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USHER: An algorithm for particle insertion in dense fluids
R. Delgado-Buscalionia) and P. V. Coveneyb)

Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street,
London WC1H 0AJ, United Kingdom

~Received 12 February 2003; accepted 10 April 2003!

The insertion of solvent particles in molecular dynamics simulations of complex fluids is required
in many situations involving open systems, but this challenging task has been scarcely explored in
the literature. We propose a simple and fast algorithm~USHER! that inserts the new solvent particles
at locations where the potential energy has the desired prespecified value. For instance, this value
may be set equal to the system’s excess energy per particle in such a way that the inserted particles
are energetically indistinguishable from the other particles present. During the search for the
insertion site, theUSHER algorithm uses a steepest-descent iterator with a displacement whose
magnitude is adapted to the local features of the energy landscape. The only adjustable parameter in
the algorithm is the maximum displacement, and we show that its optimal value can be extracted
from an analysis of the structure of the potential energy landscape. We present insertion tests in
periodic and nonperiodic systems filled with a Lennard-Jones fluid whose density ranges from
moderate to high values. ©2003 American Institute of Physics.
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I. INTRODUCTION

Many dynamical processes of chemical, biological, a
physical interest occur in open systems where matter
energy are exchanged with the surroundings. The main fo
of attention has been in~grand canonical! Monte Carlo algo-
rithms, which are particularly suited for the study of equili
rium states. However, more recently, there has been sig
cant attention focused on molecular dynamics~MD!
algorithms adapted for open systems. One of the bigg
challenges faced in the investigation of such phenomena
MD simulation is the problem of the efficient insertion
solvent particles in dense liquids. Indeed, as the scope
scale of MD increases, a growing variety of applications a
methods are in need ofon the flyparticle insertion algorithms
~see Refs. 1–5 and references therein!. Among those, a par
ticularly relevant family of methods is hybrid schemes th
couple the particle domain to an outer region described
continuum fluid dynamics.4,5 The present method was de
vised for use in such hybrid schemes, but we believe
application within molecular simulation may prove to b
more widespread.

The problem of inserting a solvent molecule in a den
fluid is commonly encountered in grand canonical Mon
Carlo ~GCMC! methods—for instance, in Gibbs ensemb
calculations for phase equilibria or evaluation of the che
cal potential. A number of techniques have been propose
overcome this problem~see Refs. 6 and 7 and referenc
therein!. For instance, cavity-biased procedures search
domains within the fluid with a small local value of numb
density, as these cavities are more susceptible to accom
date a new molecule. In doing so, a bias is introduced a

a!Electronic mail: R.Delgado-Buscalioni@ucl.ac.uk
b!Electronic mail: P.V.Coveney@ucl.ac.uk
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according to the rules of MC simulation, the bias has to
precalculated and corrected so that the scheme adher
detailed balance. Even so, recent comparisons show th
the molecules are smaller than the mean size of the cavi
the GCMC method is nearly 10 times faster than gra
canonical molecular dynamics~GCMD!.8 We believe that the
insertion algorithm proposed here may be used to impr
the efficiency of the GCMD schemes.

The acme of a particle insertion protocol for MD is on
that, in just a few iterations, is able to place the new parti
within the required subdomain of the simulation space a
site where the potential energy takes exactly the des
value. This last condition ensures that no extra energy
introduced into the system, and therefore such an inser
algorithm would not require thermostatting after each ins
tion. Indeed, even for moderate liquid densities, these
difficult requirements to satisfy and the few insertion pro
cols proposed in the literature1,3 are far from fulfilling them.

For instance, Goodfellowet al.3 introduce solvent~wa-
ter! molecules in the cavities of proteins to investigate th
structural stability. Once the protein’s cavities are found,
insertion protocol consists of several steps that involve
erations over the whole system. Solvent molecules are in
duced with arbitrary orientation and locations within the s
lected cavity. As a consequence, the energy of the sys
increases sharply after each solvent molecule insertion
to allow its relaxation, 200 energy minimization steps of t
whole system~protein1water! are then performed, followed
by a 1-ps molecular dynamics simulation. This expens
insertion procedure, which involves substantial alterations
the microscopic dynamics, could be avoided if the solv
particle were initially introduced at the desired potential e
ergy site.

The work by Ji, Cagin, and Pettitt, towards the gra
canonical molecular dynamics method1 ~see also Ref. 2 for
© 2003 American Institute of Physics
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further development and applications!, is an example of an
open-system MD simulation which does takes care of
potential energy at the insertion site. In their method, n
particles contribute a fractional number to the total num
of particles. These fractional or scaled particles must be
serted at positions where the potential energy is equal to
of the former~added or deleted! fractional particle. As ex-
plained in Ref. 1, the authors first use a grid method to s
the MD domain into a number of boxes that is the same a
a little larger than the total number of particles. The m
favorable boxes~with the least number of neighbors! are
selected as candidates to add the new particle. Then the
solvent candidates are placed within each of these boxes
200 possible molecular orientations of these new solv
candidates are computed. For each box, the orientation
yields the potential energy closest to the desired value
chosen and a first steepest descent procedure ofO(10) steps
follows. If this does not lead to any site with the desir
insertion energy, they finally perform a much larger steep
descent procedure with at least 100 steps on the most fav
able box. As the authors acknowledge, this numerically
pensive protocol still yields numerical errors that can dist
the system.1

Our main concern is the insertion of solvent particles
the framework of a hybrid~particle–continuum! scheme. In
recent work we proposed a hybrid scheme that is able to
not only with momentum but also with mass and ene
exchange between the continuum~C! and the particle regions
~P!.5 In particular, particles need to be inserted in the ov
lappingC→P regions where theC fluxes are imposed on th
P domain. In a real liquid~with interacting potential energy!,
mass and energy exchanges are strongly coupled and
showed that, in order to balance the energy flux, the n
particles have to be inserted at positions where the pote
energy equals the value prescribed by the continuum dom
In that work5 we used a particle insertion algorithm~called
USHER! which is able to tackle this task in a rather efficie
way ~see Ref. 5 for a brief description!. Further research ha
led to an enhanced version of theUSHERalgorithm. Here we
shall describe this new version of theUSHER protocol and,
for the sake of consistency, we shall briefly review the o
presented in Ref. 5.

