.~16!. The termnT

2 f 2 comes
out from the the thermal diffusion and 4 Pr1/2f 3 from the
explicit time derivative of the temperature. Their ratio
f td , where, in units ofh2/(nk)1/2, td[4 Pr1/2/nT

2 is approxi-
mately the time needed by diffusion to homogenize the te
perature fluctuation along one wavelength (ph2/nT

2k). Two
different situations arise. Iff .nT

2/4 Pr1/2, the characteristic
diffusion time is long compared to the period of the oscil
tion and the amount of energy diffused along each cycle
be neglected. In the opposite case,f ,nT

2/4 Pr1/2, thermal dif-
fusion balances almost instantaneously with advection
3-13
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such a way that the temperature perturbation is slaved to
perturbative axial velocity (¹2Tp5wp). In view of Eq.~16!,
one should expect that this former condition stands for
→0 as stated by Gill@12#. But in the case of adiabatic wall
at low Pr, the isothermals of the critical disturbances
nearly parallel to thex direction2 leaving a vanishingly smal
thermal diffusion along thex direction @i.e., dT.0 in Eq.
~12! andnT

2.m2#. Under this situation we have verified tha
even for Pr→0, the inequalityf OL.mOL

2 /4 Pr1/2 holds for the
whole range ofa and hence the term proportional tof 2 can
be neglected from Eq.~16!. This leads to the following trend
that coincides with that proposed by Hart@13# for a590°,

f .
1

4 S R2m2sina Pr21/2uwb8u

nM
2 D 1/3

. ~17!

It is remarked that Eq.~17! does not take into account th
effect of the streamwise component of the buoyant force
order to include it in the theoretical model of Eqs.~13!–~15!,
the term Pr1/2R cosaT̃p , has to be added to Eq.~15!. This
leads to

f .
1

4 S R2m2sina Pr21/2uwb8u

nM
2

24 f R cosa D 1/3

. ~18!

The relations of Eqs.~17! and~18! can be used to analyz
the dependence of critical frequency ona. Figure 13~b!
shows the values off OL againsta for several Pr. The dashe
lines in Fig. 13~b! are obtained by inserting the values of t
critical parameters for Pr50.025 into Eqs.~17! and~18! and
then dividing by a factor of 2.2. As shown in Fig. 13~b! for
a>90°, the incrementf OL with a agrees quite well with the
trend proposed in Eq.~17!. Even for the largest angle (a
5115 °), the correction of Eq.~18! is smaller than 10% and
thus f OL can be adequately described by Eq.~17!. In view of
Eq. ~18!, this means that the critical frequency is much larg
than (R cosa)1/2/4, which @in units of (nk)1/2/h2# corre-
sponds to the Brunt Vaisala cutoff frequency for excitati
of internal gravity waves in a the cavity with stable vertic
stratification.

On the contrary, fora,90° the streamwise buoyant has
relevant effect in the critical period. As shown in Fig. 13~b!,
for a below 90° the value off OL decreases faster than pr
dicted by Eq.~17! and fits much better to the trend given b
Eq. ~18!. Note that if the cavity is heated from below th
streamwise buoyant force amplifies the perturbative fl
along thez direction if wpTp.0. This occurs along almos
the whole cycle because at low Pr,wp andTp oscillate prac-
tically in phase~see@12#!. Hence, in that part of the cycl
when the mean shear tends to change the sign ofwp ~acting
as a restoring force! the axial buoyant force pulls in the op
posite sense and as a consequence, the period of oscill
increases. Owing to this mechanism, at low enough value

2Note that this is not possible in the conducting case conside
by Gill @12#.
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R or m, the streamwise buoyancy is able to damp the os
latory modes. This fact can be seen in Fig. 14 where
isovalues of the imaginary part of the complex growth ra
l i , are drawn in theR-m chart. According to Eq.~18! the
oscillatory perturbations disappear for Rm2

; f Pr1/2cota/uwb8u, a trend that qualitatively agrees with th
results of the linear stability analysis.

1. Numerical calculations

Numerical simulations for a Pr50.025 fluid ~mercury!
were carried out in a 3D cavity withAz51/4, Ay51/6, and
a580°. The numerical details and a discussion of the n
linear evolution of this flow can be found in Ref.@21#. Ac-
curacies of about 5% were guaranteed by comparing the
sults of the oscillatory flow obtained with 15346335,
15346371, and 15391335 calculation cells and using
time steps about 100 smaller than the fundamental perio

The basic unicellular flow breaks down owing to a S
shear roll that for Ra.15 gradually develops at the cent
part of the cavity according to an imperfect bifurcation i
duced by the confinement. The flow remains bidimensio
and stationary until an oscillatory 3D instability develops
40,Ra<47. The resulting flow is composed by three long
tudinal ~counter-rotating! rolls along they direction and it is
illustrated in Fig. 15 for a slightly greater value of Ra. A
Ra547 the local Rayleigh number at the core isR5K Ra
540, the wavelength is approximately 4H (m50.785) and
the frequency isf num53.27n/h2. According to the linear sta-
bility analysis, the frequency of the OL disturbance at the
values ofR andm is f 053.45n/h2, very close to the outcome
of the numerical calculation.

