JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 2 8 JULY 2003

USHER: An algorithm for particle insertion in dense fluids
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The insertion of solvent particles in molecular dynamics simulations of complex fluids is required

in many situations involving open systems, but this challenging task has been scarcely explored in
the literature. We propose a simple and fast algoritbsHER) that inserts the new solvent particles

at locations where the potential energy has the desired prespecified value. For instance, this value
may be set equal to the system’s excess energy per particle in such a way that the inserted particles
are energetically indistinguishable from the other particles present. During the search for the
insertion site, theusHeR algorithm uses a steepest-descent iterator with a displacement whose
magnitude is adapted to the local features of the energy landscape. The only adjustable parameter in
the algorithm is the maximum displacement, and we show that its optimal value can be extracted
from an analysis of the structure of the potential energy landscape. We present insertion tests in
periodic and nonperiodic systems filled with a Lennard-Jones fluid whose density ranges from
moderate to high values. @003 American Institute of Physics.

[DOI: 10.1063/1.1579475

I. INTRODUCTION according to the rules of MC simulation, the bias has to be
precalculated and corrected so that the scheme adheres to
Many dynamical processes of chemical, biological, anddetailed balance. Even so, recent comparisons show that if
physical interest occur in open systems where matter anthe molecules are smaller than the mean size of the cavities,
energy are exchanged with the surroundings. The main focupie GCMC method is nearly 10 times faster than grand
of attention has been ifgrand canonicalMonte Carlo algo-  canonical molecular dynami¢&CMD).2 We believe that the
rithms, which are particularly suited for the study of equilib- insertion algorithm proposed here may be used to improve
rium states. However, more recently, there has been signifthe efficiency of the GCMD schemes.
cant attention focused on molecular dynami¢siD) The acme of a particle insertion protocol for MD is one
algorithms adapted for open systems. One of the biggeshat, in just a few iterations, is able to place the new particle
challenges faced in the investigation of such phenomena byithin the required subdomain of the simulation space at a
MD simulation is the problem of the efficient insertion of site where the potential energy takes exactly the desired
solvent particles in dense liquids. Indeed, as the scope anghlue. This last condition ensures that no extra energy is
scale of MD increases, a growing variety of applications andntroduced into the system, and therefore such an insertion
methods are in need oh the flyparticle insertion algorithms  algorithm would not require thermostatting after each inser-
(see Refs. 1-5 and references thexefmong those, a par- tion. Indeed, even for moderate liquid densities, these are
ticularly relevant family of methods is hybrid schemes thatdifficult requirements to satisfy and the few insertion proto-
couple the particle domain to an outer region described byols proposed in the literaturdare far from fulfilling them.
continuum fluid dynamic&® The present method was de- For instance, Goodfellowvet al® introduce solventwa-
vised for use in such hybrid schemes, but we believe itser) molecules in the cavities of proteins to investigate their
application within molecular simulation may prove to be structural stability. Once the protein’s cavities are found, the
more widespread. insertion protocol consists of several steps that involve op-
The problem of inserting a solvent molecule in a denseerations over the whole system. Solvent molecules are intro-
fluid is commonly encountered in grand canonical Monteduced with arbitrary orientation and locations within the se-
Carlo (GCMC) methods—for instance, in Gibbs ensemblelected cavity. As a consequence, the energy of the system
calculations for phase equilibria or evaluation of the chemi+increases sharply after each solvent molecule insertion and,
cal potential. A number of techniques have been proposed t® allow its relaxation, 200 energy minimization steps of the
overcome this problentsee Refs. 6 and 7 and referenceswhole system(proteintwaten are then performed, followed
therein. For instance, cavity-biased procedures search foby a 1-ps molecular dynamics simulation. This expensive
domains within the fluid with a small local value of number insertion procedure, which involves substantial alterations of
density, as these cavities are more susceptible to accommghe microscopic dynamics, could be avoided if the solvent
date a new molecule. In doing so, a bias is introduced andparticle were initially introduced at the desired potential en-

ergy site.
¥Electronic mail: R.Delgado-Buscalioni@ucl.ac.uk Th_e work by Ji, Cagln,_and Pettitt, towards the grand
YElectronic mail: P.V.Coveney@ucl.ac.uk canonical molecular dynamics metHa@ee also Ref. 2 for
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further development and applicationss an example of an  feel at any point can be measuredfioy) = — VU(r). In this

open-system MD simulation which does takes care of thgyork, we consider a Lennard-Jones fluid whose interparticle
potential energy at the insertion site. In their method, NeWhotentiall(r) = 4(r ~ 12— r ~©) is written in the usual units of

partlclgs contribute a frgctmnal number to t.he total numb,eﬁength (the effective radius) and energythe potential well
of particles. These fractional or scaled particles must be in-

serted at positions where the potential energy is equal to thé? '
of the former(added or deletedfractional particle. As ex- The opjgctlve of thg algorithms presented below is to
plained in Ref. 1, the authors first use a grid method to slicdiNd @ Positionrg for which the potential energy equals a
the MD domain into a number of boxes that is the same as dprescribed valuél,; therefore,U(ro)=Ug. In most practi-

a little larger than the total number of particles. The mostcal situations a less stringent requirement needs to be ful-
favorable boxegwith the least number of neighborare filled: namely,(U(rq))=U,, where brackets denote an av-
selected as candidates to add the new particle. Then the neavage over a certaitsmal) number of insertions.

