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We compare a newly developed hybrid simulation method which combines classical molecular
dynamics ~MD! and computational fluid dynamics~CFD! to a simulation consisting only of
molecular dynamics. The hybrid code is composed of three regions: a classical MD region, a
continuum domain where the dynamical equations are solved by standard CFD methods, and an
overlap domain where transport information from the other two domains is exchanged. The
exchange of information in the overlap region ensures that momentum, energy, and mass are
conserved. The validity of the hybrid code is demonstrated by studying a single polymer tethered to
a hard wall immersed in explicit solvent and undergoing shear flow. In classical molecular dynamics
simulation a great deal of computational time is devoted to simulating solvent molecules, although
the solvent itself is of no direct interest. By contrast, the hybrid code simulates the polymer and
surrounding solvent explicitly, whereas the solvent farther away from the polymer is modeled using
a continuum description. In the hybrid simulations the MD domain is an open system whose number
of particles is controlled to filter the perturbative density waves produced by the polymer motion.
We compare conformational properties of the polymer in both simulations for various shear rates. In
all cases polymer properties compare extremely well between the two simulation scenarios, thereby
demonstrating that this hybrid method is a useful way to model a system with polymers and under
nonzero flow conditions. There is also good agreement between the MD and hybrid schemes and
experimental data on tethered DNA in flow. The computational cost of the hybrid protocol can be
reduced to less than 6% of the cost of updating the MD forces, confirming the practical value of the
method. © 2004 American Institute of Physics.@DOI: 10.1063/1.1767996#

I. INTRODUCTION

Molecular dynamics~MD! simulations have long been
used to model complex fluids both in and out of equilibrium.
As computers get more powerful there has been an increas-
ing desire for more chemically accurate models of these flu-
ids. This means that simulations are becoming larger and
more accurate, but also that much simulation time is being
devoted to model in detail parts of the computational system
of little direct scientific interest. One type of hybrid method
uses different computational schemes for different types of
degrees of freedom within the entire system, e.g., by simu-
lating the polymer with MD and the solvent with lattice
Boltzmann,1 stochastic rotation dynamics,2 or dissipative
particle dynamics.3 Another family of hybrid methods is
based on the spatial decomposition of the system. These
schemes combine regions of relatively high degree of chemi-
cal accuracy in a specific domain of interest and a more
coarse-grained model further away from the specific domain
of interest, where the dynamics can be solved in a less com-
putationally intensive way. We focus on this sort of hybrid
method and combine Lennard-Jones-type specificity with
larger scale continuum methods. Such hybrid methods have

been applied in a number of fields, including Lennard-Jones
fluids,4 biophysics,5 and MD/computational fluid dynamics
~CFD! coupling.6,7 This type of simulation technique is par-
ticularly useful in studying interface problems, where the
region of interest is a localized part of the entire system.

Typical hybrid methods consist of three regions: a tradi-
tional region where dynamics are simulated using well-
established techniques such as molecular dynamics,8 a con-
tinuum region where CFD or elasticity differential equations
are solved using classical techniques, and an overlap region
where the necessary transport information of the MD and
continuum regions are exchanged. The primary motivation
for using a hybrid scheme is to reduce computer time de-
voted to simulating bulk regions of little direct interest. As
such, a hybrid scheme is ideally suited to studying interfacial
systems.

In this paper we apply a hybrid technique to a single
polymer tethered to a wall with explicit solvent. The com-
plex dynamics arising from this system have attracted a de-
gree of interest from experimentalists, who used fluorescence
microscopy and videomicroscopy to investigate the dynamic
properties of individual DNA chains in a shear flow, either
tethered to a wall9 or free.10 These experiments reveal that
the structural quantities, such as the mean elongation of the
polymer, are very sensitive to flow environment and that the
dynamical properties depend strongly on the initial confor-
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mation. Moreover, care needs to be taken to control the finite
size effects, such as those due to long-ranged hydrodynamic
interaction between the polymer and the walls.10 This large
‘‘sensitivity’’ of the tethered polymer dynamics is in fact a
valuable test for the hybrid model. First, the hybrid model
reduces the size of the MD simulation box while avoiding
finite size effects and, second, the coupling has to be able to
perfectly reproduce flows at very small shear rates. As shown
in a recent work,11 this second task is nontrivial because the
signal-to-noise ratio of the stress that one needs to commu-
nicate from the particle to the continuum system is very
small.