The rest of the article proceeds as follows: We first f
mulate the root-finding problem in Sec. II. In Sec. III w
describe a reference scheme against which we compare
USHERalgorithm and then theUSHERprotocol. Insertion tests
are described in Sec. IV, and the results are discussed in
V. In Sec. VI we present an analysis of the potential ene
landscape that proves to be very useful for the optimiza
of the algorithm’s parameters. Finally, conclusions and dir
tions for future research on insertion algorithms are given
Sec. VII.

II. THE INSERTION PROBLEM

We consider a set ofN particles inside a box of volume
V which interacts via pair potentialsV(r ). At any instant the
potential energy can be defined at any pointr by evaluating
U(r )5 1

2( i 50
N V(ur2r i u). The force that a test particle woul
Downloaded 15 Sep 2004 to 143.106.6.126. Redistribution subject to AIP
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feel at any point can be measured byf(r )52“U(r ). In this
work, we consider a Lennard-Jones fluid whose interpart
potentialV(r )54(r 2122r 26) is written in the usual units of
length~the effective radiuss! and energy~the potential well
e!.

The objective of the algorithms presented below is
find a positionr0 for which the potential energy equals
prescribed valueU0 ; therefore,U(r0)5U0 . In most practi-
cal situations a less stringent requirement needs to be
filled: namely,^U(r0)&5U0 , where brackets denote an a
erage over a certain~small! number of insertions.

Even for a simple system such as a Lennard-Jones fl
the structure of the energy landscape is very complex, w
large energy gradients and complicated energy isosur
shapes. A typical energy distribution along the whole sp
spreads over several orders of magnitude, but for the typ
~moderate! temperatures usually considered in applicatio
the particles need to be placed at positions with extrem
low energies compared with the range of the energy dis
bution. The result is that the mean specific excess ene
resulting from the equation of state,ueos5Ueos(r,T)/N, is a
very low energy compared with the typical energies found
any arbitrary point of the space. As the fluid particle dens
increases, the situation worsens, reflecting the fact that
ticles tend to reside within deep potential wells. The relat
of the chemical potentialm with densityr shows clear evi-
dence of this fact. At moderate densities the value ofm is
close toueos, but above a certain density,m steeply increases
aboveueos, meaning that the typical energy needed to ins
a particle becomes much larger than the mean potential
ergy per particle.

Therefore, if one needs to insert particles at positio
with energies close to the mean excess energy per part
ueos, one needs to find extremely-low-energy sites, parti
larly in dense systems. The main problem to be faced is
the energy landscape presents many energy ‘‘holes’’ wh
local minima range from intermediate to large energy valu
Here, we define a ‘‘hole’’ as a region of space enclosed by
isosurface of energy in such a way that“U(r )•n.0 at the
hole surface, wheren is the~outward! normal surface vector
Usually, these holes act as traps for widely used ene
minimization algorithms based on standard steepest-des
or conjugate-gradient methods.9 As a matter of fact, we soon
discovered that it was very inefficient to move downhill ov
the potential energy surface by means of any of the stand
versions of the steepest-descent method used in molec
simulation ~see, for instance, Ref. 9!. The purpose of the
present study is to present a steepest-descent-like iter
procedure that can avoid the intermediate-energy holes
this end, theUSHER algorithm does not rely on line minimi
zation along the steepest-descent direction,10 but instead on a
displacement size which is adapted on the fly, according
the local topology of the potential energy landscape. Anot
important advantage is the facile implementation of t
USHER code.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. DESCRIPTION OF THE ALGORITHMS

We shall now describe some general aspects of the p
lem of particle insertion and the common features of
algorithms concerned.

In any insertion procedure the first step is to place
new particle at a starting positionr (0). In all the tests pre-
sented in Sec. IV, we choser (0) at random. We also tried to
selectr (0) according to a cavity-biased procedure~as in Ref.
1!. As explained in Sec. I, this procedure incurs a numbe
operations ofO(N) prior to the insertion algorithm itself an
we found that, when using theUSHER algorithm presented
below, it did not reduce the total number of iterations w
respect to the~much cheaper! random choice.

During successive iterations, the iterator’s position
moved according to the update rule, which, in general, m
be a function of the mechanical quantities at the previ
iteration, r (n11)5r (n11)(r (n),U (n),f(n)). The search termi-
nates if the new positionr (n11) is a site with the desired
energy. This is determined by the following condition

uju~n11!,jmax, with j~n11![
U ~n11!2U0

uU0u
, ~1!

wherejmax is a predetermined parameter—namely, the h
width of the interval of the accepted energies arou
U0—andj is defined as the relative difference of the pote
tial energyU (n11) at the (n11) iteration with respect to the
desired valueU0 .

Finally, once the new particle is correctly inserted, t
force that it exerts on its neighbors is calculated and its
locity is also assigned. This velocity is drawn from a Ma
wellian distribution with the desired temperatureT and the
desired mean velocitŷv&:

P~v!5S 1

2pmkTD
3/2

expS 2m~v2^v&!2

2mkT D . ~2!

