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The film
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Foreword and some applications

• The dynamics of tether chains under flow are relevant for many technological
applications: stabilisation of colloidal suspensions, lubrication, chromatography,

adhesion or drag reduction.

• Tethers are relevant in several biological processes, such as the ligand-receptor

binding [Science 293, 465, 2001] whereby the chains need to extend well beyond

their equilibrium conformation to promote the adhesion of adjacent cells. Interestingly,

the efficiency of this process depends more on the long time dynamics of the tethering chain via the

occurrence of “rare” extended conformations, rather than on its equilibrium conformation. As shown

in recent simulations, flow disturbances may also have a significant effect as the radius of gyration

of the tether can dramatically increase if an external oscillatory force with a low enough frequency,

is imposed in the normal-to-wall direction [J. Chem. Phys. 122, 194912 (2005)].
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Foreword and some applications

• The ability to visualise individual polymers via fluorescent staining [Science 281,

1335, 1998] has revealed that many non-trivial macroscopic properties of polymeric

fluids can not be inferred from ensemble averages alone, but rather from the

individual chain dynamics [Phys. Rev. Lett. 399 564 (2000)]. Strikingly, the

behaviour of individual chains in non-equilibrium can greatly differ from one to

another, providing extremely rich dynamics when exposed to shear or [Nature 399
564, 1999] elongational flow. One related fact is that the chain-flow interaction

can be articulated over long characteristic times, much longer than the natural

relaxation time of the chain.

• Long characteristic times are directly related to many properties of polymeric

systems such as fluid memory or the strong resonance observed in polymer brushes

[Nature 352, 143, (1991)], single tethers [JCP, 243 2001] or proteins [Science 309
1096 (2005)] under periodic external perturbations.
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Outline of the talk

• Numerical modelling: methods.

• Non dimensional parameters.

• Structure of the polymer under shear

– Probabily densities

– Mean extensions in flow, gradient and vorticity direction

– Variance of polymer extension

• Dynamics

– Longest relaxation time

– Short-time dynamics: Rouse modes analysis (brief)

– Long-time dynamics: Memory and cyclic dynamics

• Conclusions and future work
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Set-up and modelling

Brownian Dynamics Flexible chain: LJ atoms with FENE potential,
                          Ν = {20, 30, 60}
Implicit solvent, free draining
Wall: effective potential, V_wall ~ y-9

50 σ

33 σ

38 σ

 Molecular Dynamics

x

z

y
wall motion

Hybrid model

19 σ

C

P

C boundary condition

Flexible chain: LJ atoms with FENE potential, Ν=60
Explicit solvent (LJ). ρ=0.8σ-3, T=1.0ε/kB

Wall: two layers of LJ atoms, hexagonal lattice

continuum fluid dynamics

molecular dynamics
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model I: Molecular dynamics

Equations of motion for N particles, Newtonian dynamics.

ṙi = vi, v̇i = fi = −∇rV

Solved via standard molecular dynamics (MD) using the velocity-Verlet algorithm with

a time step ∆t ' 10−3τ , where τ = (mσ2/ε)1/2.

Solvent and monomers: Interparticle potential: VLJ(r) = ψLJ(r)− ψLJ(ro)

with ψLJ(r) = 4ε−1
f

h
(σ/r)12 − (σr)6

i

Interaction with wall: εw = 1.7εf (this guarantees no-slip).

Chain beads (bead-spring model of Kremer and Grest). A non-extensible chain formed by N monomers linked by the

FENE potential VFENE(rij) = −1
2kR

2
0 ln

h
1−

`
rij/R0

´2
i

(where rij is the distance between neighbouring beads,

R0 = 1.5σ, k = 30ε/σ2).

Standard LJ Units: The mass, length, energy and time: m, σ, ε and τ = σ
p
m/ε.
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model II: The hybrid particle-continuum model

• The “P” region is solved via MD.

• The “C” region is solved via CFD (finite volume method).

• Both regions are dynamically coupled via the exchange fluxes of conserved quantities: mass,

momentum, energy.
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model III: Brownian dynamics

0 = f
FENE
i + f

drag
i + f

wall
i (Yi) + f

rand
i

f
drag
i = ξ

„
vf(Ri)−

dRi

dt

«
, with vf(Ri) = γ̇Yiex

ξ
dRi

dt
= f

FENE
i + ξγ̇Yi + f

wall
i (Yi) + f

rand
i

• Solvent velocity: vf ; friction coefficient ξ; bead diffusion constant: D = (kBT/ξ) = 0.42 (in LJ

units).