The problem of tethered polymers under flow has a ge-
ometry which is ideal for a hybrid scheme. The scientific
interest lies around the polymer although, in a standard MD
simulation, the solvent particles within the bulk flow require
most of the computational time. Single polymers in a bath of
explicit molecular solvent have been the focus of a great deal
of attention in the last decade.1,12–16 Many of these studies
are devoted to examining a free chain in solution in order to
make comparisons with theoretical predictions, explore the
dynamics regime beyond the short-time dynamics, or extract
scaling laws as a function of polymer length or shear flow. In
these studies, the solvent is explicity simulated. For example,
the study by Du¨nweg and Kremer12 uses a polymer of length
L560 beads in a bath of 7940 Lennard-Jones spheres. Aust,
Kröger and Hess13 simulate polymers of lengthL510– 60 in
systems where the total number of particles including solvent
ranges from 1000 to 5832. It is clear in these cases that most
of the computational effort is devoted to solving the equa-
tions of motion of the solvent particles when the real scien-
tific interest lies in the polymer behavior.

The single polymer we study is tethered to a wall, and a
variety of shear rates is imposed as a model interfacial prob-
lem to compare classical MD techniques to the hybrid simu-
lation. In classical MD, we sandwich the polymer and solu-
tion between two explicit walls and impose periodic
boundary conditions in the remaining two directions. The
polymer is tethered to the bottom wall, and shear is created
by moving the top wall at constant velocity in a direction
parallel to the wall. In the hybrid case, we model one wall,
the polymer, and some of the solvent explicitly using MD,
and impose shear by a boundary condition in the CFD re-
gime of the calculation. The shear is translated to the MD
regime via energy and momentum flux transfers in the over-
lap region. We compare various conformational properties of
the polymer for the two techniques.

Our paper is organized as follows. In the following sec-
tion we briefly outline both the classical MD simulation and
the hybrid simulation techniques. In Sec. III we compare the
conformation of the polymer as calculated by each simula-
tion method. The computational costs and benefits of the
hybrid scheme are compared to classical MD. We also com-
pare our results to experimental data of tethered DNA under
shear flow. We conclude with a discussion in Sec. IV.

II. METHOD

We describe in this section both the molecular dynamics
and hybrid dynamics models used in our simulations. The

MD part of the hybrid scheme was the same as the classical
MD used in the pure molecular dynamics simulations.

A. Molecular dynamics

The polymer model and simulation techniques are simi-
lar to those used in previous work.17,18The polymer potential
is based on the bead-spring model developed by Kremer and
Grest.19 Linear polymers containingN560 beads each are
created by linking nearest neighbors on a chain with the po-
tential

Unn~r i j !5H 2 1
2 kR0

2 ln@12~r i j /R0!2#, r i j ,R0 ,

`, r i j >R0 ,
~1!

where r i j is the distance between beadsi and j, R051.5s,
k530e/s2, and s and e set the length and energy scales,
respectively. The monomers in the solvent and in the poly-
mer interact through a truncated Lennard-Jones~LJ! poten-
tial

ULJ~r i j !5H 4e@~s/r i j !
122~s/r i j !

6#, r i j ,r c ,

0, r i j >r c .
~2!

The cutoff is set atr c521/6s for all fluid particles to produce
a purely repulsive interaction between beads.

The bounds of the simulation cell are periodic in thex
and y directions, with periodsLx>38.5s and Ly>33.4s,
respectively. In thez direction the cell is bounded by top and
bottom walls. Each wall contains two layers of 1600 spheres
strongly tethered to the sites of a~1,1,1! plane of a fcc lattice
by harmonic springs of stiffnessk51320es22. The wall
atoms do not interact with each other, and the wall-fluid in-
teraction is LJ with an increased cutoff ofr c51.25s and
increased energy scale ofewf5A1.7e. The increased cutoff
and energy ensure sufficient adhesion of the fluid to the wall
so that the slip at the wall is minimized for the shear rates
considered here. The polymer is anchored to the wall by
enforcing the tethering potential, Eq.~1!, between the end of
the polymer and one wall atom.

The walls are 48s apart for the pure MD simulation; in
the hybrid simulation the molecular dynamics region persists
for 19s. There are sufficient solvent monomers to yield a
mean fluid density of'r50.8s23 in the center of the simu-
lation cell, although density oscillations are induced within a
few s of the walls.20

The equations of motion are integrated using a velocity
Verlet algorithm,8 with a time stepdt50.0075t, where t
5sAm/e is the basic unit of time andm is the mass of a
monomer. A constant temperature ofkBT51.0e is main-
tained with a Langevin thermostat.19 To ensure that this ther-
mostat does not bias the velocity profile along the flow di-
rection, the Gaussian white noise and damping terms are
only added to the equations of motion for the velocity com-
ponents normal to the mean flow, that is,y andz directions.17

The shear flow in our pure MD simulation is induced by
moving the atomistic top wall at a constant speedvx in thex
direction. In the hybrid simulation, a shear boundary condi-
tion is used for the continuum regime, and this resulted in
shear in the MD regime by the exchange of momentum in
the overlap domain. The starting configuration was that of a
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single polymer tethered to the wall in an equilibriated sol-
vent. We repeat the simulation for two different starting con-
figurations, i.e., each configuration has a polymer tethered to
a different wall atom, and the initial conformation of the
polymer is different. The initial polymer configurations were
either taken from previous simulations on melts,18 or gener-
ated from a random walk. Although over long periods of
time we expect that different starting configurations will give
the same configurational averages, previous work12 has
shown that hundreds of different initial configurations are
required to arrive at reasonable ensemble averages. In view
of this, we used two initial configurations for the pure MD
simulations; although this falls short of the number of initial
configurations required to achieve ensemble averages, it does
give us a window over which to compare the hybrid simula-
tion.