solvent candidates are placed within each of these boxes and Even for a simple system such as a Lennard-Jones fluid,
200 possible molecular orientations of these new solvenghe structure of the energy landscape is very complex, with
candidates are computed. For each box, the orientation thggrge energy gradients and complicated energy isosurface

yields the pote_ntial energy closest to the desired value i§hapes. A typical energy distribution along the whole space
chosen and a first steepest descent procedu@{0) steps spreads over several orders of magnitude, but for the typical

follows. If this does not lead to any site with the desired . . S
. . . (moderatg temperatures usually considered in applications,
insertion energy, they finally perform a much larger steepest:

descent procedure with at least 100 steps on the most favoutlhe particles need to be placed at positions with extremely

able box. As the authors acknowledge, this numerically ex\0W energies compared with the range of the energy distri-

pensive protocol still yields numerical errors that can disturd?ution. The result is that the mean specific excess energy
the systent. resulting from the equation of state,,— Ugodp,T)/N, is a

Our main concern is the insertion of solvent particles invery low energy compared with the typical energies found at
the framework of a hybridparticle—continuumscheme. In  any arbitrary point of the space. As the fluid particle density
recent work we proposed a hybrid scheme that is able to de#tcreases, the situation worsens, reflecting the fact that par-
not only with momentum but also with mass and energticles tend to reside within deep potential wells. The relation
exchange between the continu@) and the particle regions  of the chemical potentigk with densityp shows clear evi-
(P).S.In particular_, particles need to be insgrted in the overgence of this fact. At moderate densities the valueuds
lappingC— P regions where th€ fluxes are imposed on the ¢ ,se 1o but above a certain density,steeply increases

P domain. In a real liquidwith interacting potential energy aboveu,,., meaning that the typical energy needed to insert
mass and energy exchanges are strongly coupled and we . .
showed that, in order to balance the energy flux, the nevd particle begomes much larger than the mean potential en-
particles have to be inserted at positions where the potenti&9Y Per particle. _ _ N
energy equals the value prescribed by the continuum domain. Therefore, if one needs to insert particles at positions
In that work’ we used a particle insertion algorithfoalled ~ With energies close to the mean excess energy per particle,
USHER) which is able to tackle this task in a rather efficient Ueos, ON€ Needs to find extremely-low-energy sites, particu-
way (see Ref. 5 for a brief descriptipnFurther research has larly in dense systems. The main problem to be faced is that
led to an enhanced version of theHER algorithm. Here we the energy landscape presents many energy “holes” whose
shall describe this new version of tlusHER protocol and, local minima range from intermediate to large energy values.

for the sake of consistency, we shall briefly review the OneHere, we define a “hole” as a region of space enclosed by an

presented in Ref. 5. . isosurface of energy in such a way tfaU(r)-n>0 at the
The rest of the article proceeds as follows: We first for-pqe surface, wher is the (outward normal surface vector.
mulate the root-finding problem in Sec. Il. In Sec. lll we Usually, these holes act as traps for widely used energy-

describe a _reference scheme against which we compare trﬂsﬁnimization algorithms based on standard steepest-descent
USHERalgorithm and then thesHER protocol. Insertion tests

are described in Sec. IV, and the results are discussed in Seor. conjugate-gradient metholss a matter of fact, we soon

V. In Sec. VI we present an analysis of the potential energ Iscovered that it was very inefficient to move downhill over
landscape that proves to be very useful for the optimizatiori"® Potential energy surface by means of any of the standard
of the algorithm’s parameters. Finally, conclusions and direcYersions of the steepest-descent method used in molecular

tions for future research on insertion algorithms are given irsimulation (see, for instance, Ref.)9The purpose of the
Sec. VII. present study is to present a steepest-descent-like iterative

procedure that can avoid the intermediate-energy holes. To
this end, theusHeRr algorithm does not rely on line minimi-
zation along the steepest-descent directfimyt instead on a

We consider a set dfl particles inside a box of volume displacement size which is adapted on the fly, according to
V which interacts via pair potentialg(r). At any instant the the local topology of the potential energy landscape. Another
potential energy can be defined at any pairity evaluating important advantage is the facile implementation of the
U(r)=2=N oW(|r—r;|). The force that a test particle would USHER code.

Il. THE INSERTION PROBLEM
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IIl. DESCRIPTION OF THE ALGORITHMS 49

lem of particle insertion and the common features of the
algorithms concerned.

In any insertion procedure the first step is to place the
new particle at a starting positiad®. In all the tests pre-
sented in Sec. IV, we chosé” at random. We also tried to
selectr(®) according to a cavity-biased procedyes in Ref.

1). As explained in Sec. |, this procedure incurs a number of

operations oO(N) prior to the insertion algorithm itself and

we found that, when using thesHeR algorithm presented .
below, it did not reduce the total number of iterations with 1 energy traps
respect to thémuch cheaperrandom choice. ] ]@ As

During successive iterations, the iterator’s position is -1.75 P B e
moved according to the update rule, which, in general, may

be a function of the mechanical quantities at the previous
iteration, r("* = r(“+1)(r(”),u(”),f(“))_ The search termi- FIG. 1. (a) Cut along thex=0 plane of the contour plot of the potential

nates if the new positiom(””) is a site with the desired €neray landscape for energies lower than 100, showing the typical low-
This is d ined by the followi diti energy tubelike structuresb) Close-up of the leftmost region, indicating
energy. IS IS determine y the following condition with thicker solid lines a possible targeted energyat —4. Some bends

and saddle points of the energy surface and some energy(lvapsminima
(1) with energy larger than the targedre indicated with solid and dashed ar-

rows, respectively. The snapshot corresponds to a LJ fluid pvith.6 and

T=2.5 inside a 3D cubic box of side=100. The size of the maximum
whereé . is a predetermined parameter—namely, the half-displacements used by theusHer algorithm for this density is also indi-
width of the interval of the accepted energies around-ated-

