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S-I. THE MODEL

The total Hamiltonian is Ĥ = Ĥdqd + Ĥleads + Ĥt. The first term is the Hamiltonian for the double quantum dot
[Eq. (1) in the main text]:

Ĥdqd =
∑
α

εαn̂α + Upn̂p,↑n̂p,↓ + Uapn̂an̂p. (S1)

Here, the number operators are n̂p = Σσn̂p,σ = Σσd̂
†
p,σd̂p,σ with spin σ = {↑, ↓} and n̂a = d̂†ad̂a where d̂p,σ and d̂a

denote the electron annihilation operators in passive (α = p) and active (α = a) dots with energy εα (we take spinless
electrons for α = a since the spin degree of freedom in the active subsystem does not change the main physics of the
problem). The Hamiltonian of the electrodes is given by

Ĥleads =
∑
k

εk,Lĉ
†
k,Lĉk,L +

∑
k

εk,Rĉ
†
k,Rĉk,R +

∑
k,σ

εk,N ĉ
†
k,N,σ ĉk,N,σ +

∑
k,σ

εk,S ĉ
†
k,S,σ ĉk,S,σ +

∑
k

∆
(
ĉ†k,S,↑ĉ

†
k,S,↓ + h.c.

)
,

(S2)
where ĉk is the annihilation operator for electrons with energy εk and ∆ is the order parameter in the superconducting
lead. The passive dot is coupled to normal (N) and superconductor (S) electrodes. In the drag configuration, these two
electrodes have the same chemical potential µ. Without loss of generality, we take the energy reference at µN = µS = 0.
Furthermore, the active dot is attached to two normal electrodes (L and R) through which a symmetric bias voltage
is applied as µL = −µR = eVbias/2, where e is the electron charge. As a consequence, the tunneling Hamiltonian
becomes

Ĥt =
∑
k

(
tLd̂
†
aĉk,L + tRd̂

†
aĉk,R + h.c.

)
+
∑
k,σ

(
tN d̂

†
p,σ ĉk,N,σ + tS d̂

†
p,σ ĉk,S,σ + h.c.

)
, (S3)

where t are the dot-lead tunnel couplings. In the following, we consider the wide-band approximation, in which
case the tunnel hybridization strength is given by Γβ = 2π|tβ |2ρβ0 for β = L,R,N, S, where ρβ0 is the corresponding
electrode’s density of states in its normal state.

S-II. NONEQUILIBRIUM GREEN’S FUNCTIONS METHOD

Here, we give the details of calculating the drag current using the nonequilibrium Green’s functions (NEGF)
formalism [S1]. We consider the Hamiltonian of noninteracting double quantum dots, Ĥdqd(Up = Uap = 0), and

the Hamiltonian of electrodes, Ĥleads, as the unperturbed Hamiltonian and proceed by considering Ĥt and Ĥint =
Uapn̂an̂p + Upn̂p,↑n̂p,↓ the interaction Hamiltonians. Then, we define the contour-ordered single particle Green’s
function of the system for the active and passive dots, respectively, by

iGca (τ, τ ′) =
〈
Tcd̂a (τ) d̂†a (τ ′)

〉
, (S4)

iGc
p (τ, τ ′) =

〈
TcΨ̂p (τ) Ψ̂†p (τ ′)

〉
, (S5)

where 〈. . .〉 is the ground state expectation value of the interacting system, Tc is the time-ordering operator along the
Keldysh contour and τ and τ ′ are time variables along the Keldysh contour. In Eq. (S5), we represente the Green’s

function of the passive dot in the Nambu basis defined by Ψ̂†p = (d̂†p,↑, d̂p,↓). Here and in the following, we show the
quantities in the Nambu basis using bold letters such as G and Σ.
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A. Dyson equation for the passive dot

In frequency space, the retarded interacting Green’s function of the passive dot can be obtained from

GR
p (ω) =

{[
gRp (ω)

]−1 −ΣR
p,int (ω)