The local shear rateġ of the fluid is calculated by com-
puting the local change in thex component of velocityvx as
a function ofz, i.e., ġ5]vx /]z. The upper wall velocity was
chosen so that the shear rateġ assumed the values 0.0,
0.0005, 0.001, 0.002, 0.005, and 0.01t21. Simulations at
higher shear rates were created from lower shear rates by
increasing the wall velocity or boundary condition and al-
lowing the system to achieve steady state. The simulations
were done for at least one million time steps, and the runs of
ġ50.001t21 and 0.005t21 were simulated for at least ten
million time steps, corresponding to a total run time of
75 000t. In the analysis, in the following section, the first
250 000 time steps of data for each given shear rate were
ignored to allow the system to reach steady state; this length
of time was determined to be the longest time necessary for
the system to reach steady state once a new shear rate was
imposed.

B. Hybrid dynamics

Our hybrid dynamics code21 consists of three domains:
the particle domain~P! which was solved by the same mo-
lecular dynamics method described above, the continuum
domain ~C! treated by standard continuum fluid dynamics,
and an overlap region where information from the other two
domains is exchanged. The hybrid scheme is a protocol to
exchange fluxes of conserved quantities, specifically mass,
momentum, and energy between both classically treated re-
gimes. To implement the two-way flux exchange, the overlap
region consists of two different subdomains: theP→C and
theC→P cells. Within theC→P region, the fluxes from the
continuum domain are imposed on the particle domain,
whereas within theP→C cell the microscopic fluxes are
coarse grained in time and space21 to supply boundary con-
ditions for the continuum domain.

The spatial decomposition used for the present setup is
shown in Fig. 1. The molecular dynamics domain ranges
from the atomistic wall atz.0 and extends toz5 l CP

519s. The continuum fluid dynamics domain comprises
l PC<z<Lz , wherel PC.14.5s is thez coordinate of theP
→C interface andLz550s is the extent of the whole simu-
lation domain. The center of theP→C cell is located atz
513.4s; it has a volumeVPC5DzPCA where A5Lx3Ly

andDzPC.2.2s is the extension along thez direction. The

C→P cell is placed at a distance 2.2s from the end of the
P→C cell and covers a region ofDzCP.2.2s from z
.16.8s to z5 l CP.19s.

In what follows we outline the coupling protocol and
provide the numerical details used in the present implemen-
tation. TheC→P coupling represents the most complicated
part of the hybrid scheme; a more detailed explanation of the
method in the frame of the general case of unsteady flows
with mass, momentum, and energy exchanges can be found
in a previous work.22 The steady flow considered here only
carries momentum along thex direction. Although the mean
flux of mass and energy across theC andP interfaces is zero,
fluctuations in the particle system produce perturbative mass
currents along thez direction which need to be taken into
account. This part of theC→P scheme is presented in Ap-
pendix A.

We now focus on how the momentum flux is exchanged
between theC andP domains, starting with a discussion of
theC→P coupling. For the pure Couette shear flow consid-
ered here, the momentum flux due to theC flow across any
z5const surface is given by

P5Pk2hġ i, ~3!

where P5P(r,T) is the hydrostatic pressure,h is the dy-
namic viscosity, andġ[]vx /]z is the shear rate. The value
of the dynamic viscosity was measured in a previous pure
MD simulation via the standard nonequilibrium
procedure;13,18,23for r50.8 andT51.0 we obtainedh51.75
60.04. The stress induced by theC flow in the P domain is
given by the local momentum flux at theC→P interface,
PCP . In order to introduce this stress into the molecular
dynamics domain we add an external forceFext52PCPA to