Uo—and¢ is defined as the relative difference of the poten-

tial energyU ™" at the (1+1) iteration with respect to the g, (with respect to the rescaled potential engngmtil

desired valueJo. o , the confinement is attained. Then the desired location lies
Finally, once the new particle is correctly inserted, thewithin the segmentsr™M=r("*D—_r™ and can be deter-

force that it exerts on its neighbors is calculated and its Vetined by means of standard one-dimensiofD) root-

locity is also assigned. This velocity is drawn from a Max- finding algorithms(such as the Newton—Raphson or bisec-
wellian distribution with the desired temperatufeand the tion methods

desired mean velocityv):

U(n+l)_UO

€< g, with £ V= =
|Uol

The most problematic iteration corresponds to the uphill
3/2 —m(v—{(Vv))? move, and it merits some discussion. To illustrate the
P(V):(zwka> ;{W) (2 UM D>yM scenario we refer to the energy landscape
shown in Fig. 1. Even for moderate densiti€sg. 1 corre-
While the algorithm is guiding a new particle to a correct sponds tg=0.6), the low-energy regions conform to a com-
location, the positions of all the other particles remain fro-plex tubelike structure. The insertion algorithm will have to
zen. This means that one insertion iteration only involves theisher the new particle into these energy tubes before arriving
evaluation of the force on a single parti¢teat is, the force at a correct location. An uphill iteration may arise when the
exerted by all the particles at the sit@). iterator faces either of two features of the energy landscape:
The starting position determines whether the followingintermediate-energy holes or sharp befiidsluding saddle
iterations will have to be downhilif U(®>U,) or uphill (if points. Note that both kinds of features induce completely
U®<uU,). A simple way to unify both cases in a single different decisions. The best thing to do when encountering
scheme is to rescale the potential energy ldgr) an energy trap is to give up the search and restart from an-
—sgnu(r), where sgee(UQ—Ug)/(JU@—U,|). By doing so,  other initial positionr(%). By contrast, if a bend in the energy
the forcesf=—VU are also redefined and, in particular, alandscape leads to a low-energy valley, it may be worthwhile
case with sgr—1 then implies that the redefined forces to use an update rule that can efficiently deflect the iterator’s
point uphill of the(unscaled potential energy throughout the trajectory. Unfortunately, once an uphill move occurs,
entire course of that particular particle insertion. In the fol-it is not possible to distinguish between these two features
lowing presentation we shall assume that the energy andithin only one iteration. On the other hand, the number of
force field are already rescaled as &i{n) and sgrf, so we  uphill iterations rapidly increases as the displacement
will not explicitly include “sgn” in the equations. [r(*+D—r(M| js made larger than a specified maximum
During the iterative process, the algorithm will encoun-threshold. In fact, an important issue for the algorithm design
ter three different situations which may require separatés first to estimate this threshold and only then to determine
treatment(for instance, different update rulesVe denote the best decision to take upon an uphill magee Sec. V)l
these situations as followsiownhill move UM D<u®, It is also convenient to introduce a restart condition in
uphill move UM D>UM  and confinement U"Y<U, order to avoid any possible stagnation of the algorithm
<UWM. In an optimal insertion one expects to keep goingaround energy holes. In particular,rif>n,,,,, the search is
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restarted from another initial positiorf?). Particularly at been confined in the segmefit™=r"*Y—r(M it is ex-
high densitieqtypically above 0.75 the overall number of pressed aso=r""V+x,6r™, with A, a real number in
iterations is sensitive to,.,. A very large value ofn,.,  (0,2). To find Ay, the reference scheme uses a 1D root-
corresponds to many unsuccessful and time-consuming iteréinding algorithm which combines the Newton—Raphson
tions, while a value fon,,,, that is too small prevents most method with a robust bisection method to ensure confine-
of the potentially successful trials from terminating successment in case of a failure of the Newton—Raphson stepe,
fully. We found that the best compromise between these twdor instance, tof(M~0). It typically took less than three
extremes is to makey,,,~0.8n), where(n) is the number iterations to calculate the value of. The optimum choice

of iterations averaged over a certain numbeR0) of inser-  for the parameterds; andAs, is presented in Sec. VI.

tions. The value oh,,,, depends on the density. It may be
determined from an initial test run or, alternatively, reas-

signed on the fly according to the value (@f) determined
during the simulation. The basic idea of thesHERinsertion algorithm is to use

In the remainder of this section we first define a “refer- an update rule to move downhill that can adapt the iterator’s

ence” scheme against which we can then discuss and conglisplacement according to the local topology of the low-
pare theusHER algorithm in more detail. energy landscape. This is reflected in the update rule

B. USHER scheme

)
A. Reference scheme p(n+1)—p(n) 4 ] S5sM. (5)
f

In order to better understand the behavior of tiseiER
algorithm it is helpful to compare its performance with a Equation(5) is essentially a steepest-descent scheme with a
reference scheme based on a combination of well-establishétisplacementss(™ that depends on the iterator’s position.
methods widely used in the literature for root finding and The success of the method resides in a judicious choice of
energy minimization. While moving downhill, the reference 5". Optimal performance was obtained using the follow-
scheme uses a basic steepest-descent step with a fixed dRg expression forss!™, which depends on both the local

placementAs;. The update rule is potential energy)™ and forcef(™:
fF(M ASovIp- if l-‘|(n)>uovlp-
(Nt —p(n) 4 WASJ" (3) S = U(n)_UO (6)
min| As, ———/, if UM <Uyip-
where, according to standard notatiéH? is the modulus of f