While the algorithm is guiding a new particle to a corre
location, the positions of all the other particles remain f
zen. This means that one insertion iteration only involves
evaluation of the force on a single particle~that is, the force
exerted by all the particles at the siter (n)).

The starting position determines whether the followi
iterations will have to be downhill~if U (0).U0) or uphill ~if
U (0),U0). A simple way to unify both cases in a sing
scheme is to rescale the potential energy asU(r )
→sgnU(r ), where sgn[(U(0)2U0)/(uU(0)2U0u). By doing so,
the forcesf52“U are also redefined and, in particular,
case with sgn521 then implies that the redefined force
point uphill of the~unscaled! potential energy throughout th
entire course of that particular particle insertion. In the f
lowing presentation we shall assume that the energy
force field are already rescaled as sgnU(r ) and sgnf, so we
will not explicitly include ‘‘sgn’’ in the equations.

During the iterative process, the algorithm will encou
ter three different situations which may require separ
treatment~for instance, different update rules!. We denote
these situations as follows:downhill move U (n11),U (n),
uphill move U (n11).U (n), and confinement U(n11),U0

,U (n). In an optimal insertion one expects to keep goi
Downloaded 15 Sep 2004 to 143.106.6.126. Redistribution subject to AIP
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downhill ~with respect to the rescaled potential energy! until
the confinement is attained. Then the desired location
within the segmentdr (n)5r (n11)2r (n) and can be deter
mined by means of standard one-dimensional~1D! root-
finding algorithms~such as the Newton–Raphson or bise
tion methods!.

The most problematic iteration corresponds to the up
move, and it merits some discussion. To illustrate
U (n11).U (n) scenario we refer to the energy landsca
shown in Fig. 1. Even for moderate densities~Fig. 1 corre-
sponds tor50.6!, the low-energy regions conform to a com
plex tubelike structure. The insertion algorithm will have
usher the new particle into these energy tubes before arri
at a correct location. An uphill iteration may arise when t
iterator faces either of two features of the energy landsca
intermediate-energy holes or sharp bends~including saddle
points!. Note that both kinds of features induce complete
different decisions. The best thing to do when encounter
an energy trap is to give up the search and restart from
other initial positionr (0). By contrast, if a bend in the energ
landscape leads to a low-energy valley, it may be worthwh
to use an update rule that can efficiently deflect the iterat
trajectory. Unfortunately, once an uphill move occu
it is not possible to distinguish between these two featu
within only one iteration. On the other hand, the number
uphill iterations rapidly increases as the displacem
ur (n11)2r (n)u is made larger than a specified maximu
threshold. In fact, an important issue for the algorithm des
is first to estimate this threshold and only then to determ
the best decision to take upon an uphill move~see Sec. VI!.

It is also convenient to introduce a restart condition
order to avoid any possible stagnation of the algorith
around energy holes. In particular, ifn.nmax, the search is

FIG. 1. ~a! Cut along thex50 plane of the contour plot of the potentia
energy landscape for energies lower than 100, showing the typical
energy tubelike structures.~b! Close-up of the leftmost region, indicatin
with thicker solid lines a possible targeted energy, atU524. Some bends
and saddle points of the energy surface and some energy traps~local minima
with energy larger than the target! are indicated with solid and dashed a
rows, respectively. The snapshot corresponds to a LJ fluid withr50.6 and
T52.5 inside a 3D cubic box of sideL510s. The size of the maximum
displacementDs used by theUSHER algorithm for this density is also indi-
cated.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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981J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Algorithm for particle insertion in dense fluids
restarted from another initial positionr (0). Particularly at
high densities~typically above 0.75!, the overall number of
iterations is sensitive tonmax. A very large value ofnmax

corresponds to many unsuccessful and time-consuming i
tions, while a value fornmax that is too small prevents mos
of the potentially successful trials from terminating succe
fully. We found that the best compromise between these
extremes is to makenmax;0.8̂ n&, where^n& is the number
of iterations averaged over a certain number~;20! of inser-
tions. The value ofnmax depends on the density. It may b
determined from an initial test run or, alternatively, rea
signed on the fly according to the value of^n& determined
during the simulation.

In the remainder of this section we first define a ‘‘refe
ence’’ scheme against which we can then discuss and c
pare theUSHER algorithm in more detail.

A. Reference scheme

In order to better understand the behavior of theUSHER

algorithm it is helpful to compare its performance with
reference scheme based on a combination of well-establi
methods widely used in the literature for root finding a
energy minimization. While moving downhill, the referen
scheme uses a basic steepest-descent step with a fixed
placementDs1 . The update rule is

r ~n11!5r ~n!1
f ~n!

f ~n!
Ds1 , ~3!

where, according to standard notation,f (n) is the modulus of
f (n).

If an uphill move is made, the reference scheme will fi
try to deflect the iterator’s trajectory in order to adapt itself
a possible bend in the potential energy surface. By const
tion of the update rule, Eq.~3!, the potential energy de
creases locally atr (n) in the directiondr (n)[r (n11)2r (n).
Therefore, ifU (n11).U (n), there must exists a locationrm

where U(rm)5min$U(rl)url5r (n)1ldr (n)%. The reference
scheme finds the positionrm by means of a line minimization
of the potential energy along the segmentdr (n) ~see Ref. 10
for details!. The new position is then recalculated by a ste
est descent step starting fromrm and with a displacemen
Ds2 :

r ~n11!5rm1
fm

f m
Ds2 . ~4!

