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Coupled Landau-Zener-Stückelberg quantum dot interferometers
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We investigate the interplay between long-range and direct photon-assisted transport in a triple quantum dot
chain where local ac voltages are applied to the outer dots. We propose the phase difference between the two
ac voltages as an external parameter, which can be easily tuned to manipulate the current characteristics. For
gate voltages in phase opposition we find quantum destructive interferences analogous to the interferences in
closed-loop undriven triple dots. As the voltages oscillate in phase, interferences between multiple paths give
rise to dark states. Those totally cancel the current, and could be experimentally resolved.
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I. INTRODUCTION

A system that is driven nonadiabatically through the
avoided crossing of two states undergoes a transition [1–4].
The probability of the transition depends on the parameters of
the driving and the splitting at the crossing. The latest is given
by the coupling between the diabatic states. Repeating the
passing through the crossing introduces different paths to end
in a given state, which gives rise to constructive interference.
The control of this mechanism in solid state qubits has become
a standard tool in the manipulation of quantum states [5–7],
the generation of entanglement [8], or the measurement of the
qubit coherence time scales [9].

In periodically driven quantum dot systems, this effect is
measured as photon-assisted tunneling resonances [10]. An
electron is hence delocalized between tunnel coupled quantum
dots when the detuning of their energy levels is a multiple
of the driving frequency n�ω [11]. The tunnel coupling is
renormalized by the ac field by a factor which depends on
the amplitude and frequency of the driving [12,13]. Recently,
striking electron spin resonance measurements in quantum
dot systems [14] have been interpreted in terms of multilevel
crossings [15]. Three-level crossings may also lead to peculiar
phenomena, such as dark resonances [16,17].

Triple quantum dots (TQDs) are ideal systems for the
investigation of such processes. On one hand, the spatial
separation of three states [18,19], one in each dot (L, C, and R),
makes it possible to manipulate them individually by means
of gate voltages [20]. Hence, different drivings can be applied
to the different levels by applying localized time-dependent
gate voltages to each quantum dot [21]. Thus, not only do the
amplitude and frequency of the driving [10,22], but also the
phase differences [23] become important.

On the other hand, the tunnel coupling between all three
states can be tuned, also between those that are not directly
coupled. Indeed, long-range transport between the edge dots
of a linear TQD has been very recently detected [24–26].
During these higher-order (cotunneling) transitions, the center
dot is only virtually occupied. Hence they involve the direct
transfer of a charge or a spin qubit between distant sites,
avoiding decoherence and relaxation in the intermediate
region [27].

By applying sinusoidal signals to the outer dot gates, the
system can be driven through anticrossings among the three
states, performing Landau-Zener transitions: L-C, C-R, and
L-R [cf. Fig. 1(b)]. Note that the long-range L-R transition is
parallel to the direct-tunneling L-C, C-R trajectory. The system
then behaves as a combination of coupled interferometers.
The interference patterns, coming from real or virtual paths,
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FIG. 1. (a) TQD in series connected to leads. Two ac voltages
are applied to the outer dots, with a phase difference φ. (b) Time
evolution of the energy levels for the left, center, and right dots for
φ = π , showing the different crossings mediated by direct (L-C and
C-R) and virtual tunneling (L-R). (c) For φ = π the driving induces
resonant transitions (either direct, tn

ik , or virtual, ϒ
m,n
LR ) between all

the levels. The system can thus be mapped to an undriven triangular
TQD depicted below. (d) The case where the edge dot levels oscillate
in phase (φ = 0) is equivalent to that where only the center dot is
driven. Transport is then governed by sidebands in the center dot.
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can be detected by coupling the system to source and drain
contacts and measuring the current that passes through it
along a voltage bias V , as sketched in Fig. 1. The versatility
of this system makes it suitable for investigating many
different configurations. Here, we will consider the case
where the two drivings are equal in amplitude and frequency,
Vl(t) = (Vac/2) cos(ωt + φl), but they have a phase difference
φ = φR − φL. As we show below, the dependence on the phase
is of paramount importance and it has not yet been addressed.

We concentrate on two cases, when the dots oscillate with
opposite (φ = π ) or the same phase (φ = 0). In the first case,
φ = π , crossings of all three states occur. Direct-tunneling
transitions between the left and center and center and right take
place when the corresponding energy levels satisfy εC − εL ≈
m�ω and εR − εC ≈ m′

�ω. Importantly, even if they are not
directly coupled, the crossing of the outer dot levels induces
a long-range tunneling transition. It is mediated by the virtual
occupation of the center dot, when εR − εL ≈ n�ω, regardless
of the energy εC [28–31]. Thus, different paths are possible for
left to right transport [see Fig. 1(c)], remarkably leading to the
interference of real and virtual (cotunneling) transitions.