FIG. 1. The domain decomposition of the hybrid scheme. The polymer is
embedded within the particle region~P! which is described by molecular
dynamics, including the atomistic~lower! wall and the solvent~Lennard-
Jones particles!. Fluid flow within the continuum region~C! is described by
an unsteady Stokes equation and is solved using finite volumes. The hand-
shaking region contains theC→P and theP→C cell, where the two-way
exchange of information is established. TheP andC domains overlap within
l PC<z< l CP . The area of theP→C and C→P cells is the surface of the
system in the periodic directions,A5LxLy . The Couette flow moves along
the x direction driven by the velocity imposed by the upper boundary con-
dition, which corresponds to the upper wall velocity in the pure MD simu-
lations,uwall . The magnitudes of each length shown in the figure are given
in Sec. II B.
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those molecules within theC→P cell. At any instant of time,
t, this force is equally distributed among theNCP(t) particles
inside theC→P cell; so the external force per particle is
Fext/NPC52PCPA/NCP . Note that this external force has a
component normal to theC→P interface, which provides
the hydrostatic pressure, and a tangential component provid-
ing the shear stress. The molecules are free to enter or leave
the C→P region; so the number of molecules within this
region, NCP(t), and the value of the overall external force
fluctuate in time. The average ‘‘pressure force’’ per particle is
P(r,T)/(AN̄CP), whereN̄CP;2000 is the mean number of
particles within theC→P cell ~see Appendix A!, A5Lx

3Ly51286s2, and the pressureP(r,T) is given from the
equation of state provided by Hess, Kroger, and Voigt:24

P(0.8,1).6.5e/s3. Such a force prevents the escape of par-
ticles and, although it induces some ripples on the density
profile over theC→P cell, it maintains the correct value of
the density along the inner part of the MD domain, as seen in
Fig. 2~b! and discussed further in the Appendix A.

The shear force is distributed over the particles in the
same way as described above for the pressure force. In this
case, the flux ofx momentum to be injected in the particle
system ishġCP , whereġCP is the local shear rate of theC
flow measured at theC→P interface.

We next discuss theP→C coupling. The continuum do-
main is a coarse-grained description of the fluid; therefore
any information transferred from the molecular to the con-
tinuum system needs to be averaged in space and time. These
averages need to be local in the continuum space and time
coordinates. To that end, the particle quantities are averaged
within the P→C cell and over a time intervalDtav . It is
important to stress that within theP→C cell each particle’s
dynamics are not directly modified by any external artifact;
in other words the motion of each particle is uniquely deter-
mined by the usual molecular dynamics scheme. To ensure

consistency within the hybrid scheme,Dtav and the volume
of the P→C cell are restricted.25 For the steady flow em-
ployed in this study, the most compelling condition is to
guarantee that the signal-to-noise ratio of the momentum flux
is larger than 1 and for that reasonDtav needs to increase as
ġ decreases.11 We usedDtav5100t for ġ<0.001 and re-
duced it gradually to 10t for the fastest flows considered.

To solve the equations of motion in the continuum do-
main we used the finite volume formulation26 because it
matches by construction the fluxes across cells. The flow
within the continuum region is treated as isothermal, incom-
pressible, and with a uniform pressure; hence the meanx
velocity is governed by]vx /]t5n]2vx /]z2, wheren5h /r
is the kinematic viscosity andvx is the velocity in thex
direction. At the top of the simulation cell we impose a
smooth wall in the CFD sense. This wall moves at a constant
velocity vx(Lz ,t)5uwall which creates the shear flow in the
simulation. For the spatial discretization we used a regular
mesh with grid spacingDz.1.5s and the time step of the
continuum solverDtC was chosen to guarantee the Courant
condition,DtCn/(Dz)2,1/2.

The protocol for theP→C coupling establishes the
boundary condition for the continuum domain at theP→C
interface,z5 l PC . The coarse-grained microscopic flux ofx
momentum across theP→C interface, whose expression is
given in Ref. 22, is set equal to the corresponding value for
the C flow at the z5 l PC boundary, hġPC , where ġPC

.@vx( l PC1Dz)2vx( l PC)#/Dz. This condition gives the de-
sired velocity to be imposed at the boundaryvx( l PC). The
continuity of velocity is ensured by adding a relaxing term in
the flux equation which drives theC velocity at the interface
towards the corresponding averagedP velocity ~see Refs. 11
and 27 for details!. As shown in Ref. 11, the relaxation term
does not alter the flux balance and it is particularly useful
when dealing with flows having low signal-to-noise ratios
~low shear rates! to ensure that fluctuations fromP to C do
not drive apart the mean particle velocity and the continuum
velocity at the overlapping region. As a natural extension, we
are planning to extend the present scheme to allow hydrody-
namic fluctuations in the continuum region.

III. RESULTS AND DISCUSSION

In this section we compare the conformational behavior
of the polymers from the MD and hybrid simulations; we use
two independent MD simulations for comparison. We study
two MD systems because it is well known16 that two simu-
lations, or experiments, on a tethered polymer may exhibit
considerable variation in conformational behavior, even at
rather high shear rates. We conclude this section with a dis-
cussion of the computational costs and benefits of the hybrid
and classical MD techniques.