The line minimization itself requires an inner iterative pr
cedure~see Ref. 10!. In view of the narrowness of the po
tential energy tubes, we used no more than three iterat
for the estimation ofrm . Better estimates ofrm do not im-
prove the efficiency, but instead lead to a larger numbe
force evaluations in the overall scheme. When a local m
mum of potential energy is found, the iterator’s position w
bounce back, moving subsequently upwards and downw
in energy as it hits the walls of the energy hole. To avoid t
situation, after several~typically three! consecutive uphill it-
erations the scheme determines that it has been trapped
local energy minimum and consequently restarts the se
from another initial positionr (0). Finally, once the root has
Downloaded 15 Sep 2004 to 143.106.6.126. Redistribution subject to AIP
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been confined in the segmentdr (n)5r (n11)2r (n), it is ex-
pressed asr05r (n11)1l0dr (n), with l0 a real number in
~0,1!. To find l0 , the reference scheme uses a 1D ro
finding algorithm which combines the Newton–Raphs
method with a robust bisection method to ensure confi
ment in case of a failure of the Newton–Raphson step~due,
for instance, tof (n);0). It typically took less than three
iterations to calculate the value ofr0 . The optimum choice
for the parametersDs1 andDs2 is presented in Sec. VI.

B. USHER scheme

The basic idea of theUSHERinsertion algorithm is to use
an update rule to move downhill that can adapt the iterato
displacement according to the local topology of the lo
energy landscape. This is reflected in the update rule

r ~n11!5r ~n!1
f~n!

f ~n!
ds~n!. ~5!

Equation~5! is essentially a steepest-descent scheme wi
displacementds(n) that depends on the iterator’s positio
The success of the method resides in a judicious choic
ds(n). Optimal performance was obtained using the follo
ing expression fords(n), which depends on both the loca
potential energyU (n) and forcef(n):

ds~n!5H Dsovlp , if U ~n!.Uovlp ,

minS Ds,
U ~n!2U0

f ~n! D , if U ~n!,Uovlp .
~6!

The best way to illustrate how the adaptive displacem
of Eq. ~6! works is to describe how theUSHER scheme per-
forms one insertion. As long as the starting positionr (0) is
chosen at random, there is a large chance of overlap wi
preexisting particle, leading to a very large value ofU (0).
The displacementDsovlp quoted in the first line of Eq.~6! can
be constructed to remove the overlap in~typically! one itera-
tion. For this reason,Uovlp is chosen to be a very large en
ergy representing an overlap position—say,Uovlp;104. As
the hard-core part of the interparticle potential goes l
4r 212, the distance from a site with energyU (n).Uovlp to
the center of the overlapped particle isr 5(4/U (n))1/12.
Therefore, by choosingDsovlp5r s2(4/U (n))1/12, we can
guarantee that the next iterator’s positionr (n11) will be
moved a distancer s away from the center of the overlappe
particle and, by virtue of Eq.~5!, in a direction of lower
potential energy. The value ofr s should be close to or
slightly smaller than a characteristic contact distance
tween particles~e.g., the distance given by the maximum
the radial distribution function!. For the pure Lennard-Jone
fluid under consideration here, we have usedr s50.9 ~in
units of s!.

Once any possible initial overlap is sorted out (U
,Uovlp), the second line of Eq.~6! is designed to drive the
new particle downhill in energy, towards the target valueU0 .
Here resides the main difference with respect to the refere
scheme. At large energies, the typical slope of the poten
energy is very large (f (n)@1), meaning that the energy dro
along the steepest-descent direction is governed by the li
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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term of the Taylor expansion in the displacement,DU
5 f (n)ds1O(ds2). The second line of Eq.~6! makes use of
this fact and takesDU5U (n)2U0 for extracting a displace
ment adapted to the~maximum! local energy gradientds
5DU/ f (n). Note that at large energiesU (n)2U0;U (n), so
after one iteration one expects the energy to decrease i~at
least! a fraction ofU (n), implying linear convergence. Th
local curvature of the potential energy landscape beco
dominant when approaching a local minimum (f (n);0) and
in this case Eq.~6! limits the displacement to a maximum
value Ds. The maximum displacement is the only variab
parameter in the algorithm and, as discussed in Sec. VI
optimal value is about the width of the low-energy tubes
the potential energy landscape~see Fig. 1!.

At low energies, as the iterator approaches the ene
target U0 , the displacementds5(U (n)2U0)/ f (n) behaves
like a Newton–Raphson step made along the steep
descent direction. Due to this feature, the convergence o
USHERalgorithm increases notably near the target. In parti
lar, this kind of displacement enables the errorj to decrease
quadratically oncej,O(1). This fact is illustrated in Fig. 2
by plotting the absolute value of the erroruju(n11) against its
value at the previous iterationuju(n). As explained above, fo
j.O(1) the algorithm converges linearly withuju(n11)

.0.4uj (n)u, while uju(n11).0.35 (j (n))2 once j,O(1). In
the same way, it may be possible to further increase
convergence rate by implementing a displacement ba
upon higher-order methods such as Halley’s or Baile
scheme11 ~for such purposes one would need to calculate
Hessian matrix and project it onto the steepest-descent d
tion!.

For the sake of completeness, we also describe here
older version of theUSHERdisplacement used in Ref. 5. Th
earlier version used a similar displacement rule forU (n)

.Uovlp to that quoted in Eq.~6!, but for lower energies it

used ds(n)5min(Ds,1
2 f (n)Dt) where the optimal choice fo

the parameterDt ranged within~0.05,0.15!. This scheme is
around two times slower than the improvedUSHER sheme
discussed here.