}−1

, (S6)

where gRp (ω) is the mean-field retarded Green’s function given by

gRp (ω) =
(
ωI− hp −ΣR

p,leads

)−1

, (S7)

where I is the 2×2 identity matrix and hp is a diagonal matrix with diagonal elements (εp+Uap 〈n̂a〉+Up 〈n̂p,↓〉 ,−εp−
Uap 〈n̂a〉−Up 〈n̂p,↑〉). Moreover, ΣR

p,leads (ω) = ΣR
p,N (ω)+ΣR

p,S (ω) is the sum of self-energies due to coupling the passive
dot to the normal and superconducting electrodes. Their respective expressions in the wide-band approximation read

ΣR
p,N (ω) = −iΓp,NI, (S8)

and

ΣR
S (ω) = −iΓSβ (ω)

(
1 −∆

ω

−∆
ω 1

)
, (S9)

where β (ω) is given by

β (ω) =
|ω|√

ω2 −∆2
θ (|ω| −∆)− i ω√

∆2 − ω2
θ (∆− |ω|) , (S10)

with θ (. . .) the Heaviside step function. Furthermore, in Eq. (S6), ΣR
p,int (ω) is the retarded self-energy of the passive

dot due to interaction with the active dot. Its expression will be given later.
We also need to calculate the interacting lesser and greater Green’s functions of the passive dot, which are given by

G<,>
p (ω) = GR

p (ω)
(
Σ<,>
p,leads (ω) + Σ<,>

p,int (ω)
)
GA
p (ω) , (S11)

where the advanced Green’s function is obtained as GA
p (ω) =

[
GR
p (ω)

]†
and Σ<,>

p,leads can be calculated from

Σ<
p,N/S = −2 Im

(
ΣR
p,N/S

)
fN/S(ω), (S12)

and

Σ>
p,N/S = −2 Im

(
ΣR
p,N/S

)
[1− fN/S(ω)]. (S13)

fβ(ω) = {1 + exp[(ω − µβ)/kBT ]}−1 is the Fermi distribution function of electrode β = N,S with chemical potential
µβ and temperature T . The expressions for the lesser and greater interacting self-energies, Σ<,>

p,int, are given below.

B. Dyson equation for the active dot

Next, we will focus on the active dot. Its full retarded Green’s function is given by

GRa (ω) =
{[
gRa (ω)

]−1 − ΣRa,int (ω)
}−1

, (S14)

where the mean-field retarded Green’s function gRa (ω) is

gRa (ω) =

(
ω − εa − Uap

∑
σ

〈n̂p,σ〉 − ΣRa,leads

)−1

. (S15)

Here, ΣRa,leads (ω) = ΣRa,L (ω) + ΣRa,R (ω) is the self-energy due to coupling the active dot to its right and left normal

metal electrodes: ΣRa,β (ω) = −iΓa,β for β = R,L. The lesser Green’s function of the active dot is also given in a
similar manner to the passive dot in Eq. (S11) by replacing subscript p with a and considering the hybridization of
the active dot with two normal metallic electrodes.
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C. Interaction self-energies for the passive dot

We obtain the interacting lesser and greater self-energies for the passive dot within second-order perturbation
theory [S2]. We generalize the results of Ref. [S3] to include the nonlocal capacitive interaction between the passive
and active dots:

Σ<,>
p,int (ω) =

(
Up
2π

)2 ∫
dω1Q

<,>
p (ω) σ̂y

[
G>,<
p (ω1 − ω)

]T
σ̂y

+

(
Uap
2π

)2 ∫
dω1σ̂zG

<,>
p (ω1) σ̂zW

<,>
a (ω − ω1) , (S16)

where σ̂y and σ̂z are the second and third Pauli matrices, Qp reads

Q<,>p (ω) =

∫
dω1

[
G<,>p,11 (ω1)G<,>p,22 (ω − ω1)−G<,>p,12 (ω1)G<,>p,21 (ω − ω1)

]
, (S17)

and Wa is given by

W<,>
a (ω) =

∫
dω1G

<,>
a (ω1)G>,<a (ω1 − ω) . (S18)