In Fig. 3 we show the mean-square end-to-end distance
R2 of the polymer in each of thex, y, andz directions. This
is a standard measure of polymer conformation,28 and its
values are related to the values of the radius of gyration. At
low shear rates the polymer conformation calculated from
the hybrid simulation is well within the measured conforma-
tions of the MD simulations. At the highest shear rates, Fig.
3~a! shows the conformation of the hybrid polymer to be

FIG. 2. Monomer and solvent density as a function of distance~z! from the
wall for shear rateġ50.005t21. Part~a! shows the density fluctuations near
the lower wall. In ~b! dashed lines indicate the locations of the coupling
buffers used in the hybrid scheme,P→C andC→P. The inset in~b! com-
pares the density profiles obtained withrO50.65 andr050.48 in Eq.~A1!.
In both cases, the bulk density is equal to the desired value, 0.8, and it is
unaffected by the hybrid scheme.
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about 10% larger than the polymer in the MD simulation;
this difference is within the standard deviation ofRxx

2 , which
is about 15%. Figures 3~b! and 3~c! show they andz com-
ponents ofR2 as a function of shear rateġ. In both cases the
two MD simulations serve as good indicators of the variabil-
ity of the conformational behavior of a single polymer; the
conformation of the polymer in the hybrid simulation is well
within the variations found in the two MD simulations at all
shear rates.

Figure 4 shows the probability of the maximum exten-
sion as a function of distance alongx, y, andz directions for
a shear rate ofġ50.001t21. It is clear that the variation of
the distributions obtained with the hybrid simulation is well
within the distribution of the two MD simulations. This in-
dicates that not only is the average conformation comparable
between the two simulation techniques but that the probabil-
ity distributions also compare favorably.

In Fig. 2 we show the density, of both the solution
monomers and polymer,r5N/V as a function of distance

from the wall for both the MD and hybrid simulations. The
density is calculated in slices of'0.01s perpendicular to the
wall. The regular spacing of the wall monomers, as two
monolayers of a~1,1,1! face of a fcc crystal, induces an
ordering in the fluid; this ordering is well established17 and
persists for'5s. At the wall the monomer density variations
are identical for both the MD and hybrid simulations as seen
in Fig. 2~a!. In Fig. 2~b! we see that the density of both
simulations remains the same until the monomers in the hy-
brid system feel the effects of the constant pressure condition
imposed on the overlap region. The constant pressure is
implemented as a simple normal force per particle on all
monomers in theC→P regime, as discussed in the preced-
ing section. As discussed in Appendix A, this force induces a
local ordering in the monomers, which in turn creates density
fluctuations. It is noteworthy, however, that these density os-
cillations are much lower than at the atomistic wall, shown
for comparison. More recent work on the hybrid scheme has
established that we can reduce these density fluctations even
further. In the MD simulation, the upper wall is identical to
the lower one, and thus the density fluctuations near the
former are the same as those at the latter.

Figure 5 shows the probability of finding any polymer
bead in a plane, where the plane slices are 0.2s in thickness.
The two-dimensional probabilities were calculated in an
analogous way to the one-dimensional probabilities dis-
cussed above. The shear rate shown isġ50.001. Inspection
of the two-dimensional bead distributions indicates that be-

FIG. 3. Thex, y, andz components of the mean-square end-to-end vectorR2

are shown as a function of shear rate for two independent MD simulations
and one hybrid. Error bars, not shown, are'15%. Thex component ofR2

increases as the shear rate increases, while they andz components decrease.
At low shear rate the hybrid simulation is well within the variation of the
MD simulations. At the highest shear rate the values forRxx

2 agree within the
measured uncertainty.

FIG. 4. Probability of finding a monomer in thex ~a!, y ~b!, and z ~c!
coordinates in a flow with shear rateġ50.001t21. Comparison is made
between the result obtained with the hybrid scheme and the outcome of two
pure MD simulations with different initial conditions.
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low a distance of;5s to the wall, the beads tend to be
ordered in layers parallel to the wall plane. This result is not
only a consequence of the polymer-wall interaction but also
an effect of the interaction with the solvent. Near the wall the
solvent is ordered in layers, as in Fig. 2~a!, and the polymer
minimizes the monomer-solvent potential energy by adapting
its distribution to match the locations of the solvent layers.
The order induced by the wall in the polymer structure can
be noticed even in the isovalues of the probability distribu-
tion along the wall planex-y, shown in Fig. 5~b!, and along
thez-y plane in Fig. 5~c!. Over a distance of;6s around the
attachment position the isovalues of the probability distribu-
tion in thex-y plane delineate the minimum energy lines of
the wall atoms LJ potential. In this model, the size of the
wall atoms was chosen to be the same as those of the mono-
mers and solvent particles 1s. In view of Fig. 5~b!, one
might expect that the structure of the polymer is sensitive to
modifications in the details of the wall-fluid interaction, ow-
ing to either changes in the size of the wall atoms or details
of the interaction potential.