One of the important issues of the algorithm design c

FIG. 2. Absolute value of the error at then11 iteration plotted against its
value at the previous iterationn. The data correspond to insertions made
the USHER algorithm in a periodic boxL510s and for 0.6<r<0.75. As
illustrated by the dashed lines, the convergence is linear forj.O(1) and
quadratic forj,O(1).
Downloaded 15 Sep 2004 to 143.106.6.126. Redistribution subject to AIP
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We compared two different strategies. The first one, wh
we shall callindirect USHER, performs a line minimization10

of the energy along the directiondr (n)[r (n11)2r (n), similar
to that described in Sec. III A and Eq.~4!. The second alter-
native, calleddirect USHER, gives up the initial search an
restarts a new one from another random positionr (0) once an
uphill move is encountered. Interestingly, the insertion te
~see Sec. IV! clearly show that thedirect USHERis about two
times faster than theindirect version. This indicates tha
most of the uphill moves encountered using the update
of Eqs. ~5! and ~6! are due to energy holes and therefo
suggests that Eq.~6! enables theUSHERalgorithm to properly
deflect its trajectory at most of the bends of the low-ene
tubes encountered. A less restrictive version of thedirect
USHER allows a line minimization iteration only if the uphil
move is done near enough to the target@for instance, ifuju
<O(1)]. This alternative gives slightly better results at lar
densities.

In the insertion tests presented below in Sec. IV the r
erence scheme is compared with the most efficient versio
the USHER algorithm—i.e., with thedirect USHER. To avoid
any possible confusion, in the remainder of the paper
shall simply call this theUSHER algorithm.

IV. INSERTION TESTS

The insertion algorithms presented in Sec. III we
evaluated in two kinds of systems: with and without period
boundary conditions. We stress that no thermostat was u
in any of the insertion tests. This ensures that the tempera
of the system does not spuriously increase due to the d
pation of possible additional internal energy introduced
particle insertions in nonappropriate~higher-energy! loca-
tions.

In order to investigate the functioning of the insertio
algorithm we shall drive the system through a specific th
modynamic process~see below! and compare the values o
the thermodynamic variables computed during the simu
tions with those arising from thermodynamics. The syst
containsN particles within a volumeV and its total energy is
E53NT/21U(rN), the energy per particle beinge5E/N.
The thermodynamic processes will be specified by the va
tion of the number of particles,DN ~or densityDr!, and the
change of energy per particle,De. We now use standard
thermodynamics to derive the changes in the system’s o
variables.

The variation of energy per particle upon insertion
DN particles into the system isDe5DE/N2eDN/N. For a
system having no contact with a thermostat or a manosta
for the one considered here, the variation of the total ene
upon insertion ofDN particles is exactlyDE5^e8&DN,
where ^e8& is the energy of the inserted particle averag
over DN insertions:DN^e8&5( i

DNe i8 (e i8 being the energy
of the ith inserted particle!. Thus,

De5~^e8&2e!DN/N5~^e8&2e!Dr/r. ~7!

The variation of temperature can now be calculated from
equation
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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DT5
1

cv
FDe2S ]e

]r D
T

DrG , ~8!

whereDr5(DN)/V, cv is the specific heat at constant vo
ume, and (]e/]r)T is obtained from the equation of state f
the excess energy per particle,u5U/N, reported by Johnson
et al.12

Therefore, for given initial values of the system’s dens
and temperature (r0 ,T0), the time evolution of the thermo
dynamic variables is determined by the~specified! temporal
variation of density]r/]t. The rate of temperature variation
obtained from Eq.~8!, enables us to calculate the tempe
ture at each instant in the process. The pressure and ex
energy per particle can then be obtained from equation
state@P5Peos(r,T) andu5ueos(r,T)].

In the tests presented below we considered a thermo
namic process in which the density increases at constant
cific energyDe50. According to Eq.~7!, during the process
the average energy of the inserted particles^e8& is set equal to
the mean specific energy of the system,e. This condition is
similar to that required for the energy balance conditions
the hybrid ~particle–continuum! scheme of Delgado
Buscalioni and Coveney.5 In fact, the process withDe50
can also be sought as a test for energy conservation in
hybrid scheme.

The thermodynamic relations, such as Eq.~8!, are mean-
ingful at least under condition of local equilibrium. This im
poses a limit on the rate of particle insertion, because wit
each subdomain of the system the insertions of particles n
to be sufficiently well spaced out in time for the system to
able to recover the equilibrium distribution. Consider a sm
subvolume of sizel, large enough to be representative of t
system’s distribution function. For instance,l may be the
distance at which the radial distribution function converg
to one~;3s!. To be sure that the system is able to restore
equilibrium distribution, the rate of particle insertion in ea
of these subdomains,l3(]r/]t), has to be smaller than th
inverse of the collision time, which for a simple fluid can b
estimated using the hard-sphere approximation bytc

.0.14r21T21/2(s2m/e)1/2 ~see, e.g., Ref. 13!. In our calcu-
lations we used (]r/]t)<0.01, so the characteristic insertio
time was;3, much larger than the collision timetc.0.3.

A. Insertions in a periodic box

The first set of tests were performed in systems c
tained within a cubic periodic box of side lengthsL
5$7,8,10%s. The initial density was set to a moderate val
r(t50)50.4 and was increased untilr.1.0. The maximum
rate of density increase used was]r/]t;0.01. The tempera
ture, pressure, excess energy per particle,u5U/N, and total
energy per particle,e, are plotted in Fig. 3 versus the densit
Results correspond to particle insertions in a box withL
510s at a constant density increase rate of]r/]t50.01.
Particles were inserted at sites where the potential en
equals the specific excess energy of the system,U05U/N
5u, and with velocities drawn from a Maxwellian distribu
tion at the instantaneous system’s~kinetic! temperatureT.
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The dashed lines in Fig. 3 correspond to the thermodyna
variables obtained from the equation of state according to
process of Eq.~8!.