£, The best way to illustrate how the adaptive displacement

If an uphill move is made, the reference scheme will firstof Eq. (6) works is to describe how thesHER scheme per-
try to deflect the iterator’s trajectory in order to adapt itself toforms one insertion. As long as the starting positiéh is
a possible bend in the potential energy surface. By construchosen at random, there is a large chance of overlap with a
tion of the update rule, Eq(3), the potential energy de- preexisting particle, leading to a very large valueWw?.
creases locally at™ in the directionsrM=r("1—rM  The displacements,,, quoted in the first line of E¢6) can
Therefore, ifU("*Y>U(", there must exists a locatian,  be constructed to remove the overlagtypically) one itera-
where U(r ) =min{U(r,)[ry=r™+x&r™M}. The reference tion. For this reasonlJ, is chosen to be a very large en-
scheme finds the positian, by means of a line minimization ergy representing an overlap position—s&lyj,~ 104 As
of the potential energy along the segmént” (see Ref. 10 the hard-core part of the interparticle potential goes like
for detailg. The new position is then recalculated by a steep4r —12 the distance from a site with enerdyf">U,,, to
est descent step starting frorg, and with a displacement the center of the overlapped particle l's=(4/U(“))E/12.

As;: Therefore, by choosing\sy,=r,—(4UM)¥12 we can
f guarantee that the next iterator’s positiof ™) will be

r=r + f—mAsz. (4) moved a distance, away from the center of the overlapped
m particle and, by virtue of Eq(5), in a direction of lower

The line minimization itself requires an inner iterative pro- potential energy. The value af, should be close to or
cedure(see Ref. 10 In view of the narrowness of the po- slightly smaller than a characteristic contact distance be-
tential energy tubes, we used no more than three iteratiortsveen particlege.g., the distance given by the maximum in
for the estimation of ,,. Better estimates af,,, do not im-  the radial distribution function For the pure Lennard-Jones
prove the efficiency, but instead lead to a larger number ofluid under consideration here, we have useg=0.9 (in
force evaluations in the overall scheme. When a local miniunits of o).

mum of potential energy is found, the iterator’s position will Once any possible initial overlap is sorted oud (
bounce back, moving subsequently upwards and downwardsU,,,;), the second line of E((6) is designed to drive the

in energy as it hits the walls of the energy hole. To avoid thisnew particle downhill in energy, towards the target valle
situation, after severdtypically threg consecutive uphill it- Here resides the main difference with respect to the reference
erations the scheme determines that it has been trapped irseheme. At large energies, the typical slope of the potential
local energy minimum and consequently restarts the searatnergy is very largef(™> 1), meaning that the energy drop
from another initial positiorr®). Finally, once the root has along the steepest-descent direction is governed by the linear
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10* T e T cerned the optimal strategy to deploy for uphill iterations.
.o e We compared two different strategies. The first one, which
we shall callindirect USHER performs a line minimizatiofl
of the energy along the directiafr (W =r"*1—r( simijlar
to that described in Sec. Ill A and E@). The second alter-
native, calleddirect USHER gives up the initial search and
restarts a new one from another random positi@honce an
uphill move is encountered. Interestingly, the insertion tests
(see Sec. IYclearly show that théirect USHERis about two
T o Lt vusum 16--"-" times faster than théndirect version. This indicates that
10 most of the uphill moves encountered using the update rule
|§|(n) of Egs. (5) and (6) are due to energy holes and therefore
suggests that Eq6) enables th&sHERalgorithm to properly
FIG. 2. Absolute‘valu_e of t‘he error at time- 1 iteration plotted_ againstits  deflect its trajectory at most of the bends of the |0w_energy
value at the previous iteratiam The data correspond to insertions made by tubes encountered. A less restrictive version of direct

the usHER algorithm in a periodic boxX. =100 and for 0.6<p<0.75. As . S . . . .
illustrated by the dashed lines, the convergence is lineat¥e®(1) and UsHER allows a line minimization iteration only if the uphill

[«
||I'I
.

A
T T
\

s 035y

4 2

10 10

quadratic foré<O(1). move is done near enough to the tarffer instance, if|£|
=<O(1)]. This alternative gives slightly better results at large
densities.

term of the Taylor expansion in the displacement) In the insertion tests presented below in Sec. IV the ref-

=f(M 55+ 0(5s?). The second line of Eq6) makes use of €rence scheme is compared with the most efficient version of
this fact and taked U= U™ — U, for extracting a displace- the USHER algorithm—i.e., with thedirect USHER To avoid
ment adapted to thémaximum) local energy gradients  any possible confusion, in the remainder of the paper we
=AU/f(™. Note that at large energigs(™ —U,~U™, so  shall simply call this thessHER algorithm.

after one iteration one expects the energy to decreasat in

leasy a fraction of U™, implying linear convergence. The

local curvature of the potential energy landscape becomd¥- INSERTION TESTS

dominant when approaching a local minimufi"{~0) and The insertion algorithms presented in Sec. Il were
in this case Eq(6) limits the displacement to a maximum eyajuated in two kinds of systems: with and without periodic
value As. The maximum displacement is the only variable yondary conditions. We stress that no thermostat was used
parameter in the algorithm and, as discussed in Sec. VI, it any of the insertion tests. This ensures that the temperature
optimal value is about the width of the low-energy tubes ofsf the system does not spuriously increase due to the dissi-
the potential energy landscafeee Fig. 1 pation of possible additional internal energy introduced by

