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Abstract. – This letter describes the treatment of unsteady liquid flow by a hybrid particle-
continuum scheme. The scheme couples a particle region described by molecular dynamics
with a coarse-grained domain solved by continuum fluid dynamics. The particle and continuum
domains overlap in the coupling region, where two-way transfer of momentum flux is established.
We demonstrate that this flux-coupling scheme is able to describe high-frequency oscillatory
flows and to ensure the continuity of velocity across the particle-continuum interface. The
effect of fluctuations within the particle system is also analysed and establishes the range in
frequency and flow wave number for which hydrodynamic fluctuations need to be taken into
account within the continuum description.

Many systems are governed by a dynamic interplay between rapid molecular processes
occurring within a small localised region and slower long-ranged hydrodynamic processes
mediated by hydrodynamic interactions with the bulk fluid. This sort of scenario is broadly
encountered in complex flows near interfaces, wetting, drop formation, melting, crystal growth
from a fluid phase or moving interfaces of immiscible fluids or membranes. Such problems are
usually too computationally expensive for any standard molecular dynamics (MD) simulation,
while they cannot be solved by continuum fluid dynamics (CFD). An alternative is to retain
the atomistic description only where it is needed and solve the bulk flow by much faster
CFD methods. This multiscale approach is the essential idea of the present hybrid particle-
continuum model.

A quite general procedure used in hybrid particle-continuum models, based on domain
decomposition, is to connect the particle (P) and the continuum (C) domains at an overlapping
or handshaking region consisting in two buffers, C → P and P → C, where the two-way
exchange of information is performed. At C → P, the particle dynamics are modified to
adhere to the local prescriptions of the C-flow, while within the P → C domain the microscopic
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variables are coarse-grained to supply boundary conditions for C [1,2]. The kind of information
which needs to be transferred across the handshaking region has been the subject of some
discussion. The first hybrid schemes to appear in the literature (see [2] for a cursory review)
considered steady shear flow and were based on variable coupling, that is, on imposing the
values of the continuum and the averaged particle velocities within the overlapping region [3].
The second coupling strategy, based on the exchange on fluxes, was first developed for hybrid
simulations of gases by Garcia et al. [4]. The first flux-based hybrid formulation for liquids
was then introduced by Flekkøy et al. who considered steady flows involving momentum [1]
and also energy exchange [5]. Delgado-Buscalioni and Coveney [2] introduced modifications
into the flux scheme at C → P and demonstrated that it admits generalised open boundary
conditions which provide correct propagation and relaxation of shear, sound and heat waves [2].

The most important advantage of the flux scheme is that it guarantees the conservation
laws. For a particle-continuum hybrid model the implications of this fact are widespread.
Fluxes are directly evaluated from the particle dynamics and flux conservation does not re-
quire a priori knowledge of the constitutive relation for the P-region (actually not known in
many of the applications meant for the hybrid approach, e.g., complex fluids near surfaces).
Also, flux boundary conditions are required if one needs to treat the P domain as an open
system which exchanges mass, momentum and energy with C. For instance, any heat or den-
sity wave originating within P can only be consistently propagated to the C-region if flux
boundary conditions are used. This was illustrated in ref. [2], where it was shown that if a
Dirichlet boundary condition is used at the overlapping region (i.e., variable coupling), heat is
not properly removed from P [2]. Finally, according to the Landau description for fluctuating
hydrodynamics [6], variable fluctuations arise only as a consequence of momentum flux and
heat flux fluctuations. Hence the coupling of a particle system and a fluctuating hydrodynam-
ics model should be based on fluxes. However, if the main goal of the hybrid scheme resides
in solving the mean flow, one disadvantage is that fluxes across the coupling interface involve
larger statistical noise than variables averaged within the overlapping volume [7].