B. Insertions in an open flow

The second test was done in open fluid flows—i.e.,
systems with open boundary conditions. We considere
system with densityN/V within a cuboidal domain of sides
Lx540s and Ly5Lz59s. The system is periodic in they
and z directions and has open boundaries atx50 and x
5Lx . Particles were inserted with potential energies close
the specific excess energyUeos/N and with velocities drawn
from a Maxwellian distribution at a temperatureT0 , which
was fixed throughout the simulation. Insertions were do
within a region of widthDx around x50 and at a rate
Arv in , where v in is a parameter that determines the flo
velocity normal to the surface vector of the open bound
~n! and A5LyLz is the area of the boundary. At the righ
hand boundary, particles are extracted at the same rate, s
overall density of the system remains constant through
the simulationN/V. In order to couple the particle region t
the outer pressure we used our hybrid particle–continu
scheme at thex50 andx5Lx surfaces.5

Note that in this case particle insertion in thex direction
is restricted to a regionDx, which is set toDx52.0s ~the
volume available to insert particles beingDxLyLz). To en-
sure that insertions are done in this region two different st
egies were implemented. The first one is a simple reflec
of the positionr (n11) back to the insertion domain when th
USHER iterator crosses thex50 andx5Dx boundaries. In
the second implementation we imposed an artificial sh
potential well atx50 andx5Dx, which acts only during the
evaluation of the forces in the iteration procedure: i.e., it w
not included in the evaluation ofU(r (n11)). Both alterna-
tives worked equally well and resulted in a similar number
required iterations.

FIG. 3. ~a! Total energy per particle,e, ~b! pressureP, ~c! temperature, and
~d! excess energy per particleu vs the density, obtained in a particle inse
tion test made in a cubic periodic box with side lengthL510s. The density
increases linearly with time at a rate of]r/]t50.01. The insertions were
made to guarantee a process withDe50 ~see text!. The dashed lines corre
spond to the thermodynamic variables extracted from Eq.~8!, using the
equations of state forueos(r,T) andPeos(r,T).
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The simulation starts from an initial state with zero me
velocity and constant density profile along thex direction. As
time goes by, the particle insertions concentrated in the
gion aroundx50 lead to the production of a density wav
that expands at the sound velocity forx.0. This density
wave transports momentum along thex direction and, after a
transient time, the density profile converges to the flat s
tionary density profile; throughout the simulation cell, t
mean-flow velocity in thex-direction tends to the valuev in .

The hydrodynamic and thermodynamic variables w
measured over slices of widthDx along thex direction. Fig-
ure 4 shows the local density at some of the leftmost sli
x,Lx/2 together with the mean~slice averaged! velocity and
total temperature of the system. The oscillatory behavio
the local density is a desired feature of these tests as it
ables us to determine the dependence of the number of i
tions, n, on the density for a range of values ofr in each
simulation. We refer to our previous paper5 for a detailed
comparison between theoretical hydrodynamic trends and
sults obtained from hybrid continuum–particle simulatio
in different relaxing flows, also involving mass exchange

FIG. 4. Evolution in time of various hydrodynamic variables in an insert
test on an open flow in a ‘‘box’’ with sidesLx540s, Ly5Lz59s. Particles
were inserted with zero mean velocity atx50 at a rates5LzLyr0v in and
extracted atx5Lx at the same rate. The overall density wasr050.5 and
v in51.0. ~a! Mean and local temperature and~b! local density at slices of
width Dx52; ~c! the local velocity at each slice~dotted line! and the mean
velocity ~solid line! are shown. Flat stationaryx profiles of density~r50.5!
and velocity (vx5v in51.0) are reached after several sound transversal
riods.
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V. RESULTS

Figure 5 presents the average number of single-fo
evaluations,̂ nf&, needed to perform an insertion versus t
density. The most expensive part of the insertion algorith
is the evaluation of the force. Consequently, in order to co
pare the performance of the algorithms we have usednf ,
rather than the total number of iterations,n. We note that
some of the steps discussed in Sec. III~such as line minimi-
zation! require several subiterations and son<nf . The
USHER and reference algorithms are compared in Fig. 5, i
test corresponding to insertions in a periodic box. In this k
of test ~and for a similar average error^j&,0.05! the USHER

algorithm is more than 2 times faster than the refere
scheme forr.0.5 and more than 4 times faster forr.0.8.
The reference scheme is slightly slower when insertions
constrained to a smaller region, as occurs in the open-fl
flow tests. But notably, for both open-flow and periodic b
tests, theUSHER scheme gives similar values of^nf&. This
means that theUSHER algorithm does not pay any extra co
for restricting the size of the domain of insertion. This m
be understood by looking at the distance between the in
trial and final insertion positions,Dr 5ur (0)2r (n)u, shown in
Fig. 6. For a wide range of densities the maximum value

-

FIG. 5. Average number of force evaluations needed to insert a new par
^nf&. The results correspond to insertions in a cubic periodic box of s
L510s. For all the curveŝj& indicates the maximum value of the average
errors and the error bars corresponds to the standard deviation upon
insertions. The results are for processes withDe50, starting from an initial
temperatureT0 @see Eq.~8! and Fig. 3#.

FIG. 6. Distance traveled by theUSHER algorithm between the initial trial
position and final insertion site,Dr[ur (0)2r (n)u ~on a logarithmic scale! vs
the density. The test corresponds to particle insertions in a cubic peri
box of sideL510s.
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Dr is smaller than 1.0s ~its average being typically less tha
0.5s!, indicating that most particles are inserted before
USHER iterator reaches the boundaries of the insertion
main. This feature is important for many applications. F
instance, in the hybrid particle–continuum schemes the
sertions are assigned~and restricted! to finite cells arising
from a discretization of the space,4,5 and in the water-
insertion method,3 the water molecules have to be placed
assigned protein cavities.