At low energies, as the iterator approaches the energyarticle insertions in nonappropriatéigher-energy loca-
target Uy, the displacemenss=(U™—Uy)/f™ behaves tions.

like a Newton—Raphson step made along the steepest- | order to investigate the functioning of the insertion
descent direction. Due to this feature, the convergence of th&lgorithm we shall drive the system through a specific ther-
USHERalgorithm increases notably near the target. In partic”modynamic procestsee below and compare the values of
lar, this kind of displacement enables the erfdo decrease the thermodynamic variables computed during the simula-
quadratically onc&<O(1). This fact is illustrated in Fig. 2 tjons with those arising from thermodynamics. The system
by plotting the absolute value of the erfdt"** againstits  containsN particles within a volum& and its total energy is
value at the previous iteratidg| (™. As explained above, for E=3NT/2+U(rVy, the energy per particle beirg=E/N.

&> 0(121 the ?'gorltmnl converges 2I|nearly withe] ™Y The thermodynamic processes will be specified by the varia-
=0.4¢"], while [£""H~0.35¢™)? once £<O(1). N tion of the number of particlesyN (or densityAp), and the
the same way, it may be possible to further increase th%hange of energy per particlde. We now use standard

convergence rate by implementing a displacement bas&@ermodynamics to derive the changes in the system’s other
upon higher-order methods such as Halley’s or Bailey's,griaples.

schemé (for such purposes one would need to calculate the  The variation of energy per particle upon insertion of
Hessian matrix and project it onto the steepest-descent diregN particles into the system se=AE/N—eAN/N. For a

tion). system having no contact with a thermostat or a manostat, as

For the sake of completeness, we also describe here thg; the one considered here, the variation of the total energy
older version of thessHERdisplacement used in Ref. 5. This upon insertion of AN particles is exactlyAE={e')AN,

earlier version used a similar displacement rule @) \yhere (') is the energy of the inserted particle averaged

>U,yp to that quoted in Eq(6), but for lower energies it gyer AN insertions:AN(e’)=32Ne/ (€ being the energy

used 8sW =min(As,3 f WAt) where the optimal choice for of theith inserted particle Thus,

the parameteAt ranged within(0.05,0.13. This scheme is , ,

around two times slower than the improvegHER sheme Ae=((e")~€)AN/N=((e")—€)Ap/p. @)

discussed here. The variation of temperature can now be calculated from the
One of the important issues of the algorithm design conequation
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Therefore, for given initial values of the system’s density ;E‘ -
and temperaturep(,Ty), the time evolution of the thermo-

L L L L -

Excess energy per particle [ €]
: Il\) )
n

dynamic variables is determined by ttepecified temporal <&>=0.001 J 85 i
variation of densityp/dt. The rate of temperature variation, s2s|- © - 535 (d)
obtained from Eq(8), enables us to calculate the tempera- 27 bttt 8 b 'l
ture at each instant in the process. The pressure and exce ple”] plo” |

energy per particle can then be obtained from equations of

state[ P=Peodp, T) andu=ugodp,T)]. FIG. 3. (a) Total energy per particles, (b) pressureP, (c) temperature, and

h d bel id d h d d) excess energy per particlevs the density, obtained in a particle inser-
In the tests presented below we considered a thermo jon test made in a cubic periodic box with side length 100. The density

namic process in which the density increases at constant Sp@creases linearly with time at a rate @p/dt=0.01. The insertions were
cific energyAe=0. According to Eq(7), during the process made to guarantee a process wite=0 (see text The dashed lines corre-
the average energy of the inserted parti«ﬁlé}sis set equa| to spond_ to the thermodynamic variables extracted from (By. using the
ie . L . equations of state fane,dp,T) andPgod p,T).

the mean specific energy of the systeanThis condition is
similar to that required for the energy balance conditions in
the hybrid (particle—continuumh scheme of Delgado-
Buscalioni and Coveneyln fact, the process witthe=0
can also be sought as a test for energy conservation in th
hybrid scheme.

The thermodynamic relations, such as EBj, are mean-
ingful at least under condition of local equilibrium. This im- B |nsertions in an open flow
poses a limit on the rate of particle insertion, because within , , ) .
each subdomain of the system the insertions of particles need 1€ second test was done in open fluid flows—i.e., in

to be sufficiently well spaced out in time for the system to beSyStems with open boundary conditions. We considered a

able to recover the equilibrium distribution. Consider a smalSystem with densit\/V within a cuboidal domain of sides
subvolume of siza,, large enough to be representative of thelx=400 andLy=L,=90. The system is periodic in the
system’s distribution function. For instance,may be the &nd z directions and has open boundariesxatO and x
distance at which the radial distribution function converges= Lx- Particles were inserted with potential energies close to
to one(~30). To be sure that the system is able to restore itd"€ SPecific excess energl,/N and with velocities drawn
equilibrium distribution, the rate of particle insertion in each from & Maxwellian distribution at a temperatufg, which

of these subdomaina 3(dp/4t), has to be smaller than the Was. fixed th'roughout' the simulation. Insertions were done
inverse of the collision time, which for a simple fluid can be Within @ region of widthAx aroundx=0 and at a rate
estimated using the hard-sphere approximation hy Apvm_, wherev;, is a parameter that determines the flow
=0.14 T Y% o2m/ )2 (see, e.g., Ref. 23In our calcu- velocity normal tp the surface vector of the open bou_ndary
lations we useddp/dt)<0.01, so the characteristic insertion (N) @dA=L,L; is the area of the boundary. At the right-
time was~3, much larger than the collision time=0.3. hand boundqry, particles are extractgd at the same rate, so the
overall density of the system remains constant throughout
the simulationN/V. In order to couple the particle region to
the outer pressure we used our hybrid particle—continuum
scheme at th&=0 andx=L, surfaces.