Differently if the two dots oscillate in phase (φ = 0), only
L-C and C-R crossings are possible. The system is therefore
equivalent to one where only the center dot is driven. Hence,
εC develops sidebands separated by an energy �ω, as shown in
Fig. 1(d). The main transport mechanism is resonant transitions
involving the sidebands. However, long-range tunneling is
also possible if the outer levels have the same energy. The
virtual occupation of sidebands with either positive or negative
detuning causes unexpected interferences, similar to two path
interferometers [32,33].

The paper is organized as follows: We present the model
and numerical results in Sec. II. An analytical approach is
performed in Sec. III, which allows us to give an interpretation
of the main features in Sec. IV. A summary is given in Sec. V.

II. MODEL

We assume the system to be in the Coulomb blockade
regime, where only one electron is allowed in the TQD at
a time. In such a case, the spin of the electron does not play
any role and we can ignore it. The states of our Hamiltonian are
defined in the basis {|L〉 , |C〉 , |R〉 , |0〉}, where |i〉 represents
one electron in the i dot, and |0〉 corresponds to the case where
the system is empty. Furthermore, we consider a large bias
voltage such that electrons flow unidirectionally from the left
to the right reservoir. We write the Hamiltonian of the system
Ĥ (t) = Ĥ0 + Ĥlead + Ĥint + Ĥac(t), where

Ĥ0 = Ĥε+Ĥτ =
∑

i

εi ĉ
†
i ĉi+

∑
i

(τi,i+1ĉ
†
i ĉi+1 + H.c.) (1)

describes the TQD with energy levels εi localized in each
dot and (nearest-neighbor) interdot tunnel couplings τij . The
term Ĥlead = ∑

lk εlkd̂
†
lk d̂lk represents the leads, and Ĥint =∑

lki γl d̂
†
lki ĉi + H.c. is the system-lead interaction Hamil-

tonian, given by the coupling γl . The driving Ĥac(t) =∑
l Vl(t)ĉ

†
l ĉl acts on the edge dots l = L,R.

In order to treat the explicit time dependence, it is
convenient to perform a unitary transformation Ĥ ′(t) =

Û †(t)[Ĥ (t) − i�∂t ]Û (t), where

Û (t) = exp

[
i

�

∫ t

0
dt1Ĥac(t1)

]
. (2)

It leaves the diagonal terms time independent. The system
Hamiltonian transforms as Ĥ ′

0(t) = Ĥε + Ĥ ′
τ , with

Ĥ ′
τ =

∞∑
ν=−∞

tνLCeiνωt ĉ
†
CĉL + tνCRe−iνωt ĉ

†
RĉC + H.c., (3)

where the hopping terms tνLC = τLCJν(Vac/2�ω), tνCR(φ) =
τCRJν(Vac/2�ω)e−iνφ are renormalized by the νth order Bessel
functions Jν(x). In what follows, we will simply write Jν ,
unless its argument is different from Vac/(2�ω). In the large
bias regime we are considering, eV � �ω,Vac, kT the effect
of the transformation on the tunneling term Ĥint can be
disregarded due to the normalization of Bessel functions.

In the weak coupling limit and assuming the Born-Markov
secular approximation [34], the quantum master equation for
the reduced density matrix of the TQD becomes [35]

ρ̇(t) = i

�
[Ĥε + Ĥ ′

τ (t),ρ(t)] + (L − L�)ρ(t), (4)

where

〈m|Lρ(t)|n〉 =
∑
k �=n

(nk − kn)ρmn(t)δmn,

〈m|L�ρ(t)|n〉 = 1

2

⎛
⎝∑

k �=n

kn+
∑
k �=m

km

⎞
⎠ρmn(1−δmn). (5)

In the large bias regime, only two rates participate, L0 = L

and 0R = R, with l = (2π/�)Dl|γl|2, and Dl being the
density of states in the lead to which dot l is coupled. The steady
state occupations ρst

ii are obtained by numerically integrating
in time Eq. (4). With those, we get the stationary current, given
by I = eRρst

RR.

A. Numerical observations

The current for the different configurations, φ = π and φ =
0, is plotted in Figs. 2 and 3, respectively, as functions of the
driving amplitude Vac and the detuning of the center dot level
εC from εL = εR = 0. In both configurations, we can clearly
distinguish two regions by the ratio α = Vac/(2|εC|), which
marks the onset of photon-assisted transitions. The current
shows very different features in each region, which we detail
below.