Figure 5 illustrates how the number of force evaluatio
varies with the maximum averaged error when using
USHER algorithm. In particular, we compare the results f
the insertion tests done at an initial temperature ofT053 ~as
in Fig. 2! and with different values of the maximum erro
averaged over 30 insertions,^j&. To decrease the error, from
0.15 to 0.03 one typically needs one more iteration. Anot
iteration leads tô j&51023. This fast~quadratic! error re-
duction is made possible by the Newton–Raphson-like
placement implemented in Eq.~6! ~see Fig. 2!. A systematic
nonvanishing value of̂j& has a direct effect on the thermo
dynamic variables, as shown in Fig. 3. For instance, a va
of ^j&.0.05 maintained during the insertion process lead
a systematic drift from theDe50 line and also has an effec
on the temperature evolution.

Additionally, Fig. 5 illustrates hoŵnf& varies with the
system’s temperature as shown in the data forT053 and
T0510. At larger temperatures it becomes much easie
insert particles oncer.0.6. The reason is that the targ
energyU0 @5ueos(r,T)# increases much faster with the tem
perature at larger densities than it does at lower densities
instance,ueos(0.4,3).21.9 andueos(0.4,10).21.2, while
for a larger densityueos(0.85,3).23.1 andueos(0.85,10)
.20.6. For the same reason, if particles were inserted w
potential energies similar to the chemical potential^U0&
5meos(r,T), the slope of̂ nf& with r would be flatter than
those data shown in Fig. 5. We also performed insertion
subcritical temperaturesT,1.3, for liquid densities and als
inside the liquid–vapor coexistence region. In these calc
tions the number of iterations needed to insert a particle
very similar to that presented in Fig. 5 forT053. However,
fluctuations ofnf were larger inside the coexistence region
a consequence of the inhomogeneity of the density field

VI. CHOOSING AN OPTIMAL PARAMETER SET

We now wish to provide a physical interpretation of t
performance of the particle insertion algorithms, based
the structure of the energy landscape. Such insight will
very useful for extensions of theUSHER parameters to the
simulation of other kinds of fluids. In fact, our experience
that, instead of a simple parametric study, it is advisable
perform an analysis of the structure of the potential ene
landscape to obtain information about the typical shapes
length scales of the low-energy regions. This kind of str
tural analysis for the Lennard-Jones~LJ! fluid considered
here not only provided important clues for the algorithm d
sign, but provided the key relationship between the optim
displacementDs and the density.
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Low-energy holes

In order to investigate the structure of the low-ener
holes we devised the following procedure. In a standard M
simulation in a periodic box and at time intervals separa
by several collision times, we seek a pointr0 with a very low
prespecified energyU0 . In particularU0 is chosen to be the
mean excess energy per particle. Initially, the search for
point r0 was done by the ‘‘basic’’ update rule of theUSHER

algorithm mentioned in Sec. III B. Oncer0 was found, the
energy landscape was probed in radial directions from
point. For each azimuthal anglecP@0,2p# and longitudinal
angleuP@0,p#, the energyU(r ) was measured for increasin
radial coordinate and a radial distance was recorded w
U(r )>U iso. The radial distance will be denoted asR(c,u).
Note thatR(c,u) determines the shape of each hole; in p
ticular, the mean radius and mean of the squared radius w
computed for each hole:

^R&u,f[
1

2p2 E0

2p

dfE
0

p

R~u,f!du, ~9!

^R2&u,f[
1

2p2 E0

2p

dfE
0

p

R2~u,f!du. ~10!

The effective shape of the hole can be estimated by the q
tity

sR[S ^R2&u,f

^R&u,f
2

21D 1/2

. ~11!

Clearly, for a spheresR50, while sR is positive for any
other elongated shape. A glance at the low- and intermedi
energy regions of a typical contour plot of the potential e
ergy ~see Fig. 1! suggests that it is possible to estimate t
characteristic length scales of the low-energy regions by
ting sR and ^R&u,f to ellipsoids. In particular, due to th
symmetry of the LJ fluid, it is enough to use asymmet
ellipsoids for this estimation. For an ellipsoid with semim
nor and semimajor axes given, respectively, byRs and Rl

5xRs , the following parametric relations fit within 1% to
the exact analytical results:

sR50.56 lnx, ~12!

^R&u,f5Rs~110.25 lnx!. ~13!

For given values ofsR and ^R&u,f , one can estimate the
eccentricityx5Rl /Rs and the semiminor axisRs using Eqs.
~12! and ~13!. The values of̂ R&u,f andsR and the estima-
tions ofRs andRl , averaged over a set of about 80 holes,
shown in Fig. 7 versus the density. To ensure that these
ues are representative of the shape of low- and intermed
energy regions~such as those shown in Fig. 1!, the averages
were obtained for a relatively wide range of~intermediate!
energy isovaluesU isoP@0,50#. The error bars determine th
maximum variation of these quantities for this range ofU iso.