The first set of tests were performed in systems con- Note that in this case particle insertion in thélirection
tained within a cubic periodic box of side lengtihs is restricted to a regioAx, which is set toAx=2.00 (the
=1{7,8,1Q 0. The initial density was set to a moderate valuevolume available to insert particles beidgkL,L,). To en-
p(t=0)=0.4 and was increased unpi=1.0. The maximum sure that insertions are done in this region two different strat-
rate of density increase used wgs/ 9t~0.01. The tempera- egies were implemented. The first one is a simple reflection
ture, pressure, excess energy per particlelJ/N, and total  of the positionr ("™ 1) back to the insertion domain when the
energy per particleg, are plotted in Fig. 3 versus the density. USHER iterator crosses thg=0 andx=AXx boundaries. In
Results correspond to particle insertions in a box with the second implementation we imposed an artificial sharp
=100 at a constant density increase ratedplf 9t=0.01.  potential well atx=0 andx= Ax, which acts only during the
Particles were inserted at sites where the potential energgvaluation of the forces in the iteration procedure: i.e., it was
equals the specific excess energy of the systdgy U/N not included in the evaluation df(r("*Y). Both alterna-
=u, and with velocities drawn from a Maxwellian distribu- tives worked equally well and resulted in a similar number of
tion at the instantaneous systentlénetic) temperaturelT.  required iterations.

The dashed lines in Fig. 3 correspond to the thermodynamic
}gariables obtained from the equation of state according to the
process of Eq(8).

A. Insertions in a periodic box
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FIG. 5. Average number of force evaluations needed to insert a new particle,
0 (n¢). The results correspond to insertions in a cubic periodic box of side
L=10c. For all the curvegé) indicates the maximum value of the averaged
errors and the error bars corresponds to the standard deviation upon 100
3 insertions. The results are for processes uith=0, starting from an initial
5 temperaturel, [see Eq(8) and Fig. 3.

V. RESULTS

Figure 5 presents the average number of single-force
evaluations{n¢), needed to perform an insertion versus the

velocity [ 6/1]
i

o
W

density. The most expensive part of the insertion algorithms

is the evaluation of the force. Consequently, in order to com-
0 10 20 30 40 50 60 pare the performance of the algorithms we have used
time [7] rather than the total number of iteratiorms, We note that

FIG. 4. Evolution in time of various h - . . ._some of the steps discussed in Sec(3lich as line minimi-
4. ydrodynamic variables in an insertion . . . .
test on an open flow in a “box” with sidels,= 400, L,=L,=90. Particles zation require several subiterations and se=n¢. The
were inserted with zero mean velocityat 0 at a rates=L,L,pov;, and ~ USHERand reference algorithms are compared in Fig. 5, in a
extracted aix=L, at the same rate. The overall density was=0.5 and  test corresponding to insertions in a periodic box. In this kind
vi_n=l.0. (8 Mean and local temperature aﬂ_ub local dfensity at slices of of test(and for a similar average err()f><0.05) the USHER
width Ax=2; (c) the local velocity at each slicglotted ling and the mean . . .
velocity (solid line) are shown. Flat stationasyprofiles of density(p=0.5) algorithm is more than 2 times faster than the reference
and velocity ¢,=v;,=1.0) are reached after several sound transversal pescheme forp>0.5 and more than 4 times faster fer-0.8.
riods. The reference scheme is slightly slower when insertions are
constrained to a smaller region, as occurs in the open-fluid-
flow tests. But notably, for both open-flow and periodic box
tests, theUsHER scheme gives similar values ¢ofi;). This
The simulation starts from an initial state with zero meanmeans that the/sHER algorithm does not pay any extra cost
velocity and constant density profile along thdirection. As for restricting the size of the domain of insertion. This may
time goes by, the particle insertions concentrated in the rebe understood by looking at the distance between the initial
gion aroundx=0 lead to the production of a density wave trial and final insertion positionsyr = [r(®—r{M|  shown in
that expands at the sound velocity fer-0. This density Fig. 6. For a wide range of densities the maximum value of
wave transports momentum along thdirection and, after a
transient time, the density profile converges to the flat sta- —
tionary density profile; throughout the simulation cell, the o
mean-flow velocity in the-direction tends to the valug,, . —
The hydrodynamic and thermodynamic variables were e
measured over slices of widthx along thex direction. Fig- S
ure 4 shows the local density at some of the leftmost slices \_/i 0.1
Il
—
<

T T

x<L,/2 together with the meafslice averagedvelocity and
total temperature of the system. The oscillatory behavior of
the local density is a desired feature of these tests as it en- .
ables us to determine the dependence of the number of itera- 0.5 0.6 0.7 0.8 0.9 1
tions, n, on the density for a range of values pfin each plo]

simulation. We refer to our previous papdor a detailed . 6. Dist raveled by thes orithm bet the initial trial
comparison between theoretical hydrodynamic trends and ré-c: & Distance traveled by thesrer algorithm between the initial tria
position and final insertion sitey\r=|r®—r{| (on a logarithmic scajevs