Nevertheless, we note that an excessive noise reduction is not desirable when it comes from
fluctuations playing an important part in the phenomena under study. The most important
limitation of the flux scheme comes from the fact that a flux does not prescribe the variable
value, and therefore variable continuity at the interface is not guaranteed. Indeed, discontinu-
ities can be induced by particle fluctuations if the mean flow amplitude is small enough. This
letter provides a way to correct the flux scheme to ensure continuity and also optimise the
signal-to-noise ratio. The coupling scheme introduces an extra relaxation term which acts only
on the C boundary condition and does not affect the flux conservation. This relaxation term
ensures variable continuity with no further alteration of the particle dynamics at the interfacing
region. This is relevant because the bias introduced by strong alteration of the particle dynam-
ics (such as an external imposition of the particle velocities) can affect the statistical quantities
at the P → C region. We show that the present scheme preserves the correct momentum flux
variance at the P → C interface and therefore opens the possibility of MD/fluctuating-CFD
hybrid models for liquids. A more favourable signal-to-noise ratio is obtained by averaging the
particle flux over the interfacing volume ∆VPC (instead of measuring the particle flux across
the interface surface [4]). We derive the conditions under which fluctuations should be included
in the C model and in the last section we demonstrate our scheme by solving the problem of un-
steady forced flow. To the best of our knowledge, this is the first work dealing with hybrid de-
scriptions of oscillatory liquid flow, which has direct applications to rheology of complex fluids.

A typical spatial domain decomposition structure for our hybrid scheme is depicted in fig. 1.
Here the system ranges from x = 0 to x = Lx and from [−Lα/2, Lα/2] in the other two periodic
directions (α = {y, z}). The particle region (P) spans from x = 0 to x = lP , the continuum
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Fig. 1 – (a) The domain decomposition of the hybrid scheme in the present set-up. The coupling region
consists in the C → P and P → C buffers whose volumes are ∆VCP = A∆xCP and ∆VPC = A∆xPC ,
with A = Ly Lz the interface area. The P domain, x ≤ lP = xCP +∆xCP /2, includes the wall around
x ∼ 0 formed by two layers of LJ particles (black circles) tethered by hard springs to a hexagonal
lattice and interacting with the fluid with an increased cutoff and potential well rw = 1.311σ and
εw = 1.303, ensuring vanishingly small slip velocities. The C domain, lC = xPC ≤ x ≤ Lx, is
divided into M cells centred at xk = (xk + xk−1)/2, where xk denote the cell faces. (b) shows three
consecutive cells of the finite-volume discretisation and the P → C buffer around x0 = xPC .

region (C) from x = lC to x = Lx and both subdomains overlap within lC ≤ x ≤ lP . The
particle region (P) contains N(t) particles at time t, interacting through a truncated Lennard-
Jones (LJ) potential ψ(r) = ψLJ(r) − ψLJ(r0), where ψLJ(r) = 4ε−1 [(σ/r)12 − (σ/r)6] and
r0 = 21/6σ. Each particle has a mass m, velocity vi and experiences a force fT

i = f ext
i + fi,

where fi is due to inter-particle interactions and f ext
i is the external force released by the

continuum (see below). The equations of motion for the particles, ṙi = vi and v̇i = fT
i , were

solved via standard molecular dynamics (MD) using the velocity-Verlet algorithm with a time
step ∆tP � 10−3τ , where τ = (mσ2/ε)1/2 is the characteristic time of the LJ potential. In
what follows all quantities will be expressed in reduced LJ units.

Within the C-region the relevant variables are the macroscopic local densities associated
with the conserved quantities, Φ. The conservation law is expressed as ∂Φ/∂t = −∇ · J .
Momentum conservation, in particular, corresponds to Φ = ρu(r, t), where ρ is the density
and u the continuum velocity. In this work we shall consider fluids at fixed temperature T and
focus on the flux of momentum across the P-C interface, J · n = (ρuu + PI + T) · n, where
the interface vector n points towards C (see fig. 1). The pressure tensor PI + T includes
the hydrostatic pressure P and the stress tensor T for the Newtonian LJ fluid with shear
viscosity η (see [2] for references). The coupling scheme is a twofold communication between
C and P, as can be understood from fig. 1. In a previous work [2], we explained how the
mass, momentum and energy fluxes evaluated from C are imposed on the particle dynamics.
For consistency, we now briefly describe this part of the hybrid protocol and refer to ref. [2]
for further details. This part of the coupling scheme takes place within the C → P domain
which comprises the volume ∆VCP around the interface position x = xCP (see fig. 1a). The
flux of momentum across x = xCP is given by (PCP + TCP ) · nCP , where the surface vector
is nCP = −n. This flux is introduced within the particle dynamics by adding an external
force f ext