The interacting retarded self-energy of the passive dot is

ΣR
p,int (ω) =

(
Up
2π

)2 ∫
dω1

[
Q<p (ω) σ̂y

[
GA
p (ω1 − ω)

]T
σ̂y +QRp (ω) σ̂y

[
G<
p (ω1 − ω)

]T
σ̂y

]
+

(
Uap
2π

)2 ∫
dω1

[
σ̂zG

<
p (ω1) σ̂zW

R
a (ω − ω1) + σ̂zG

R
p (ω1) σ̂z

[
W<
a (ω − ω1) +WR

a (ω − ω1)
]]
, (S19)

where

QRp (ω) =

∫
dω1

[
G<p,11 (ω1)GRp,22 (ω − ω1)−G<p,12 (ω1)GRp,21 (ω − ω1)

+GRp,11 (ω1)G<p,22 (ω − ω1)−GRp,12 (ω1)G<p,21 (ω − ω1)

+GRp,11 (ω1)GRp,22 (ω − ω1)−GRp,12 (ω1)GRp,21 (ω − ω1)
]
, (S20)

and

WR
a (ω) =

∫
dω1

[
G<a (ω1)GAa (ω1 − ω) +GRa (ω1)G<a (ω1 − ω)

]
. (S21)

D. Interacting self-energies for the active dot

The interacting lesser and greater self-energies for the active dot are given by

Σ<,>a,int (ω) =

(
Uap
2π

)2 ∫
dω1G

<,>
a (ω1)W<,>

p (ω − ω1) , (S22)

where the Wp functions are

W<,>
p (ω) =

∫
dω1Tr

[
σ̂zG

<,>
p (ω1) σ̂zG

>,<
p (ω1 − ω)

]
, (S23)

WR
p (ω) =

∫
dω1Tr

[
σ̂zG

<
p (ω1) σ̂zG

A
p (ω1 − ω) + σ̂zG

R
p (ω1) σ̂zG

<
p (ω1 − ω)

]
, (S24)

Tr [. . .] being the trace over the Nambu matrices. The interacting retarded self-energy of the active dot is given by

ΣRa,int (ω) =

(
Uap
2π

)2 ∫
dω1

[
G<a (ω1)WR

p (ω − ω1) +GRa (ω1)
[
W<
p (ω − ω1) +WR

p (ω − ω1)
]]
. (S25)
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E. Expression for the current

The above discussion provides a complete description of the required equations to calculate the interacting Green’s
functions of both active and passive dots in the nonequilibrium steady state. In our numerical calculations, we have
performed self-consistent calculations to obtain the self-consistent Green’s functions and self-energies of the system.
Once the NEGFs are obtained the electric current through the active dot to the lead β = L,R can be calculated
as [S1]

Ia,β =
e

~

∫
dω

2π

[
G<a (ω) Σ>a,β (ω)−G>a (ω) Σ<a,β (ω)

]
. (S26)

On the other hand, the electric current through the passive dot to the lead β = N,S can be evaluated from Ip,β =∫
dωIβ(ω), where Iβ(ω) is the energy resolved current density [S4]

Iβ(ω) =
e

2h
Tr
[
σ̂z(G

R
p (ω) Σ<

p,β (ω) + G<
p (ω) ΣA

p,β (ω)−ΣR
p,β (ω)G<

p (ω)−Σ<
p,β (ω)GA

p (ω)
]
. (S27)

This expression for the electric current of the passive dot has the advantage that by taking appropriate integration
limits we can quantitatively distinguish between the current in the subgap domain (IA), which is mainly due to
pair tunneling accompanied by Andreev reflection, and the current outside the superconductor gap (Iqp), which is
dominated by quasiparticle tunneling into the superconductor continuum. It is thus clear that the total current
flowing through the passive dot can be rewritten as Ip = IA + Iqp where

IA =

∫ ∆

−∆

I(ω) dω, (S28)

and

Iqp =

(∫ −∆

−∞
+

∫ ∞
∆

)
I(ω) dω. (S29)