In Fig. 6 we present a comparison of the radius of gyra-
tion Rg , as calculated from MD simulations in this work and
that of Aust, Kröger, and Hess13 ~AKR! who studied a single
free polymer in a bath of solvent molecules at a variety of
imposed shear rates. The potential used to describe the poly-
mer and solvent is the same in both AKR’s work and ours;
however AKR used a slightly higher density,r50.85s23,
compared to our value ofr50.8s23. The simulation of
AKR used no walls, so the polymer was free to respond to
the imposed shear so as to best lower the free energy of the
system. Hence the usefulness of the comparison lies prima-
rily in exploring the effect of the wall on the polymer. We see
that at extremely low shear rates the values of the radii of
gyration are quite comparable. As the shear rate increases the
value ofRg that we calculate becomes much larger than for

the equivalent free polymer. This is due to both the grafting
of the polymer to the wall and the interaction of the polymer
with the wall. We intend to investigate the relative impor-
tance of these effects in future work.

Our results are in agreement with the experimental find-
ings of Doyle, Ladoux, and Viovy9 for individual tethered
DNA chains under shear flow. For a quantitative comparison
with these experimental data we evaluated the Weissemberg
number Wi defined as the product of the shear rate and the
longest relaxation time of the polymer, that is, the relaxation
time at zero shear ratet0 . We calculatedt0 from the auto-
correlation of the polymer extension atġ50 and obtained
t0.2000t. Also, the fractional extension was calculated by
normalizing the polymer extension with its contour length:
0.965(N21), whereN560 is the number of monomers and
0.965s is the mean separation between two consecutive
beads.29 Using this value oft0 we plot in Fig. 7 the mean
fractional extension along the flow direction versus the
Weissemberg number, along with the experimental results of
Doyle et al. The results obtained with both the MD and hy-
brid simulations are in very good agreement with the experi-
mental data for the range of shear rates considered here.

Figure 8 shows the end-to-end volume of the polymer,
measured as the product of the three components of the end-
to-end vector. This quantity gives an estimate of the space
that the polymer explores during its motion. This volume

FIG. 5. Probability of finding a monomer in thex-z ~a!, x-y ~b!, andy-z ~c!
planes in a flow with shear rateġ50.001t21. The maximum of the prob-
ability distribution is located near the attachment site. The shaded region
corresponds to an isoprobability value of 0.021 and the values of consecu-
tive isoprobability contour lines are separated by 0.01. The histograms were
obtained from the calculation of a pure MD simulation with a total simula-
tion time of 78 750t.

FIG. 6. Comparison of the radius of gyration of the polymer as calculated
by MD simulation in this paper, and that of Aust, Kro¨ger, and Hess~Ref. 13!
for a free polymer in shear flow.

FIG. 7. The fractional elongation along the flow direction vs the Weissem-
berg number Wi5t0g. The longest decay time at zero shear rate obtained
from our data ist052000t. Comparison is made with the experimental
results of Doyle, Ladoux, and Viovy~Ref. 9! on tethered polymers.
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increases for increasing shear rate and reaches a maximum
value aroundġ;0.002t21. As the shear rate is further in-
creased the volume accessible to the polymer decreases
monotonically. This behavior of the end-to-end volume is
quite similar to the findings of Doyle, Ladoux, and Viovy9

concerning the amplitude of the fluctuation of the chain ex-
tension. As the shear rate was varied, they found that fluc-
tuations reached a maximum size at Wi.5.1. Using the es-
timate t0;2000t, we find that the maximum end-to-end
volume occurs at about Wi;4. In fact, the size of the fluc-
tuations is determined by the magnitude of the volume made
available by the polymer motion; or, in other words, larger
fluctuations increase the explored volume. We shall present a
more detailed comparison with the results of Doyle, Ladoux,
and Viovy9 in a future work.

There are computational costs to the hybrid method that
are not present for classical MD. These include simulating
the continuum regime and the calculations arising from the
coupling procedure within the overlap region, e.g., particle
insertion and deletion and the evaluation of the particle stress
tensor. For the flow considered here, the solution of the con-
tinuum flow required around 0.01% the time needed for a LJ
force calculation. In general, the computational time spent in
simulating the continuum region depends on the problem
considered, but in any case it will always be much smaller
than the MD force evaluation for the solvent. Furthermore,
the calculation of theC flow occurs once for every;20 LJ
force calculations, which ensures extra savings in computa-
tional time. As shown in Appendix B, the coupling protocol,
within the overlap region, is very efficient: only 0.01% of the
total computational time was spent in particle insertion and
deletion while around 5% in the evaluation of the particle
stress tensor. The hybrid code as tested here needs less than
half the solvent particles; thus the overall savings in compu-
tational time is considerable.