For φ = π , the current is canceled for certain driving
amplitudes in the regime α < 1 where the center dot is
not excited [see the horizontal lines in Fig. 2(a)]. For
larger amplitudes, we observe the expected photon-assisted
resonances around εC = m�ω which are suppressed at the ith
zeros zi,m of Jm [12]. More surprisingly, we find additional
off-resonance pairs of suppressions of the current in between
zeros of consecutive resonances (cf. the inset in Fig. 2).
Remarkably, the cancellation of the current is exact. These
sharp features are a manifestation of the interference of real
and virtual transitions, as we discuss in the next section.

Very differently, for φ = 0, no significant features are
observed below α = 1 (cf. Fig. 3). For larger amplitudes, we
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FIG. 2. (a) Current through a TQD by tuning εC and Vac.
εR = εL = 0, ω = 3.3τLC, τLC = τCR, and φ = π . Superimposed to
the well-known Landau-Zener-Stückelberg pattern, we find exact
cancellations of the current that are attributed to the contribution
of virtual tunneling transitions. The green dashed lines correspond
to the zeros of J0(Vac/�ω) [cf. Eq. (10)]. (b) and (c) show the
current for two cuts along the resonance εC = −3�ω [marked as
red lines in (a)]. While in (c) the current vanishes coinciding with
J0(Vac/�ω) = 0, a double suppression appears in (b) around the first
zero of J3(Vac/2�ω). The complicated double-minimum interference
patterns are of the same nature as the ones observed in an undriven
triangular configuration. By means of the RWA, one can derive an
analytical condition Eq. (8) [blue dashed lines in the inset of (a)]
for the dark-state Eq. (9). (d) Current for Vac/(2�ω) = 3.51 in the
cotunnel regime, where Fano-like resonances are observed.

find narrow off-resonance current suppressions all the way
between the ith zeros zi,m of increasing/decreasing order,
e.g., current is canceled between zi,m and zi,m±1 (cf. Fig. 3).
These features come from the destructive interference between
sidebands with positive and negative detuning with respect to
the L-R resonance.

III. ANALYTICAL APPROACH

We perform an analytical treatment consisting of a per-
turbative expansion of the evolution operator in the interdot
tunneling, and a rotating wave approximation (RWA) close to
the relevant resonances. Direct tunneling between nearby dots
(L-C and C-R) is contained in the first order of the expansion.
The long-range tunneling between the left and right dots is
only captured in the second order.

We are interested in the configurations where both real and
virtual transitions coexist. This occurs close to the double
resonance conditions εC − εL ≈ m�ω and εR − εL ≈ n�ω,
as depicted in Fig. 1. Close to these, one can transform
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FIG. 3. Current through the TQD as a function of the detuning εC

and Vac for φ = 0, with εR = εL = 0, ω = 3.3τLC, τLC = τCR. Narrow
antiresonances are due to destructive interference between sidebands
with positive and negative detuning with respect to the L-R resonance.
The dashed lines within the white regions correspond to the fulfillment
of condition (12) for dark states (see text below). Right panel: Current
at fixed εC = −3�ω (red vertical line). The dips correspond to the
zeros of J3. Bottom panel: Current cut along Vac = 3�ω (horizontal
blue line) showing a symmetric configuration of zeros which comes
from the interference between sidebands.

the Hamiltonian to the rotating frame and neglect the fast
oscillating terms of the Hamiltonian. With this RWA we obtain
a time-independent Hamiltonian,

Ĥ
m,n
RWA(φ) =

⎛
⎜⎝

ε̃n
L+�

m,n
LL t−m

LC ϒ
m,n∗
LR (φ)

t−m
CL ε̃m+n

C +�
m,n
CC t−m−n

CR (φ)

ϒ
m,n
LR (φ) t−m−n

RC (φ) ε̃0
R+�

m,n
RR

⎞
⎟⎠, (6)

where ε̃n
i = εi + n�ω. �

m,n
LL = τ 2

LCλm, �
m,n
RR = τ 2

CRλm+n, and
�

m,n
CC = −(�m,n

LL + �
m,n
RR ) are the level shifts coming from

the second-order tunnel contribution, with λp = ∑
ν(Jν −

Jp)Jν/[(p − ν)�ω]. More importantly,

ϒ
m,n
LR (φ) = τLCτCR

∞∑
ν=−∞

Jν

[
(Jν+n − Jm+2n)eiνφ

2(ν − m − n)�ω

+
(
Jν−ne

iνφ − Jm−ne
imφ

)
e−inφ

2(ν − m)�ω

]
(7)

describes the second-order photon-assisted tunneling between
the outermost dots.