S-III. RATE EQUATION METHOD

The rate equation method can be employed in the kBT � Γβ regime to calculate the electric current using the

eigenstates and eigenenergies of Ĥdqd as follows [S5]

Iα =
e

~
∑
λ,κ

(
γαNλκ − ΓαNλκ

)
P (κ) , (S30)

where α = p, a as before and

Γαβλκ = Γβ |〈λ|δ̂†α|κ〉|2fβ (Eλ − Eκ) , (S31)

γαβλκ = Γβ
∣∣〈λ∣∣δ̂α∣∣κ〉∣∣2[1− fβ (Eκ − Eλ)], (S32)

are the tunneling rates in and out of the dot α, from and into electrode β = N,L,R, S, respectively. In the
above equations, δ̂a ≡ d̂a and δ̂p ≡

∑
σ d̂p,σ. Moreover, |λ〉 is the eigenstate of Ĥdqd with energy Eλ. In Eq.

(S30), P (λ) is the occupation probability for state |λ〉 which is calculated by solving the system of equations

0 =
∑
α,β,κ

(
ΓαβκλP (λ)− γαβλκP (κ)

)
together with the normalization condition

∑
κ P (κ) = 1.

A. Current carried by Cooper pairs

To investigate the drag current corresponding to the subgap electron transport in the passive dot, it is useful to
take the infinite-gap approximation. This approach is equivalent to taking the superconductor energy gap to be the
largest energy scale in the system. Hence, the coupling between the superconducting electrode and the passive dot
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can be replaced with an effective pairing term ΓS(d̂†p,↑d̂
†
p,↓ + h.c.) in the Hamiltonian of the passive dot [S6, S7]. As

a consequence, the Hamiltonian of the isolated double quantum dot can be exactly diagonalized as

|σ, n〉 , Eσ,n = εp + n(εa + Uap),
|±, n〉 = N−1

±,n(A±,n |0, n〉 − ΓS |2, n〉), E±,n = nεa +A∓,n,
(S33)

where the first argument in the kets (0, σ or 2) represents the state of the passive dot while the second (n = 0, 1) is
the occupation of the active dot. Moreover, N±,n is a normalization factor and

A±,n = ε̃n ±
√

(ε̃n)
2

+ Γ2
S , (S34)

where ε̃n = εp+Up/2+nUap. The above eigensystem is composed of eight states which allows us to employ Eq. (S30)
to calculate the electric current through the passive and active dots in the infinite gap approximation.

1. Tunneling rates and electron-hole symmetry

The number of electrons in the passive dot is not well defined when it is in one of the superposition states |±, n〉.
Then, transitions to odd states |σ, n〉 may involve an electron either tunneling in or out of the dot. Their probabilities

are determined by the tunneling rates Γαβλκ = Gαβλκ fβ(Eλ−Eκ) for transitions involving an electron tunneling from

terminal β into quantum dot α, and γαβλκ = J αβλκ [1− fβ(Eκ−Eλ)] for those involving an electron tunneling out of the

dot. Here, Gαβλκ = Γβ |〈λ|δ̂†α|κ〉|2 and J αβλκ = Γβ |〈λ|δ̂α|κ〉|2.
For the transition |σ, n〉 → |+,n〉, we have

Gp,N+n,σn = ΓNN−2
+nΓ2

S (S35)

J p,N+n,σn = ΓNN−2
+n

(
ε̃n +

√
ε̃2
n + Γ2

S

)2

. (S36)

Whether this transition is more likely to happen with an electron tunneling in or out of the passive dot depends on
the sign of ε̃n. The two rates are equal at ε̃n = 0.

For |−,n〉 → |σ, n〉, we have

Gp,Nσn,−n = ΓNN−2
−n

(
−ε̃n +

√
ε̃2
n + Γ2

S

)2

(S37)

J p,Nσn,−n = ΓNN−2
−nΓ2

S . (S38)

Note that at the point ε̃0 + ε̃1 = 0, the electron-hole symmetry is established by having Gp,N±1,σ1 = J p,Nσ0,∓0. Hence, at
this point, sequences of the form |σ,0〉 → |+,0〉 → |−,1〉 → |σ,1〉 contribute on average to the transport of an electron
and of a hole. The same (though with opposite contributions) is valid for the cycle |σ,1〉 → |+,1〉 → |−,0〉 → |σ,0〉,
resulting in no drag current.