IV. CONCLUSION

In this paper we have compared a newly developed hy-
brid MD/CFD code to a traditional MD simulation for a
single polymer tethered to a wall undergoing shear flow in
Couette geometry. We find that the two methods give com-
parable results for the conformation of the polymer within
measured uncertainty.

Our results indicate that the coupling protocol of the
hybrid code requires around 5% of the computer time com-

pared to the Lennard-Jones part of the code. Most of the
CPU time devoted in the ‘‘coupling’’ protocol is spent in the
evaluation of the particle momentum flux; while insertion
and extraction of particles are rather fast, taking less than 1%
of the overall CPU time.

This implies that, compared with a traditional MD simu-
lation, the amount of computational time saved by the hybrid
scheme is proportional to the volume of the simulation that is
described by the coarse-grained model~CFD!. In traditional
MD simulations of interfacial phenomena finite size effects
significantly alter the local interfacial dynamics, and they can
only be reduced by increasing the volume of the simulation
box that surrounds the interfacial region of interest. This
means that most of the computational cost is likely to be
spent in the resolution of the bulk flow. In this paper we have
shown that this drawback disappears when using a proper
hybrid MD-CFD scheme. To that end, we considered a prob-
lem which is very sensitive to small changes in the surround-
ing fluid environment: the motion of a single tethered poly-
mer under shear flow. The excellent agreement found in the
comparisons with the full MD results indicates that the hy-
brid scheme indeed eliminates finite size effects even in rela-
tively small systems. This means that hybrid simulations can
be expected to significantly reduce the computational cost of
appropriate interfacial problems.

Apart from the savings in CPU time, the hybrid scheme
enables us to gather information from all relevant time and
length scales, so it is well suited to treat multiscale problems
where bulk fluid flow plays an important role; other ex-
amples include crystal growth from fluid phases, wetting
phenomena, and membrane dynamics under flow.

We regard the results of the present work as an encour-
aging sign for future simulations, and we plan to explore
various selected interfacial systems in forthcoming research.
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APPENDIX A: MASS, LONGITUDINAL MOMENTUM,
AND ENERGY FLUCTUATIONS

In this work the mean solvent flow carries no longitudi-
nal momentum along thez direction and has a constant mean
density. However, we observe that the polymer motion in-
duces density and longitudinal velocity fluctuations within
the particle region that induce currents of mass and longitu-
dinal momentum traveling along the simulation box. In order
to correctly describe the time-space evolution of these den-
sity perturbations one should couple the MD region with the
full-blown set of hybrodynamic equations, including fluctua-
tions, i.e., the conservation of mass and energy and the equa-
tion for the longitudinal flow.

In this work we have used a simplified approach to con-
trol the perturbative currents at theC→P interface. The idea

FIG. 8. The end-to-end volume of the polymer as a function of the shear
rate. The end-to-end volume is defined by the product of the components of
the end-to-end vector, (Rx

23Ry
23Rz

2)1/2.
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of this approach is to ensure that the mean mass flux across
the z5 l CP interface vanishes in such a way that pressure
waves can leave the simulation box once they reach theC
→P interface. In flows involving low values of the Mach
number~,0.1!, the method explained below prevents pres-
sure waves from bouncing back at theC→P interface in the
MD region.

The average number of particles crossing theC→P in-
terface per unit time is given byṄCP5A^rvz&CP . The most
simple way to ensure zero mass flux is to make this rate
equal to the rate of insertion of molecules into the particle
systemṄPC .11,21 In the calculations presented here we used
another control equation which provides a finer control on
the particle density near theC→P interface. This approach
is based on relaxing the local density at theC→P buffer to
a prespecified valuerO ,

ṄCP5
VCP

tm
~rO2^r&CP!, ~A1!

whereVCP is the volume of theC→P cell, ^r&CP is the local
particle density averaged overDtav , andtm is a relaxation
time which controls the rate at which the density fluctuations
within C→P cell are smoothed out. We set the value oftm

slightly smaller than the time needed by a sound wave to
cross theC→P cell @;O(1)t#. In doing so, the fluctuations
carrying mass and longitudinal currents through theC→P
cell are damped and the amplitude of any reflecting wave
~which may travel back to the MD domain! is strongly re-
duced.