As Ra is increased, the fundamental frequency of the fl
obtained from the numerical calculations fits tof num
50.10 Ra3/7(nk)1/2/h2 within less than 2% of error. Let us
compare this trend with the theoretical predictions in E
d

FIG. 14. Neutral curve and isovalues of the imaginary part
the growth ratel i for Pr50.02 anda550°. The dashed line a
Rm254.47 indicates the exchage of stability froml i50 to l iÞ0.
3-14
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~17! and ~18!. First, in order to evaluateR5K Ra, we have
measuredK by averaging the temperature gradient at
core~betweenL/4,z,3L/4) along one oscillation cycle. As
shown in@21#, the result fits toK52.6 Ra22/7 within about
5% of error. The maximum value of the mean streamw
velocity increases likewb,max50.31 Ra4/7k/h @8# and it is
located nearuxu51/2, hence uŵb8u.2wb,max. Introducing

these trends forK anduŵb8u andm50.785 into Eq.~18!, one
obtains that at Ra547, the term proportional to cosa is less
than 0.03 times the term proportional to sina. Moreover,
both terms increase, respectively, like Ra9/7 and Ra8/7, so the
correction associated with the streamwise componen
buoyancy can be neglected. The trend resulting from
~17! yields f 50.28 Ra3/7(nk)1/2/h2, which fits to the power
law observed in the numerical calculations,f num
50.10 Ra3/7(nk)1/2/h2. Remark that the theoretical approx
mation ~17! overestimatesf num and f OL @see Fig. 13~b!# in
relatively close factors, respectively, 2.8 and 2.2.

It is interesting enough that fora580°, the correction
proportional toR cosa in Eq. ~18!, is significant for the val-
ues of the critical parameters (mOL50.3 andROL513) but
results negligible in the confined configuration~for which the
instability was observed atm50.78 andR.40). This means
that the slowing down of the OL oscillations due to the effe
of the streamwise buoyant force can be only observed
wide enough cavities@Ay>O(10)#, which enable the devel
opment of the critical mode with a rather long waveleng
This phenomenon could be relatively easy to observe in
experimental set up although it demands a relatively la
computational effort for a numerical investigation in view
the large depths required.

FIG. 15. Snapshots of the flow induced by the OL instability
a cavity with Ay51/6, Az51/4, Pr50.025, a580°, and Ra562.
~a!, ~b!, and ~c! show cuts of the vector field at, respectively,y
5cte, z5cte, andx50 planes. In~d!, four snapshots of the iso
thermals atx50 along a semiperiod of the cycle@time increases
from left to right and from top to bottom; the upper left isotherm
field corresponds to the same instant of~a!, ~b!, and~c!#.
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IX. CONCLUSIONS

This investigation concerns the primary flow instabiliti
arising on the core of rectangular inclined boxes with
imposed end-to-end temperature difference~see Fig. 1!. Con-
sideration is made of the whole range of the Prandtl num
0<Pr<` and inclinations 0°<a<180°. The linear stability
analysis of the basic plane-parallel flow predicts a set
instabilities whose properties are summarized in Table I. T
stability diagram of Fig. 4 shows the most dangerous kind
disturbance at each point of the Pr-a space. The onset o
instabilities at the core region of the cavity depends on
flow-dependent parameter~the local core Rayleigh number
R[K Ra) that has been calculated as a function of Ra,a and
the cavity size by means of an analytical model for the c
fined mean flow. This calculation not only permits to sta
the stability results in terms of flow-independent paramete
but gives further relevant information concerning thea
,90° case. For this range of inclinations and regardless
the cavity size, as Ra→`, R tends asymptotically to a con
stant value,R0 /cosa (R0531.285). Also, above a calcu
lated value ofR (R.RBLR.R0 /cosa) the steady unicell
changes gradually to a boundary layer regime in which
core region remains stable to any type of perturbation.
comparing the criticalR for each instability withRBLR we
have obtained a stability criteria, which not only depends
Pr anda but also on the aspect ratioAz . The resulting fron-
tier of stability has been validated by numerical calculatio