2. NEGF vs. rate equation results

Our NEGF formalism is capable of considering the coupling between the passive dot and the leads nonperturbatively.
However, it is expected that in the weak tunneling regime, where kBT � Γβ , the NEGF results reproduce the results
of the rate equation method.

The infinite-gap approximation which we discussed earlier in this section can be explored within the NEGF formalism
by setting a large value to ∆ in Eq. (S9). In Fig. S1, we compare the results obtained from both methods. In Fig. S1(a),
we consider a large bias voltage on the active dot and plot the drag current as a function of εp. We can see that the
NEGF results are in good agreement with those of the rate equation method, especially the sign of the drag current
as a function of εp, and the inversion of the drag current at the point εp = −(Uap +Up)/2 ≡ −Utotal/2. In Fig. S1(b),
we take εp = −0.7Utotal, and plot the drag current as a function of bias voltage on the active dot, where we find good
agreement between the results obtained from both methods. The insets in both panels show the corresponding results
for the case where kBT ∼ ΓN . We can see that by decreasing the temperature the rate equation results depart from
the NEGF ones, which is an indication that in this parameter regime the results from rate equation method are not
quantitatively correct, though they still give a proper qualitative behaviour.
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FIG. S1. Comparison of NEGF results with the results obtained from rate equation method in the infinite gap approximation.
Left panels show drag current as a function of εp for a large Vbias while right panels show drag current as a function of Vbias for
εp = −0.7Utotal. In (a) and (b) we take kBT = 1 meV whereas in (c) and (d) kBT = 0.03 meV. Here, ∆ in the NEGF calculations
is set to a large value (∆ = 10 meV). Additional parameters: Up = 5Uap = 0.5 meV and ΓL = ΓR = ΓN = ΓS/3 = 0.05 meV.

B. Current carried by quasiparticles

Let us now consider the case when the contribution of Cooper pairs is negligible. The only effect of the supercon-
ductor is then introduced by the presence of a gap in the density of states. Tunneling through the S barrier is only
possible for electrons with energy falling outside the gap region.

Assuming strong on-site Coulomb interactions, there are only four relevant charge states, described in terms of the
charge occupations: |np, na〉, with nα = 0, 1. We ignore the spin degree of freedom here, for simplicity. The different
tunneling rates in the passive dot are:

Γp,N1n,0n = ΓNfNn, (S39)

for electrons tunneling in from terminal N with the active dot having n electrons, and

Γp,S1n,0n = Γqp
SnfSn = ΓSνnfSn, (S40)

for electrons tunneling in from terminal S. For transitions into the active dot, we have Γa,βn1,n0 = Γβfβn. Here,
fβn = fβ(εp + nUap), when β = N,S, and fβn = fβ(εa + nUap), when β = L,R. For electrons tunneling out to the
respective terminals, we need to make the replacement fβn → 1−fβn. Since the passive system is unbiased, we define
fn ≡ fNn = fSn. This way, tunneling events involving the superconductor depend on the occupation of the active
dot. Note that we are assuming the simplest case where ΓN and ΓS are energy-independent, which emphasizes the
key role of the gap.

Writing down a rate equation for these states [S8], we find the drag current

Idrag = −e(ν0 − ν1)
ΓNΓS
~γ3

∑
β,β′=L,R

Aββ′ΓβΓβ′ , (S41)

with the prefactor γ3 > 0 setting the normalization of the steady-state density matrix, and

Aββ′ = f0fβ1(1− fβ0)− f1fβ0(1− fβ′1) +
1

2
(fβ0 + fβ′0 − fβ1 − fβ′1). (S42)

Remarkably, the presence of a drag current only relies on the asymmetry introduced by the gap, ν0 − ν1.
We obtain a simpler expression in the high bias limit, where fLn → 1 and fRn → 0, hence tunneling is unidirectional

in the active system and:

Idrag = −e (ν0 − ν1)(f0 − f1)ΓNΓSΓLΓR
(ΓL + ΓR) {ΓN [ΓN + (ν0 + ν1)ΓS + ΓL + ΓR] + ΓS(ν0ν1ΓS + ν1ΓL + ν0ΓR)} . (S43)
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FIG. S2. Drag current as a function of εp calculated using the NEGF (solid line) and the rate equation (dashed line) methods,
when the superconductor lead is replaced by a normal metal with a modified density of states, νS(ω). We take in (a) a flat
pseudo-gap and in (b) a Dynes density of states with η = ∆/6 for the normal lead. Additional parameters: ∆ = 1 meV,
ΓL = ΓR = ΓN = ΓS = 0.0016 meV, Up = 0 and Uap = kBT = 0.5 meV.

We find a simple interpretation from the above expression for the drag current by introducing a hard gap in the
density of states νn = g(εp + nUap)θ (|εp + nUap| −∆). For the moment, we ignore the explicit energy dependence
of the function g(E). Now, consider for example that the passive dot level lies in the gap of the superconductor,
−∆ < εp < ∆, but εp +Uap > ∆. Then, ν0 = 0 and ν1 = 1. Further, consider for simplicity that kBT � Uap, thereby
we can approximate f0 → 1 and f1 → 0. Then, the only possible way to charge the passive dot is by an electron
tunneling from N when the active dot is empty. Due to the gap, this electron cannot tunnel out until the active dot
becomes charged, in which case it can tunnel over the gap into the superconductor. This sequence is completed when
the active dot returns to its empty state, hence generating the drag effect. Note that the electron in the passive dot
might also tunnel back to N , in this case not contributing to the current. For finite temperatures, this sequence is
still the dominant process as f0 − f1 > 0. Therefore, the drag current is positive.

The level position with respect to the gap changes the sign of the current. In the opposite case when −∆ <
εp + Uap < ∆ and εp < −∆ (i.e., ν0 6= 0 and ν1 = 0), the passive dot can be charged both from N and S, but it can
only tunnel out to N , hence leading to a negative drag current. If both energies lie in the gap, then ν0 = ν1 = 0 and
there is no drag current.

Thus, for levels close to the Fermi energy the direction of the current is strongly dominated by the gap. Only in
the case where both energies fall outside the gap will the sign of the current depend on details of the density of states
through the function g(E).

1. NEGF vs. rate equation results

We can also compare the quasiparticle drag current obtained from the rate equation formalism with the NEGF
results. To this end, we replace the superconductor lead self-energy in Eq. (S9) with a normal lead self-energy as in
Eq. (S8) multiplied by an energy dependent density of states, νS(ω).

In Fig. S2(a), we show the results obtained from both NEGF and rate equation methods for a hard gap density
of states νS(ω) = Θ (|ω| −∆). In this case, the rate equation expression calculated from Eq. (S43) is able to predict
the correct sign of the drag current as a function of εp, as compared to the NEGF result. However, the rate equation
results show features with sharp edges, which differ from the smooth NEGF curves. We can understand this because
the rate equation method neglects quantum dot level broadenings due to tunneling. Hence, for piecewise constant
pseudo-gap conditions, the drag current is conditioned on εp and εp +Uap laying on different parts of the ν(E) profile
(one in and one out of the gap).

In order to correct this and introduce finite quasiparticle lifetimes, one typically considers the Dynes density of
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states [S9, S10] which is given by

ν(ω) =

∣∣∣∣∣Re

[
ω + iη√

(ω + iη)2 −∆2

]∣∣∣∣∣ , (S44)

where η is a positive constant. Figure S2(b) shows the drag current obtained from both methods using Eq. (S44). We
observe that the sign of the drag current is again correctly reproduced by both methods while the broadening of the
drag current is much better in this case. We remark the additional drag current sign change outside the gap due to
the energy dependence of the Dynes density of states near the gap edges.
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