IV. INTERPRETATION

We emphasize the role of the phase difference in the off-
diagonal elements in Eq. (6). As we discuss in the following,
the origin of the destructive interference patterns is very
different in the two configurations of interest here, φ = 0,π .
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GALLEGO-MARCOS, SÁNCHEZ, AND PLATERO PHYSICAL REVIEW B 93, 075424 (2016)

A. Opposite phase drivings, φ = π

Let us start by the case φ = π , plotted in Fig. 2. The double
dip detailed in the inset can be understood directly by looking
at the structure of the effective Hamiltonian in Eq. (6). The
long-range coupling of left and right dots makes it analogous
with a TQD in a closed-loop triangular configuration, cf.
Fig. 1(c). Such a system is known to lead to dark states when
different paths around the triangle interfere destructively [36].
This occurs when particular relations between couplings and
detuning are met [37]. In our case, with ε̃L,0 = ε̃R,0 = ε̃C,m,
we find the following condition for a dark state,

�m,0ϒ
m,0
LR (φ)t−m

CR (φ) = t−m
LC

[
ϒ

m,0
LR (φ)2 − t−m

CR (φ)2
]
, (8)

where �m,0 = �
m,0
LL − �

m,0
CC . Equation (8) is the exact condi-

tion for the existence of a dark state,

|�DS〉 = N
[
t−m
CR (φ) |L〉 − ϒ

m,0
LR (φ) |C〉 ]

, (9)

where N is a normalization constant. Note that it contains no
contribution of the state |R〉, which is coupled to the drain lead.
Therefore, no current flows through the system.

The dark-state condition (8) is fulfilled for all the dips
observed in Fig. 2, showing that the linear driven system
behaves as an undriven triangular one around every zi,m. The
condition (8) is represented by dashed lines in the inset of
Fig. 2 with a remarkable agreement. We can thus interpret
these dips as the destructive interference between first- and
higher-order tunneling transitions.

When the ac amplitude is small, α < 1, we have Jm 
 1,
for m > 1. Thus, in this regime, the effective direct couplings
tmCL,tm+n

CR are negligible. This is not the case for the long-range
coupling. Using the addition theorem for Bessel functions,
it can be approximated to ϒ

m,n
LR → −τLCτCRJn(Vac

�ω
)/m�ω.

Note that the argument of the Bessel function is doubled and
therefore it is not necessarily negligible. Hence, transport is
dominated by cotunneling and Eq. (6) can be mapped to an
effective two-level system [30],

Ĥ
m,n
RWA(π ) ≈ (ε̃L,n − ε̃R,0)σ z − Jn

(
Vac

�ω

)
τLCτCR

m�ω
σ x, (10)

with the Pauli matrices σ i . With this model, we can interpret
the different cancellations of the current marked by horizontal
dashed lines in Fig. 2. They are due to the zeros of J0(Vac

�ω
),

therefore representing a long-range analog of coherent destruc-
tion of tunneling [22].

In this regime (α < 1), the center dot remains uncoupled
from the background cotunneling transport. By increasing
Vac, the resonant photon-assisted L-C and C-R transitions are
activated. The center dot can then be considered as a localized
state coupled to a continuum leading to asymmetric Fano-like
resonances [38,39] [see Fig. 2(d)].

B. In-phase drivings, φ = 0

We now consider the configuration with φ = 0. In this case,
Eq. (8) is only fulfilled for the trivial solution when all the
couplings are zero. As the driving does not induce the left and
right levels to cross, cotunneling is only effective when εL =
εR, i.e., n = 0. In that case, the two levels cross the center one
simultaneously. This situation can be mapped into having the

driving in the center dot and sidebands at energies εC + ν�ω

[cf. Fig. 1(d)]. If the center dot is detuned εC = m�ω + �,
the different sidebands will act as parallel channels for the
cotunneling transition. The effective Hamiltonian then reads

Ĥ
m,n
RWA(0) ≈ �σ z + τLCτCR

∞∑
ν=−∞

�ν,m(�)σ x, (11)

with the sideband-dependent couplings �ν,m(�) = J 2
ν /[(ν −

m)�ω − �]. Note that they can be tuned by the driving
amplitude and the detuning. If the condition

m∑
ν=−∞

�ν,m(�) = −
∞∑

ν=m+1

�ν,m(�) (12)

is met, sidebands with positive (ν > m) and negative (ν <

m) detuning will destructively interfere. This leads to
the narrow cancellations of the current shown in Fig. 3. The
condition (12) is represented there by dashed lines. We note
that the agreement with the full numerics is excellent in all the
configuration space. The system then behaves as an ac driven
interferometer of multiple transitions.