In a tilted configuration witha,90°, the fluid is stably
stratified along the cross-stream direction whereas unst
stratified in the perpendicular~streamwise! direction. This
fact enables either stabilizing or destabilizing couplings
tween the perturbative momentum and temperature, wh
are not possible in the vertical or horizontal limit. In partic
lar, for a,90° and Pr>O(1), transversal perturbations tak
kinetic energy out from the buoyant excess generated by
cross-stream perturbative advection. As a consequence
ST rolls become unstable even in gases (Pr;1). Also, for
0°,a,90° and moderate Pr, an oscillatory transversal
stability (OTl) is observed with a wavelength of about te
times the width of the cavity and with a phase velocity pr
portional to the mean flow drag. On the contrary, tilting t
cavity towardsa,90° has a stabilizing effect on the lon
wavelength stationary thermal mode, which arises in the
stably stratified vertical cavity (a50°). In theinclined con-
figuration these type of perturbations are damped for w
numbers larger that a predicted cutoff value (mCUT). An
important consequence of this fact is that in inclined lo
cavities the Rayleigh-Be´nard instability can be avoided b
usingAy.mCUT /p, as confirmed by numerical calculation
in 3D geometries.

In relation to the oscillatory longitudinal~OL! instability,
we have derived an analytical approach that yields a crite
for the applicability of the previous theoretical trends pr
posed for the OL frequency@13,12#. In particular the trend
proposed by Hart@13# is applicable when the period of th
OL wave is smaller than the characteristic thermal diffus
time along a wavelength: a situation that arises in the cas
adiabatic walls. The theoretical model also gives insight i

l

3-15
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the effect of inclination. Fora.90°, the streamwise buoyan
force has no direct influence on the critical frequency, wh
grows like (ROL

2 sina)1/3. The reason for this fact is that th
critical frequency is much larger than the Brunt-Vaisala c
off frequency for excitation of internal gravity waves. On th
contrary, fora,90° the streamwise buoyant force tends
reduce the critical frequency asa decreases. Anyhow, it
relative contribution to the frequency goes lik
Pr1/2cota/Rm2 and turns out negligible in the cavity consid
ered for numerical calculations (Az51/4, Ay51/6, a580°,
and Pr50.025) because of the large values ofm and R at
which the OL instability appears.

As a final conclusion, the inclined configuration intr
duces a new dimension in the space of parameters and
mits access to several lines of codimension-2 by a suita
choice of the operating parameters. As proved by previ
experiments and numerical calculations of this type of fl
@22–24,21#, a rich dynamical behavior arises around the
lines as a consequence of the competition between se
type of instabilities. By indicating the locus of the prima
instabilities in the space of parameters~Pr, a, and aspect
ratios!, one of the motivations of this work is to provide th
necessary information for this kind of investigations in
alternative experimental setup that may be simpler than th
currently used in the literature@22,24#.
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APPENDIX: GOVERNING EQUATIONS AND NUMERICAL
METHODS

The nondimensional continuity, Navier-Stokes and ene
equations have been obtained by usingh, h2/n,
gbDTh3/Ln, DT, and rogbDTh2/L as scales of length
time, velocity, temperature, and pressure,
no
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“•v50, ~A1!

]v

]t
1Grv•“v52“P1“

2v22Az
21Teg , ~A2!

Pr
]T

]t
1Rav•“T5“

2T. ~A3!

The boundary conditions corresponds to adiabatic rigid w
~no-slip condition assumed!

v50 at x561, y56Ay
21 , z5$0,2Az

21% ,
~A4!

T50 at z50, T521 at z52Az
21 , ~A5!

“T•n̂50 at x561 and y56Ay
21 ~A6!

wheren̂ is the surface unitary vector at the lateral walls.
The 2D flow in theXZ plane can be described by th

equation for they component of the vorticityvy and the heat
equation, Eqs.~1! and ~2!. A stream functionC can be de-
fined in such a way that“2C5vy , and at the wallsC
5“C•n̂50. The resulting equations written in vorticity
stream function variables have been solved by means
Chebyshev-collocation method. The code was developed
cording to the detailed explanation given in previous wo
~see Ref.@30#!. The spatial approximation in both direction
is done by expanding the flow variables in a truncated se
of Chebyshev polynomials and the time discretization is
tained through an Adam-Bashforth, second order Backw
Euler scheme. The equations for the stream function
vorticity consist of a Stokes-type problem, which is solv
by using the Influence Matrix technique@30#.

In order to obtain the 3D flow, the Eqs.~A1!–~A6! have
been solved by means of a commercial code3 based on the
finite volume method. The time discretization was done
means of a second order forward scheme and the sp
accuracies were of second order. The code uses thePISO

algorithm@31# to couple the pressure and the velocity field
Details of the meshes, time step, and accuracies were g
in the text for every specific 2D and 3D calculations.

3CFD2000, Adaptive Research, Pacific Sierra Corp., 1997.
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