i = A(PCP +TCP ) ·nCP /NCP to the NCP (t) particles within ∆VCP (if ri 	∈ ∆VCP ,
then f ext

i = 0). In order to maintain a desired density ρc within the particle system, the
hydrostatic pressure needs to be given by the correct equation of state PCP = P (ρc, T ).

The P → C scheme ensuring variable continuity. – At the P → C interface (see fig. 1b),
the flux measured in the particle system must be imposed onto the continuum system as
a flux boundary condition. To coherently communicate both descriptions, the particle flux
transferred to the continuum domain has to be averaged over the local time and length scales
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of the continuum level. The mean value of any particle quantity φi within a volume ∆V of
a cell centred at position R is φR(t) =

∑NR

i φi(t)/NR, where the sum is made over the NR

particles within ∆V . The coarse-grained quantity is defined by time-averaging over ∆tav,
i.e., φ̄R(t) ≡ ∫ ∆tav

0
φR(t − ξ) dξ/∆tav. In particular, the momentum flux across the P → C

interface is obtained by averaging φi = ∆V −1
PC [mvivi − (1/2)ΣN

j rijfij ] ·nPC over the volume
∆VPC and over ∆tav. This flux, denoted j̄PC ·n is decomposed as j̄PC ·n = (s̄PC +τPC) ·n,
where s̄PC ≡ ρvPCvPC + pPCI contains the mean momentum advection (ρvPC) and the
particle pressure pPC , while τPC = jPC − sPC is the local viscous stress tensor.

We use the finite-volume method to solve the flow within the continuum region because it
is based on flux conservation [8]. The coupling procedure is explained in the one-dimensional
example of fig. 1b. We divide the C domain into k = {1, . . . ,M} cells centred at xk and
separated by M+1 faces located at xk. The variable’s value at xk is Φk while Φk stands for its
value at the cell face xk. The time evolution of Φk is obtained by integrating the conservation
equation ∂Φ/∂t = −∇·J between each consecutive cell face xk−1 ≤ x ≤ xk (see fig. 1b). This
yields Φ̇k = [Jk−1 − Jk]/∆xk, where ∆xk ≡ xk − xk−1. To close this set of equations one
requires a spatial discretisation of the flux Jk. As customary [8], we split the flux into Jk =
Tk + Sk. The term Sk includes contributions from pressure, advection or any other directly
evaluable flux source, while the diffusive flux Tk is obtained from the constitutive relation Tk =
−D(Φk+1−Φk)/∆xk, where ∆xk ≡ xk+1−xk andD is the corresponding transport coefficient.
We use a first-order discretisation for the time derivative Φ̇k � [Φk(t + ∆tC) − Φk(t)]/∆tC ,
where the C time step ∆tC satisfies ∆tP � ∆tC ≤ ∆tav. Introducing re ≡ D∆tC/(∆xk∆xk)
and rw ≡ D∆tC/(∆xk−1∆xk), the resulting explicit scheme for the k = {1, . . . ,M} cells is

Φk(t+∆tC) = (1− re − rw) Φk(t) + rwΦk−1(t) + reΦk+1(t) +
(
Sk−1 − Sk

) ∆tC
∆xk

. (1)