• Position of the ith bead: Ri = Xiex + Yiey + Ziez

• Random force: 〈frandi 〉 = 0 and 〈f rand
i (t1) · eαf rand

j (t2) · eβ〉 = 2kBTξδ(t1 − t2)δijδαβ

• Polymer: Flexible chain, number of beads N = {20, 30, 60} beads.

• Solvent: Free draining (no hydrodynamic interactions)

• Walls: Mean potential dependent on normal-to-wall particle coordinate fwall
i ∼ Y −9

i ey.
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Langevin equation for the Rouse modes

The bead positions of the tethered polymer: Rn, n = {0, N} with
fixed end R0(0) = 0

free end ∂R(N)
∂n = 0

The normal coordinates (linear approximation) R̂p(t) are, [Macromol.,28, 985 (1995)]

R̂p(t) = (1/N)

NX
n=1

Rn(t) sin

„
(p+ 1/2)πn

N

«
The Langevin equation for the normal coordinates:

ξ
dR̂p

dt
= α

2
pKR̂p + ξγ̇MR̂p + fp

• The eigenvalues: α2
p ≡ (p+ 1/2)2π2/N2.

• The flow matrix M corresponds to a shear flow: M = ex ey .

• The brownian force: 〈fp〉 = 0 and 〈fαp (t1)f
β
q (t2)〉 = 2kBTξδ(t1 − t2)δpqδαβ

• The friction coefficient: ξ = 3πηsb (solvent viscosity = ηs)

• The effective spring constant: Kαβ = kαδαβ.

For an strectched polymer [PRL,82, 3548 (1999)]
kx = (∂F (x)/∂x)x=X Along the flow direction
kt = F (X)/X Along the transversal directions .
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Longest relaxation time under no mean flow (γ̇ = 0).

Numerical results for N = 60

MD and Hybrid BD-EV BD

τ0(0) (2000± 500)τ (4000± 200)τ (1200± 200)τ

Theoretical estimation (free draining limit)

τp(0) =
ξ

k
α
−2
p = τblob

N2

π2(p+ 1/2)2

with τblob = ξ/k, also τblob = ηsb
3/(kBT ) ' 1.75 (where b = 0.961 is the bead-to-bead

distance).

(at γ̇ = 0 the spring is linear: ∂F/∂x = F/x. So k = kx = kt.)

For the 0th mode: τ0(0) = τblob
4N2

π2 = 2261
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Non-dimensional parameters

Dimensional variables

• Shear (Couette) Flow: v = vx(y)ex. Shear rate, γ̇ = dvx
dy .

• Position of the ith bead: Ri = Xiex + Yiey + Ziez

• Maximum elongation X(t) = max {Xi} −min {Xi}, etc...

• Contour length: L = Nb, where the bead-to-bead distance is b = 0.961 (for FENE potential)

• Longest relaxation time of the polymer τ0(γ̇).

Non-dimensional variables and parameters

• Extensional parameter: ε ≡ 1−X/L

• Strain (shear rate × time): γ̇ t

• Weissemberg number : Wi = γ̇τ0(0) (where τ0(0) is the longest relaxation time at γ̇ = 0)
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The governing parameter: Weissemberg number

• The dynamics of a single polymer under flow is determined by the Weissenberg number, Wi ≡ γ̇τ0(0),

which gives the ratio of the polymer relaxation time at equilibrium τ0(0) and the flow characteristic

time 1/γ̇.

• At Wi > 1 the flow start to stretch the polymer average configuration because the fluid elements

deform faster than the polymer can possibly relax.

• The longest polymer relaxation time was estimated from simulations by fitting the autocorrelation

of the normal coordinate in flow direction X̂0 ≡ R̂0 · i to a single exponential function (similar

relaxation times, within error bars, were obtained from the decorrelation time of the end-to-end

vector.)
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Structure

Probability densities: monomers spatial distribution
Flow direction Gradient direction Vorticity direction
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Marginal probabilities of finding any monomer with x,y and z
coordinates

Results for γ̇ = 0.001 (Wi=2.0).
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Struture at equilibrium (no flow)
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Struture under shear flow
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Theoretical scalings: Force versus extension F (X).

• Worm-like chain (WLC); semi-flexible (DNA) [Macromol. 28, 3548 (1995)]:

F (X) =
kBT

2b

(„
L

2X

«2

−
1

4
+X/L

)

• Freely jointed chain (FJC); flexible:

F (X) = −3kBTb

(
(X/L)

1−
`
X
L

´2

)
.

For an streched polymer, X/L ∼ 1 and ε ≡ 1−X/L ∼ 0.