According to Eq.~A1!, particles are extracted ifṄPC

,0 and, as explained in previous work,22 the first particles to
be extracted are those closer to the top MD interface atz
5 l CP . If ṄPC.0, new particles are inserted with a velocity
extracted from a Maxwellian distribution with mean velocity
vy5vz50 andvx5ġz and temperatureT51.0. The inser-
tion of particles in liquids is not a trivial task, however, and
it is addressed by theUSHER algorithm for particle
insertion.21 The value ofrO in Eq. ~A1! was set to a slightly
smaller value,rO50.65, than the mean density 0.8. This
choice of rO alleviates some of the computational cost of
insertion30 but, most importantly, it reduces the amplitude
and the spatial extent of the density ripples produced near the
C→P buffer @see Fig. 2~b!#. In fact, if rO is made similar to
the bulk density, particles feel the spatial constraint imposed
by the top MD interface, thereby inducing larger density
fluctuations nearz5 l CP519s. As shown in Fig. 2~b!, using
r50.65 in Eq.~A1!, the density ripples within theC→P cell
are damped after around 3s, whereas inside theP→C cell
the hybrid density profile perfectly matches the density ob-
tained in the pure MD simulation. A perfect match with the
bulk density is also obtained whenrO is set to a smaller
value, as shown in the inset of Fig. 2~b!. This means that the
condition of constant density at the bulk is guaranteed by the
pressure balance between the MD and the continuum do-
main. UsingrO50.48, the end of theC→P cell ~near z
5 l CPs) becomes rarefied, and density oscillations are larger
at the innerC→P interface@see Fig. 2~b!#. This indicates
that if rO is chosen to be smaller than the bulk density,

density oscillations withinC→P are mainly produced by the
external~pressure! force, while the effect of the spatial con-
straint due to the top MD interface is very small. A more
detailed discussion on the end-region density, including some
ameliorations of the mass flux boundary condition shall be
presented elsewhere.

As long as the fluid is isothermal and there are no mean
pressure gradients, the mean energy flux across theC→P
interface is zero. We therefore only need to guarantee that the
specific energy of the newly inserted particles matches that
of the ensemble. To ensure the energy balance, new particles
are inserted at sites where the interparticle potential energy
equals the chemical potential of the system, thereby ensuring
the Widom insertion criterion. The kinetic energy is matched
by inserting new particles with a Maxwellian distribution, as
stated above.

APPENDIX B: COMPUTATIONAL COST
OF THE HYBRID METHOD

We compare the computational cost of the coupling sub-
routines with those pertaining to the MD part of the hybrid
scheme. This comparison was made using theGPROF com-
mand available in the package of theF77 compiler. One of
the parts of the hybrid scheme for which one may expect a
certain cost in computational time is particle insertion. Table
I presents some results obtained for different shear rates and
values of the densityrO in Eq. ~A1!. Typically, Eq. ~A1!
requires around 5 insertions per time intervalt and around
15 iterations per inserted particle~each interaction involving
a single-force evaluation!. Therefore, for a time step ofDtP

50.0075t, the insertion of new particles needs typically
about one extra force evaluation per time step. This number
is very small when compared with the number of force
evaluations needed in the MD system, which is on the order
of the number of particlesNp;104. This estimate is consis-
tent with our findings concerning the computational cost. As
shown in Table I, in hybrid calculations usingrO50.65, the
time spent in the insertion/extraction subroutines was about
1.531024 times the time spent in the force evaluation and
around 0.931025 if one includes the Verlet list evaluation.
This performance confirms the extremely high efficiency of
the USHER algorithm for particle insertion.

TABLE I. Details of the particle insertion in several hybrid simulations
done at shear rateġ. Using rO in Eq. ~A1!, the average rate of particle
insertion wasṄin and the average number of iterations needed by theUSHER

algorithm to insert a new particle wasniter . Ee is the relative error in the
energy upon insertion~the relative difference between the target potential
energy and the potential energy at the insertion site!. In the last column we
show the ratio between the CPU time used by the insertion/extraction sub-
routines and the CPU time used by the force subroutine plus the Verlet
neighbor list.

ġ (t21) rO (s23) Ṅin (t21) niter Ee CPU@insert#/CPU@force#

0.001 0.8 3.68 25.4 0.015 2.73 1024

0.010 0.8 3.64 25.9 0.015
0.010 0.65 8.25 14.7 0.006 0.93 1024

0.005 0.65 4.34 16.3 0.010
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As a matter of fact, the dominant cost of the hybrid
scheme resides in the evaluation of the particle momentum
flux. Its cost in CPU time was about 0.06 times the cost of
the force plus Verlet list subroutines. We note that the imple-
mentation of this part of our code was not constructed in an
efficient way because we evaluated the particle momentum
flux at each MD time step. Considering that for the evalua-
tion of ^ j p& we used measurements ofj p separated by its
decorrelation time, about 0.06t,11 we could have measured
the particle flux roughly every ten time steps and further
reduced that ratio by a factor 10. Finally, the time needed to
solve the diffusion equation in the continuum domain was
very small compared with the MD force subroutine, by a
factor of less than 1024. In general, the computational time
required to solve the continuum system will, of course, de-
pend on the specific problem solved.
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