V
a
c
/
(2

h̄
ω
)

V
a
c
/
(2

h̄
ω
)

φ

0

2

4

6

8

10

12

I/ΓR

(a)

0

2

4

6

8

10

12

0 π/2 π 3π/2 2π

0

0.1

0.2

0.3

(b)

FIG. 4. Current through the TQD numerically calculated with
Eq. (4) by tuning φ and Vac. In both plots, εR = εL = 0, ω = 3.3τLC,
and τLC = τCR. (a) The central dot is in resonance with the third
sideband of the two outer dots, εC = εL − 3�ω. A cut at φ = π

corresponds to Figs. 2(b) and 2(c), and at φ = 0 to the right vertical
cut of Fig. 3. (b) Same as in (a) but with the central dot out of
resonance with the outer dots, εC = εL − 3.2�ω.
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C. Arbitrary phase difference

The effective Hamiltonian (6) as well as the dark-state
condition (8) are in general valid for any value of φ. In this
paper we focus on the simplest cases, φ = {0,π}, where all the
couplings are real. For an arbitrary phase difference, t−m

CR (φ)
and ϒ

m,0
LR (φ) are complex in general. Therefore, Eq. (8) has

to be fulfilled for both the real and the imaginary parts. These
two conditions make the analytical study of these phases much
more involved, which is out of the scope of this paper. We,
however, present numerical results of the phase-difference
dependence in Fig. 4 for two configurations: In Fig. 4(a) the
center dot is resonant, εC − εL,R = −3�ω, whereas in Fig. 4(b)
it is slightly off resonance.

As mentioned above, in resonance conditions, exact can-
cellations of the current appear for φ = nπ , n ∈ Z if Eq. (8) or
Eq. (12) is met for n even or odd, respectively. Nevertheless, we
observe in Fig. 4(a) a substantial current drop at Vac/(2�ω) ≈
6.3 and 9.8 for any φ [see Fig. 4(a)]. This feature is related to
the zeros of the corresponding Bessel function (in this case the
first and second zeros of J3, z1,3 and z2,3). In the off-resonant
configuration the current drop at those Vac is not observed,
since more sidebands are taking part in transport [cf. Fig. 4(b)].
Thus the vanishing current at these conditions for φ = nπ

can only be attributed to interference effects. In Secs. IV A
and IV B, we have discussed that the dark states at φ = 0 and
φ = π are due to different mechanisms. This becomes clear
as they behave differently with a change of φ. Those at φ = 0
are much narrower because the central symmetry depicted in
Fig. 1(d) is broken for φ �= 0.

Other dark states can appear for specific φ ( �= nπ ) which
now depend in all the other parameters. This is the case for
features observed around Vac/(2�ω) ≈ 2.1 for φ ≈ ±0.68π in
Fig. 4, which fulfill the dark-state condition (8).

For smaller amplitudes, the system is in the cotunneling
regime. We find that the coherent destruction of cotunneling—
which at φ = π occurs for the condition J0(Vac/�ω) = 0 (cf.
Sec. IV A)—is robust and survives in a wide range of phase
differences.

V. CONCLUSIONS

In summary, we predict quantum interferences that depend
in a nontrivial way on the phase difference of the locally
applied drivings. For gate voltages in phase opposition, we
find destructive interferences between direct and long-range
transitions which are analogous to dark states in closed-loop
undriven triple dot molecules. As the edge dot levels oscillate
in phase, quantum paths mediated by positive and negative
detuned sidebands interfere, leading to multiple dark states
in the Landau-Zener-Stückelberg pattern. These destructive
interferences can be experimentally detected as they are of
the same nature as long-range current resonances which have
been unambiguously observed. We propose a transport config-
uration, where all parameters are experimentally controllable,
in which these features can be measured as cancellations
of the current. This is particularly accessible in quantum
dot arrays which are within experimental reach [14,20,25]
for both electric or magnetic field drivings. Our results can
be extended to electron transfer through larger chains, with
important implications in quantum information architectures.
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[23] A. Gómez-León and G. Platero, Charge localization and dynam-
ical spin locking in double quantum dots driven by ac magnetic
fields, Phys. Rev. B 84, 121310(R) (2011).

[24] M. Busl, G. Granger, L. Gaudreau, R. Sánchez, A. Kam, M.
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