Note that for the explicit scheme (1) to be stable one requires the standard Courant condition,
rk ≤ 1/2 [8]. In order to close eq. (1) for k = 1 and k = M , one needs to assign the value to
the flow variables at the cells outside the C domain: Φ0 and ΦM+1. To that end, one uses the
boundary conditions at x0 and xM . Here we focus on the evaluation of Φ0 which must be ob-
tained from J0 = jPC , i.e., from the flux conservation across the P-C interface x0 = xPC (see
fig. 1b). The particle flux due to pressure and advection is simply set by S0 = sPC (see eq. (2)
below). In what follows, we discuss the imposition of the diffusion flux T 0, which shall pro-
vide Φ0. In order to set the standard flux boundary condition, one imposes flux conservation
T 0 = τPC into a discretized expression for T 0 involving Φ0; such as T 0 = −D(Φ1 −Φ0)/∆x0.
This provides Φ0 = Φ1+∆x0τPC/D, which is then inserted in eq. (1) to close the time march-
ing scheme for the boundary cell Φ1. In our case, however, at x1 the system is represented both
by particles and continuum variables. This leaves us with a freedom of choice for the expres-
sion of T 0, as it can involve either Φ1 or the coarse-grained P-variable φ̄1. To fully analyse the
implications of such choice, we propose the linear interpolation Φ̂1 ≡ (1−α)Φ1 +αφ1. A sta-
ble scheme is obtained by expressing T 0 with a “hybrid” gradient T 0 = −D(Φ̂1−Φ0)/∆x0 [9]
which contains information on the particle variable φ̄1 if α > 0 is chosen. The outer cell value
is then Φ0 = Φ̂1 +∆x0τPC/D and inserting this in eq. (1) for k = 1 provides

Φ1(t+∆tC) = (1−re)Φ1(t)+re Φ2(t)+
τPC∆tC
∆x0

+
(
sPC−S1

)∆tC
∆x1

+αrw
(
φ1(t)− Φ1(t)

)
. (2)

For α > 0, the last term on the right-hand side of eq. (2) acts as a relaxation term that drives
the continuum variable at the boundary cell x = x1 towards the particle average φ1. This term
becomes negligible once continuity is established, Φ1 � φ1. The scheme of eq. (2) was first
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tested under steady Couette flows using densities 0.4 ≤ ρ ≤ 0.85, temperature 1.0 ≤ T ≤ 4.0
and shear rates 10−3 ≤ γ ≤ 0.5 (where γ ≡ uwall

y /Lx). In all simulations and for any α used,
the flux balance is respected within less than around 3%. Concerning variable continuity, the
standard flux-coupling scheme (α = 0) gives rise to a velocity discontinuity at the overlapping
region which grows to a size comparable to that of particle velocity fluctuations. Instead,
using α = 1 in eq. (2), continuity was ensured within ∆tav ∼ 1 and seamless linear velocity
profiles are obtained at arbitrary shear rates. Similar seamless velocity profiles are obtained
for any α > 0 used indicating that the scheme is not sensitive to this relaxation parameter.
This result is expected because, as deduced from eq. (2), the relaxation time required for
variable continuity to hold is of order ∆tC/(rwα) (where rw ≤ 1/2). Continuity is ensured if
this relaxation time is much smaller than the mean flow time scale, i.e., α� ω∆tC , where ω
is the flow characteristic frequency. This condition is always fulfilled for steady flow ω = 0,
and it imposes no restriction (see below) for unsteady flows (unless at very high frequencies
ω ∼ O(1) for which, in any case, the continuum picture would be no longer valid).

Shear stress fluctuations and accuracy limits. – The flux balance across the P → C in-
terface establishes τPC = TPC + T′

PC , where we have decomposed the viscous stress into a
deterministic part TPC and a random contribution T′

PC . Clearly, one can only neglect fluctu-
ations in the C description of the hybrid scheme if the signal-to-noise ratio of the exchanged
flux τPC is sufficiently large. We denote this ratio as E ≡ 〈τPC〉/〈(τ ′PC)

2〉1/2, where 〈[τ ′PC ]
2〉

is the variance of τPC . We now identify the implications for the sizes of ∆VPC and ∆tav with
respect to the value of E. To illustrate the discussion we shall focus on the xy component of
the viscous tensor T ≡ xTy (i.e., on shear flows). In order to evaluate E, we need the vari-
ance of τPC =