WLC FWLC ∼ ε−2

FJC FFJC ∼ ε−1
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Theoretical scalings: Polymer elongation.

Ladoux and Doyle Eur.Phys.Lett, 52 511,2000

Transversal fluctuations of the chain Spring energy ∼ Thermal energy
1
2ktY

2 ∼ kBT

Extension in the flow direction Spring force ∼ Drag force

F ∼ ξγ̇Y

Effective spring constant kt = F/X

Theoretical scalings

Worm-like-chain -WLC- (semiflexible) (F ∼ ε−2) Y ∼ ε−1 ε ∼ Wi−1/3

Freely jointed chain -FJC- (flexible) (F ∼ ε−1) Y ∼ ε−1/2 ε ∼ Wi−2/3
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Polymer extension in flow direction: numerical and experimental results

1 10 100
Wi

0.01

0.1

1
ε =

 (1
-X

/L
)

Ladoux and Doyle (FJC). BD
Doyle et al. (DNA). Exp.
Barsky et al. (FJC). MD
Barsky et al. (FJC). MD
Barsky et al. (FJC). Hybrid MD-CFD

          Wi-1/3 

(WLC)
τ0 = 2000 τ

       2.5Wi-2/3 

(FJC)

ε =

(
Wi−1/3 for Wi < 10

2.2Wi−2/3 for Wi > 10
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Theoretical scalings: Polymer elongation in transversal directions (II).

Step random walk argument: Hatfield and Quake, PRL, 82, 3548 (1999)
Total number of steps N

Steps in the longitudinal (flow) direction N X/L

Steps in the transversal direction N (1−X/L) = Nε

Hence, the radius of giration in the transversal direction is R(t)
g = N1/2ε1/2.

This simple argument works well in the vorticity direction
(neutral direction) but not so well in gradient direction.
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Theoretical scalings: Polymer elongation in gradient direction (III).

Scalings based on the analogy with the Graetz-Leveque analysis for thermal boundary layers

• Diffusion-advection balance:

Deff
∂2Y

∂y2
' vx

∂Y

∂x

• Order of magnitude analysis: ∂
2Y
∂y2

∼ 〈Y 〉
〈Y 2〉

∼ 〈Y 〉−1 and vx
∂Y
∂x ∼ γ̇〈Y 〉2/L

• Thus 〈Y 〉 ∼ (Deff/γ̇)
1/3

Different scalings for the effective bead diffusion Deff are proposed, leading to small differences in 〈Y 〉.
Deff ∼ D Y ∼ γ̇−1/3

The bead diffusion near the wall is the same as in bulk.

[J.Chem.Phys. 106, 7752, 2002]

Deff ∼ Y −2/3 Y ∼ γ̇−3/11
The effective diffusion depends on the gradient coordinate,

and was calculated from BD simulations [J.Fluid.Mech. 334,

251, 1997]

Deff ∼ D/Y Y ∼ γ̇−1/4
The column of beads above one monomer needs to be

displaced before one monomer can possibly move this direction

[J.Rheol. 44, 713, 2000]
The above scalings depends on hydrodynamic interactions, on the chain flexibility, on the excluded volume? Not yet clear.

However differences are small and the Graetz-Leveque scaling provides good results.
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Polymer extension in transversal directions: numerical and experimental results
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-0.23

Experiments with DNA strands, free flexible chains in shear flow:

〈Y 〉 ∼ Wi−0.26 [Texeira et al. Macromolecules 38 (2005)].

〈Y 〉 ∼ Wi−0.30 [Schroeder et al. Macromolecules 38 (2005)] (Wi > 100)

〈Z〉 ∼ Wi−0.17 [Schroeder et al. Macromolecules 38 (2005)] (random growth theory: Wi−0.166)
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Variance of the chain exension.

Experimental facts: shear driven enhanced fluctuation [Doyle et al. PRL (2000)].
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Theoretical scalings: variance of the chain exension

Hypothesis: Fluctuation in polymer extension scale like the polymer accesible

volume [R.D-B & P Coveney, Physica A (2005)]

• Accesible volume = 〈X〉〈Y 〉〈Z〉
• Standard deviation of chain extension: σX =

p
〈X2〉 − 〈X〉2

1 10 100
Wi
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1

V
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e/

(R
g)3

Accesible volume
σx (scaled)
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Dynamics
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Polymer dynamics at short-time scales: relaxation of Rouse modes

BD-EV (FD): τp ∼ (p+ 1/2)−2 MD: τp ∼ (p+ 1/2)−1.6
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Dynamics: order of magnitude (OM) analysis

Objetive: The scaling for the longest relaxation time under flow τ0 ∼ εατ .