$U|t$ obtained fr_om hybrid Con_tinuur_n—partide simulationsine density. The test corresponds to particle insertions in a cubic periodic
in different relaxing flows, also involving mass exchange. box of sidelL =100

1 " 1 s 1 i 1
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Ar is smaller than 1.8 (its average being typically less than Low-energy holes
0.50), indicating that most particles are inserted before the

terat hes the boundari fthe i iion d In order to investigate the structure of the low-energy
USHER 1terator reaches the boundaries of the INSertion doy,, a5 e devised the following procedure. In a standard MD
main. This feature is important for many applications. For

inst in the hvbrid ticl i h the | simulation in a periodic box and at time intervals separated
mst{:mce, n the y r(';h zar 'Cte._font'mfj.u.rtn st ”eme§ the Inby several collision times, we seek a paiptwith a very low
sertions are assignednd restrictellto finite cells arising prespecified energy,. In particularU, is chosen to be the

from t'a d'SC{Et'éiﬂon OI the ;spaft,é, 1nd |r; tge v;/atez_ mean excess energy per particle. Initially, the search for the
Insertion method,he water molecules have 1o be placed in point ro was done by the “basic” update rule of thesHER

asmg_ned p;o_tlflntcatvmehs. th ber of f luati algorithm mentioned in Sec. Il B. Onag was found, the
_rigure S tflustrates how the number of force evalua Ionsenergy landscape was probed in radial directions from this
varies with the maximum averaged error when using th

. . oint. For each azimuthal angles[0,27] and longitudinal
USHER algorithm. In particular, we compare the results for

. 4 s anglef<[0,7], the energyd(r) was measured for increasing
Fhe |.nsert|on test.s do_ne atan initial temperatur§@£3 (as radial coordinate and a radial distance was recorded when
in Fig. 2) and with different values of the maximum error

: . U(r)=U,s,. The radial distance will be denoted R, ).
averaged over 30 insertion&). To decrease the error, from N(()té thaltSi%(w, 9) determines the shape of each hgllé; i?w par-

9'15 T[O 0.03 one typlcally_/sneed_s one more |te_rat|on. Anothe[icular, the mean radius and mean of the squared radius were
iteration leads tq ¢)=10°. This fast(quadrati¢ error re- computed for each hole:

duction is made possible by the Newton—Raphson-like dis-

placement implemented in E¢) (see Fig. 2 A systematic 1 (2= m

nonvanishing value of¢) has a direct effect on the thermo- (R)y, 6= —zf d¢f R(0,¢)d0, 9
dynamic variables, as shown in Fig. 3. For instance, a value 2m* 1o 0

of (§=0.05 maintained during the insertion process leads to 1 (or -

a systematic drift from thde=0 line and also has an effect (R?) 0.6= "> dq&f R%(6,¢)dé. (10
on the temperature evolution. 2m=Jo 0

Additionally, Fig. 5 illustrates howny) varies with the  The effective shape of the hole can be estimated by the quan-
system’s temperature as shown in the dataTgr3 and ity

To=10. At larger temperatures it becomes much easier to 1
insert particles once>0.6. The reason is that the target - (R2>9,¢
energyUq [ =Ugod p,T)] increases much faster with the tem- TR= (R)2 -1
perature at larger densities than it does at lower densities. For o
instance,Uqod 0.4,3)=— 1.9 andug,d0.4,10=—1.2, while  Clearly, for a sphererg=0, while o is positive for any

for a larger densityu,,d0.85,3)—3.1 and ug.{0.85,10) other elongated shape. A glance at the low- and intermediate-
~ —0.6. For the same reason, if particles were inserted wit!¢nergy regions of a typical contour plot of the potential en-
potential energies similar to the chemical potentibl,)  €rgy (see Fig. 1 suggests that it is possible to estimate the
= weodp, T), the slope of(n;) with p would be flatter than ~characteristic length scales of the low-energy regions by fit-
those data shown in Fig. 5. We also performed insertions ding or and(R); 4 to ellipsoids. In particular, due to the
subcritical temperatureb< 1.3, for liquid densities and also symmetry of the LJ fluid, it is enough to use asymmetric
inside the liquid—vapor coexistence region. In these calculaellipsoids for this estimation. For an ellipsoid with semimi-
tions the number of iterations needed to insert a particle waBor and semimajor axes given, respectively, Ryand R,

(11

very similar to that presented in Fig. 5 fd,=3. However, =xRs, the following parametric relations fit within 1% to

fluctuations ofn; were larger inside the coexistence region asthe exact analytical results:

a consequence of the inhomogeneity of the density field. or=0.56Iny, (12)
(R)y.4=Ry(1+0.25Iny). (13)

VI. CHOOSING AN OPTIMAL PARAMETER SET For given values ofog and(R),,, One can estimate the

eccentricityy =R, /R and the semiminor axiRg using Egs.