∫ ∆tav
0

τPC(t− ξ)dt/∆tav, which is calculated by averaging a certain number of
samples of the instantaneous stress τPC over a time window ∆tav. If the time interval between
samples is made larger than the proper particle decorrelation time tλ [10], these samples are
uncorrelated and the central-limit theorem tells us that 〈[τ ′PC ]

2〉 ∝ 1/∆tav. The prefactor
can be obtained by carrying out the Landau-Lifshitz analysis for fluctuating fluids [6], which
results in 〈[τ ′PC ]

2〉 = 2ηT/(∆VPC∆tav) (see ref. [7] for a kinetic derivation for gases). We
measured the variance 〈[τ ′PC ]

2〉, from the simulations of Couette flows mentioned above, ob-
taining good agreement (within 10%) with the Landau expression. This result is important
because it indicates that the present scheme does not significantly bias the particle dynamics
within the P → C cell, and consistency with fluctuating hydrodynamics is preserved.

The flux signal in a simple shear flow is 〈τPC〉 = ηγPC , where γPC is the local shear rate;
so E2 = γ2

PCη∆VPC∆tav/(2T ) and the signal is larger than its noise (E > 1) if

∆VPC∆tav >
2T
γ2

PCη
. (3)

Equation (3) can be used to control the signal-to-noise ratio of the coarse-grained momentum
flux. Clearly, when solving a steady flow the inequality (3) can always be fulfilled by extending
the averaging time ∆tav. However, when solving an unsteady flow, ∆tav cannot be larger than
the characteristic flow period ω−1. Similarly, ∆xPC has to be smaller than the characteristic
length of variation of the shear stress, k−1

PC ≡ |(dT/dx)PC/TPC |. For temporal and spatial
resolution one requires that, at least, ∆tavω ≤ O(0.1) and ∆xPCkPC ≤ O(0.1) and if so,
eq. (3) indicate that fluctuations can be neglected if kPCω < γ

2
PCη∆VPC/(T∆xPC).

If required, flux fluctuations can be easily coupled in the present scheme using the Landau
formalism in the C fluid model. Stress fluctuations at each cell volume of the C domain
∆Vk are inserted into the discretized continuum equations by adding a random stress T′

k

with zero mean and correlation 〈T′
k(t)T

′
k′(t′)〉 = [2Tη/(∆Vk∆tC)]δkk′δtt′ [6, 11]. Hence, the
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variance of the stress fluctuations 〈(T′
PC)

2〉 = 2Tη/(∆VPC∆tC) will coincide with that of
the coarse-grained P-flux by simply setting ∆tav = ∆tC . This means that the present flux
scheme is naturally suited to interface an MD domain with any mesoscopic model based on the
Landau formalism for fluctuating hydrodynamics [11–13]. Such hybrid models have not yet
been developed for liquids; however Alexander and coworkers implemented a similar model to
study Fickian diffusion [14] in gases. They showed that if the proper stochastic representation
is used for C, both the mean and variance of the density are correctly matched.

Application to oscillatory shear flow. – To demonstrate the proposed scheme in the case
of unsteady scenarios, we consider isothermal fluid flow in a slot driven by the oscillatory
motion of one of the walls in its own plane: the so-called Stokes problem. The flow is uniquely
driven by the wall at x = Lx which introduces a velocity uwall

y (t) = umax sin(2πωt) as a
Dirichlet boundary condition for C at xM = Lx (i.e., uM

y = uwall
y ). The mean density is

ρc and the fluid is taken to be incompressible. Within the P domain the temperature Tc is
kept constant by thermostatting the x and z translational degrees of freedom. There are no
transfers of mean energy or mass along the x-direction and in the particle system this condition
is ensured by using the scheme described by Barsky et al. [15]. Under these circumstances the
mean pressure is constant throughout the domain and the equation for the transversal velocity
is ∂uy/∂t = ν∂2uy/∂x