Method: The OM analysis is based on force balance. Forces are estimated from

the Langevin equation. All relevant variables are expressed in terms of the (small)

elongation parameter ε, assuming a power-law form, e.g. X ∼ εαX .

Viscous force ξR̂0/τ0,R ∼ εαR+αξ−ατ

Brownian force (kBTkr)
1/2 ∼ εαk/2

Spring force krR̂0 ∼ εαR+αk

Flow drag (along x direction) ξγ̇Ŷ0 ∼ εαξ+αγ̇+αY

Exponents assumed for a flexible chain at large Wi (ε << 1)

αγ̇ = −3/2 αξ = 0 (assumption)

αk = −2 for flow direction αk = −1 for transversal directions

αX = 0 αZ = 1/2, αY = 1/2 ?
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Relaxation time at zero shear rate, γ̇ = 0

Spring force balances Brownian force.

τp(0) =
ξ

k
α
−2
p = τblob

N2

π2(p+ 1/2)2

where τblob = ξ/k, also τblob = ηsb
3/(kBT ) ' 1.75.

Note: at γ̇ = 0 the spring is linear: ∂F/∂x = F/x. So k = kx = kt.

Longest relaxation time: for the 0th mode (p = 0).

τ0(0) = τblob
4N2

π2
= 2261

Result from simulations, τ0(0) = 2000± 500.
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Relaxation time under shear flow: the flow direction

Balance of viscous and drag force: time scale for convection-induced chain stretching.

ξτ
−1
0 (γ̇)〈X̂0〉 ' ξγ̇〈Ŷ0〉

This leads to,
τ0(0)

τ0(Wi)
∼ Wi

〈Ŷ0〉
〈X̂0〉

At large Wi,

τ0(Wi) ∼ (Wi〈Y 〉)−1

.

WLC Y ∼ ε ε ∼ Wi−1/3 τ0,x ∼ Wi−2/3

FJC Y ∼ ε1/2 ε ∼ Wi−2/3 τ0,x ∼ Wi−2/3
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Relaxation time in the transversal directions, Y andZ

Balance of viscous and Brownian forces

ξR0

τ0

∼ (kBTkt)
1/2

With R0 = {Y0, Z0}.

For the FENE potential (FJC): kt = F/X ∼ ε−1.

Vorticity and gradient direction (z) Z, Y ∼ ε1/2 τ0,Z ∼ ε ∼ Wi−2/3
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Longest relaxation times in different directions: “relaxation anisotropy”
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Long-time dynamics: the cyclic motion A recent experimental study on the dynamics

of individual DNA chains under steady shear, by Doyle et al. [Phys. Rev. Lett. 399 564

(2000)], demonstrated that the tethered chain in shear flow performs cyclic dynamics arising

from a complex chain-flow interaction. These authors suggested that the cyclic dynamics are

aperiodic, as the power spectrum of the chain extension along flow direction does not exhibit

distinct peaks.
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Cyclic dynamics

Time signal of the polymer extensions, autocorrelation and cross-correlations

CAB(t) = 〈A(t)B(0)
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Canon for a tethered chain.
Be flat.

(musical joke)
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Cyclic dynamics: Cross-power spectral density (CPSD)

PXY (ω) =

Z ∞

−∞
〈X(t)Y (0)〉 exp(−Iωt)dt (1)

PXY (ω) = PX(ω)P
∗
Y (ω) Parseval theorem (2)

• The study of low-frequency chain dynamics ωτ0 << 1 requires looong simulations

• Present results were obtained from runs over a grand-total of ∼ 1000τ0(0) for the BD chains

(month) and ∼ 500τ0(0) in the MD case (several months).
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Cyclic dynamics: Cross-power spectral density (CPSD)

ωpeakτ0(Wi) = 0.08± 0.02

CPSD from polymer extensions From 0th normal coordinate
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Cyclic dynamics: peak frequency and longest relaxation time under flow
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Conclusions

• We found that the cyclic motion of grated polymers under shear flow presents a characteristic time,

clearly revealed as a frequency peak (ωpeak) in the cross-spectral density associated to the polymer

extension in flow and gradient directions.

• The characterisctic time, Tcycle = ω−1
peak is more than 10 times larger than the longest relaxation

time of the chain under flow τ0(Wi).

• It scales like the time needed to stretch the polymer by convection.

• As an indication of the generality of this phenomenon, the ratio between the cycling and relaxation

time (about 14) appears to be independent on the presence of hydrodynamic interactions and on the

chain lenght.

• This coherent recursive motion introduces long memory in the fluid and suggests resonance effects

under periodic external forcing.
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