We now wish to provide a physical interpretation of the (12) and(13). The values ofR), 4 andog and the estima-
performance of the particle insertion algorithms, based ortions of Rg andR,, averaged over a set of about 80 holes, are
the structure of the energy landscape. Such insight will beshown in Fig. 7 versus the density. To ensure that these val-
very useful for extensions of thesHER parameters to the ues are representative of the shape of low- and intermediate-
simulation of other kinds of fluids. In fact, our experience isenergy regiongsuch as those shown in Fig), the averages
that, instead of a simple parametric study, it is advisable tavere obtained for a relatively wide range @htermediate
perform an analysis of the structure of the potential energenergy isovaluet) s, [0,50]. The error bars determine the
landscape to obtain information about the typical shapes anehaximum variation of these quantities for this rangeJgy.
length scales of the low-energy regions. This kind of struc-  In Fig. 7 we included the optimum choice for the refer-
tural analysis for the Lennard-JonélsJ) fluid considered ence algorithm described in Sec. llIA§; andAs,). The
here not only provided important clues for the algorithm de-optimization of these parameters was performed indepen-
sign, but provided the key relationship between the optimatently, for a wide range of densitiese[0.4—-0.93 (see Fig.
displacementAs and the density. 8). It is interesting to note thals,; closely follows the trend
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FIG. 7. Mean radius of the low-energy regiof®), , [Eq. (9)] along with
the smallesiRg and largesiR, characteristic lengths of the low-energy re-
gions estimated by Eq$13) and(12). Squares correspond to the optimum
values of the reference schems; obtained from a parametric study. The
dashed line (04~ %9 corresponds to our choice for the optimuwsHerR
maximum displacemenfAs. The mean free patlthard-sphere estimate
0.2p71) is also shown. The inset shows the normalized varianggiven
by Eq.(11) and the estimated mean eccentricity of the low-energy hples
= R| /RS .

obtained for the smallest effective radiRg, while As, lies
above the longest radiug, of the intermediate energy re-
gions. The interpretation of the results fas; seems quite

R. Delgado-Buscalioni and P. V. Coveney

for the maximum displacement of thesHER algorithm is
As=R¢=0.1p" 1% Quite remarkably, the estimate of the
mean free path based on the hard-sphere fluidp @.2
(shown in Fig. 7, is close to the typical radius of the low-
energy holes(R), ,. This indicates that such kinetic infor-
mation, if available, may be of great help for the first adjust-
ment of the maximum displacement of the algorithm, when
inserting particlegor minimizing the energyin other kinds

of fluids.

Figure 8b) sheds light on the interpretation of the result
for As,. The optimal value ofAs, may be taken to be any
value larger than a certain threshold, which according to Fig.
8(b) has to exceed the largest typical longest diameter within
the low-energy regions. This confirms that once an uphill
move is made, the fastest option is to completely traverse the
energy valley and continue the iterations from a high-energy
site, instead of trying to pursue possible further line minimi-
zations. This conclusion, obtained from the reference
scheme, suggested that the best procedure was to give up the
search oncdJ(M>U(M"1) As stated in Sec. lllB, this is
indeed what we have found when comparing tirect and
indirect versions of theJSHER scheme.

VII. CONCLUSIONS

An increasing number of methods involving molecular
dynamics simulations of open systémSrequire one to in-
sert particles at precise locations where the potential energy
is set equal to a prespecified value. Moreover, insertions need
to be done on the fly and the performance of these methods
will greatly depend on the efficiency of the insertion algo-
rithm. At high densities this may seem a formidable task and

evident, meaning that the displacement of the steepesi;yeeq this sort of insertion algorithm has scarcely been ex-
descent method when moving downhill should be about hal[)lored in the literature. The main purpose of our paper is to

the minimum characteristic diameter of the low-energy val-

show that this problem can be solved efficiently. To this end

leys. From this we readily understand why the best choicg e nave devised a particle insertion procedure called the

300 T I 1 I T I ) I T
250
“3 200
£ 15
100
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P P BT P P I

~
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2 3
A52

USHER algorithm. To give an example, to insert a particle in

a Lennard-Jones fluid with=0.5 andT=3.0, at positions
where the potential energy equals the mean specific energy
of the system, the algorithm requires around eight extra
evaluations of gsingle-particle force and 25 ifp=0.8.

The USHER algorithm essentially consists of a steepest-
descent iteration procedufsee Eq(5)] with a displacement
adapted to the local shape of the energy landscape. In par-
ticular, by using an initial displacement which depends on
the value of the potential energy at the initial trial position,
1— (4/U©)12 the algorithm avoids ilaboul one iteration
any possible overlap with a preexisting particle. We con-
firmed that this feature makes it advantageous to choose the
initial trial position at random, instead of using a much more
expensive grid method to slice up the entire space in search
of the less dense regiofas is done in the cavity-biased
Monte Carlo or in the grand canonical MD scheme proposed
by Pettitt and co-workets). In subsequent iterations the dis-
placement is given by the Newton—Raphson step measured
along the steepest-descent direction and has an upper bound

FIG. 8. Average number of force evaluations per insertion vs the parametergf As, to avoid uncontrolled jumps near local minima.

(a) As; and(b) As, of the reference scheme of Sec. Ill A. The evaluations

were done by inserting particles in a cubic periodic box of &ig€l0c. The

As another relevant conclusion, we wish to caution the

range of densities at which the evaluations were made is indicated in eadif@der about the usage of line minimization, normally imple-

figure.

mented in conjunction with the steepest-descent metfidd.
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We clearly observed that, in these complex landscapes, it imsertion update step could be modified so as to first update

better to use gsmall enough maximum displacement to the position of the center of mass of the molecule and then to

ensure that most iterations are made downhill; then, if aise the local torque to orientate the molecule to the most

single iteration is made uphill, the best option is to restart thdavorable position. Such an investigation will form the sub-

search from another random position, rather than performingect of future work.

a line minimization. There are two reasons for this: first, line

minimization is expensive and, second, and more iMmporack NOWLEDGMENTS
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