2 with ν = η/ρc. The finite-volume discretisation of this equation is
obtained by letting Φ = ρcuy, Sk = 0 and D = ν in eq. (1). As usual [8], the Dirichlet
boundary condition is imposed by setting uy,M+1 = 2uwall

y − uy,M in eq. (1). We used a
regular grid, ∆xk ∼ 0.5 and ∆tC < ∆x2/(2ν) to ensure the stability of the explicit scheme of
eq. (1) [8]. The flow profiles in fig. 2 show the good agreement between the hybrid simulations
and the analytical solution. The frequencies considered ranged from ω = 0 (Couette flow) to
ω = 0.01. We note that oscillatory shear flow is widely used in rheology of complex fluids
and, in particular, the range of frequencies and flow amplitudes considered here are relevant
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Fig. 2 – Left: snapshots of the y velocity profile of a LJ fluid at ρ = 0.8 and T = 1.0. The wall velocity
is uwall

y (t) = umax sin(2πωt), with umax = 10 and ω = 0.01 and Ly = Lz = 9. The overlapping region
is indicated with vertical dashed lines. Symbols within the P region indicate the mean velocities
within slices of width 1.6(= ∆xPC) and averaged over ∆tav = 1. Solid lines are the C-flow profile
and dashed lines are the analytical profile [16]. Right: the velocity within the overlapping region for
umax = 0.5, ∆tav = 10 and (a) T = 1 and ω = 0.01, (b) T = 1 and ω = 0.002 and (c) T = 4 and
ω = 0.01. Case (b) is solved using α = 0.1 and the rest with α = 1. The value of 5 (T/ρ∆VPC)1/2 is
0.49 in cases (a) and (b) and 0.98(> umax) in case (c). Solid lines correspond to the coarse-grained
particle velocity v1; in (a) and (b) we compare it with the continuum velocity at the same cell u1.
The strongly fluctuating line corresponds to the instantaneous mean velocity v1(t) and dashed lines
to the analytical solution. All quantities are given in reduced LJ units.
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to the rheology of polymer brushes [16]. In recent work we used this hybrid scheme to study
the dynamics of tethered polymers under steady uniform shear flow [15]; the oscillatory case
will be discussed in future publications.

We used a deterministic model for C, so the accuracy of the scheme can be compared with
the prediction of eq. (3). In the Stokes flow, the momentum introduced by the moving wall
penetrates up to a viscous fluid layer of width δ ∼ √

πν/ω and tends to zero diffusively as
the other wall is approached. Within the viscous layer the shear rate is γ ∼ umax/δ. We used
∆tavω ≤ 0.1 and inserting these two relations into eq. (3) one gets that the signal-to-noise
ratio E > 1 if umax > 5(T/ρ∆VPC)1/2. As illustrated in fig. 2, we choose umax in cases (a) and
(b) to consider a flow slightly above the E ∼ 1 threshold. In fig. 2a we compare the P-velocity
v1 and C-velocity u1 at the same cell to illustrate that continuity is perfectly satisfied. Also,
we solved case (a) using α = 1 and case (b) with α = 0.1 to show that the flow solution
does not depends on the value of α used, as long as α� ω∆tC . In case (c) we increased the
temperature from T = 1 to T = 4 and, according to eq. (3), this is enough for the noise to
overpower the signal. Indeed, as seen in fig. 2c, v1 is a strongly fluctuating signal meaning
that fluctuations should be taken into account in the C-flow.

In conclusion, the present hybrid particle-continuum scheme based on flux-exchange can
describe oscillatory shear flows over a broad range of frequencies. We showed that using hybrid
gradients across the particle-continuum interface is a simple and robust way to ensure variable
continuity. The resulting “variable-coupling” term acts only on the C boundary condition and
does not directly bias the particle dynamics. The scheme thus preserves the variance of the
averaged P-flux across the coupling region consistent with the Landau expression [6] and is
naturally suited to interface an MD region with a fluctuating hydrodynamics domain, à la
Landau [11–13].
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