In Fig. 7 we included the optimum choice for the refe
ence algorithm described in Sec. III A (Ds1 and Ds2). The
optimization of these parameters was performed indep
dently, for a wide range of densities,rP@0.4–0.92# ~see Fig.
8!. It is interesting to note thatDs1 closely follows the trend
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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obtained for the smallest effective radiusRs , while Ds2 lies
above the longest radiusRl of the intermediate energy re
gions. The interpretation of the results forDs1 seems quite
evident, meaning that the displacement of the steep
descent method when moving downhill should be about h
the minimum characteristic diameter of the low-energy v
leys. From this we readily understand why the best cho

FIG. 7. Mean radius of the low-energy regions^R&u,f @Eq. ~9!# along with
the smallestRs and largestRl characteristic lengths of the low-energy r
gions estimated by Eqs.~13! and ~12!. Squares correspond to the optimu
values of the reference schemeDs1 obtained from a parametric study. Th
dashed line (0.1r21.5) corresponds to our choice for the optimumUSHER

maximum displacementDs. The mean free path~hard-sphere estimate
0.2r21) is also shown. The inset shows the normalized variancesR given
by Eq. ~11! and the estimated mean eccentricity of the low-energy holex
5Rl /Rs .

FIG. 8. Average number of force evaluations per insertion vs the param
~a! Ds1 and~b! Ds2 of the reference scheme of Sec. III A. The evaluatio
were done by inserting particles in a cubic periodic box of sideL510s. The
range of densities at which the evaluations were made is indicated in
figure.
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for the maximum displacement of theUSHER algorithm is
Ds.Rs.0.1r21.5. Quite remarkably, the estimate of th
mean free path based on the hard-sphere fluid, 0.2r21

~shown in Fig. 7!, is close to the typical radius of the low
energy holes,̂R&u,f . This indicates that such kinetic infor
mation, if available, may be of great help for the first adju
ment of the maximum displacement of the algorithm, wh
inserting particles~or minimizing the energy! in other kinds
of fluids.

Figure 8~b! sheds light on the interpretation of the resu
for Ds2 . The optimal value ofDs2 may be taken to be any
value larger than a certain threshold, which according to F
8~b! has to exceed the largest typical longest diameter wit
the low-energy regions. This confirms that once an up
move is made, the fastest option is to completely traverse
energy valley and continue the iterations from a high-ene
site, instead of trying to pursue possible further line minim
zations. This conclusion, obtained from the referen
scheme, suggested that the best procedure was to give u
search onceU (n).U (n21). As stated in Sec. III B, this is
indeed what we have found when comparing thedirect and
indirect versions of theUSHER scheme.

VII. CONCLUSIONS

An increasing number of methods involving molecul
dynamics simulations of open systems4–7 require one to in-
sert particles at precise locations where the potential ene
is set equal to a prespecified value. Moreover, insertions n
to be done on the fly and the performance of these meth
will greatly depend on the efficiency of the insertion alg
rithm. At high densities this may seem a formidable task a
indeed this sort of insertion algorithm has scarcely been
plored in the literature. The main purpose of our paper is
show that this problem can be solved efficiently. To this e
we have devised a particle insertion procedure called
USHER algorithm. To give an example, to insert a particle
a Lennard-Jones fluid withr50.5 andT53.0, at positions
where the potential energy equals the mean specific en
of the system, the algorithm requires around eight ex
evaluations of a~single-particle! force and 25 ifr50.8.

The USHER algorithm essentially consists of a steepe
descent iteration procedure@see Eq.~5!# with a displacement
adapted to the local shape of the energy landscape. In
ticular, by using an initial displacement which depends
the value of the potential energy at the initial trial positio
12(4/U (0))1/12, the algorithm avoids in~about! one iteration
any possible overlap with a preexisting particle. We co
firmed that this feature makes it advantageous to choose
initial trial position at random, instead of using a much mo
expensive grid method to slice up the entire space in se
of the less dense region~as is done in the cavity-biase
Monte Carlo or in the grand canonical MD scheme propo
by Pettitt and co-workers1,2!. In subsequent iterations the dis
placement is given by the Newton–Raphson step meas
along the steepest-descent direction and has an upper b
of Ds, to avoid uncontrolled jumps near local minima.

As another relevant conclusion, we wish to caution t
reader about the usage of line minimization, normally imp
mented in conjunction with the steepest-descent method9,10
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We clearly observed that, in these complex landscapes,
better to use a~small enough! maximum displacement to
ensure that most iterations are made downhill; then, i
single iteration is made uphill, the best option is to restart
search from another random position, rather than perform
a line minimization. There are two reasons for this: first, li
minimization is expensive and, second, and more imp
tantly, we observed that if the maximum displacement is
timal, most of the uphill moves are due to the presence o
energy trap~i.e., a local minimum at an energy larger tha
the target!.

An important part of this work was to give a physic
interpretation of the optimal maximum displacementDs. As
stated earlier, it is essential to optimize its value for the co
plex topology of the low-energy tubes. To that end we a
lyzed the structure of the energy landscape of the Lenn
Jones fluid considered here and concluded that the widt
low-energy tubes scales as 0.1r21.5. A much more computa-
tionally expensive parametric study clearly showed that
optimal displacement follows a similar trend. This mea
that, in order to extend the insertion algorithm to other flui
it is strongly advisable to first investigate the structure~in
terms of shape and length scales! of the low-energy regions
Apart from this, our insertion protocol is based uniquely
mechanical variables~force and potential energy! readily cal-
culated in any standard MD simulation: therefore, the sa
kind of protocol can be used for inserting solvent molecu
in fluids consisting of~small! polyatomic molecules or eve
in polar fluids with nonadditive potentials. Nevertheless,
optimal algorithm design may require modifications, depe
ing on the specific molecule considered. For instance, in
ids whose molecules have rotational degrees of freedom
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insertion update step could be modified so as to first upd
the position of the center of mass of the molecule and the
use the local torque to orientate the molecule to the m
favorable position. Such an investigation will form the su
ject of future work.
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