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We investigate the minimal requirements that induce a nonreciprocal response to temperature differences
in a mesoscopic electronic conductor. We identify two distinct mechanisms involved in electron-electron
interactions, namely inelastic scattering and screening, that locally affect the internal properties of the
device, leading to thermal and thermoelectric rectification effects in the absence of inversion symmetry. We
propose resonant tunneling samples to efficiently exploit these effects, and find configurations acting as
bipolar thermoelectric diodes whose current flows in the same direction irrespective of the sign of the
temperature difference, a case of antireciprocity.
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Introduction—Macroscopic materials and devices typi-
cally show a linear response to temperature differences [1],
with deviations being described recently in extended low-
dimensional systems [2–5]. This regime is governed by the
principle of microreversibility, that has profound conse-
quences such as Onsager reciprocity relations [6]. This
means that reversing the temperature differences applied to
the two terminals of a conductor changes the sign of the
charge and heat currents, but not their magnitude. In the
quantum regime, and in the absence of strong interactions,
these properties can be derived from the scattering matrix
defining the conductor close to equilibrium [7]. Nanoscale
devices [8] that avoid these constraints are strongly
demanded to define diodes whose conduction properties
are sensitive to nonequilibrium states on chip (due to, e.g.,
undesired hot spots or leakage heat flows): nonreciprocal
currents are different in the forward (F) and backward (B)
configurations, when a temperature increase ΔT holds
either on the left or on the right terminal; see Fig. 1(a).
Most proposals so far are based on specific realizations
dominated by electron-electron interactions [9–16], with so
far very few experiments detecting nonreciprocal thermal
or thermoelectric responses to temperature differences
[17–19]. Some other works can be interpreted in terms of
noninteracting electrons, however, requiring the coupling to
additional degrees of freedom (phonons, photons) [20–29], a
quantum detector [30,31], or a third terminal [16,32–35], all
involving heat being dissipated elsewhere rather than rec-
tified. Photonic thermal rectification in quantum information
systems is also intensively investigated [36–47]. However,
an overall description of the microscopic origin of temper-
ature-driven electronic diodes is missing that is not restricted
to near equilibrium situations [48–52].
Here, we investigate the onset of temperature-driven

diode effects by exploring the geometric and dynamic

consequences of reduced dimensionality conductors: on
one hand, they have a low capacitance [53]; on the other
hand, their size can be comparable to the carrier thermal-
ization length [54]. Both features emphasize the importance
of electron-electron interactions: charge accumulation in
the conductor alters the internal potential, while the
momentum transfer involved in the Coulomb interaction
results in inelastic scattering, phase randomization, and
thermalization within the nanostructure. Importantly, we
will not require any external environment such that energy
is conserved in the conductor: at low temperatures, the
electron-phonon coupling is negligible. The key aspect is
that the state of the quantum system is sensitive to the
temperature distribution in the two terminals, for which one

FIG. 1. Scheme of a temperature-induced diode. (a) It consists
on three regions: 1 and 3, where transport is elastic, and 2, where
electrons may thermalize. Particle (I) and heat (J) currents
responding to differences in the temperature Tj of terminals
j ¼ L, R are sensitive to the forward (F) or backward (B)
configuration where temperature is increased in terminal L or R.
(b) Scheme of a probe modeling thermalization in region 2 that
absorbs (reflects) electrons with probability λ (1 − λ), and (c) of a
configuration where regions 1 and 2 are tunnel junctions with
resonances at energy ε0α with respect to the corresponding band
bottom, Uα.
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additionally needs to impose broken (left-right) inversion
symmetry.
To keep the discussion simple, we use a scattering

theory based description, which is well established close to
the linear regime as long as electron-electron interactions
can be treated in a mean field level [55–57]. Nontrivial
extensions of the theory are needed that account for
nonlinearities [58] (relating charge accumulation in the
conductor to rectification and diode effects [57]) and
inelastic scattering [59–61] (treated phenomenologically).
For this, we consider the configuration sketched in
Fig. 1(a): thermoelectric particle, I, and heat, J, currents
through a quantum conductor are due to temperature
differences between terminals L and R [62,63]. The
conductor is partitioned in three, with regions α ¼ 1, 3
sandwiching region 2, of length d, where electrons are
ballistic but have a finite probability λ to thermalize.
Despite its simplicity, this model can be applied to a wide
range of configurations, including quantum wires [64–68],
molecular junctions [69,70], chaotic cavities [71] (which
enhance thermalization [72]), or quantum dots [73].
Remarkably, it not only allows us to identify the relevant
mechanisms for thermoelectric and thermal rectification, it
also predicts an antireciprocal response: a bipolar thermo-
electric effect in particular configurations for which
particles flow in the same direction independently of
which terminal is hot. We discuss how this effect depends
on the breaking of the microreversibility principle for the
different involved mechanisms.
Scattering theory—The transport properties of a single-

channel conductor are described by its scattering matrix,
SðEÞ. With the current density in terminal j,

I jðEÞ ¼
2

h

X
k

jSkjðEÞj2½fjðEÞ − fkðEÞ�; ð1Þ

one writes the particle Ij ¼
R
dEI jðEÞ and heat currents

Jj ¼
R
dEðE − μjÞI jðEÞ [62], where fjðEÞ ¼ 1=f1þ

exp½ðE − μjÞ=kBTj�g is the Fermi function of terminal j
at temperature Tj and electrochemical potential μj, h, and
kB are the Planck and Boltzmann constants, and the
factor 2 accounts for spin degeneracy [74]. We consider
the scattering region to have a piecewise uniform band
bottom U≡ fUαg, which will influence the shape of
SðEÞ ¼ SðE;UÞ. For later convenience, we split them
into equilibrium (including the effect of gate voltages) and
nonequilibrium contributions: Uα ¼ Ueq

α þUneq
α . Note that

since the particle flow relies on the thermoelectric effect,
SðEÞ needs to be energy dependent [54].
We are interested in two-terminal conductors, with

j ¼ L, R, only driven by a temperature difference ΔT
applied either to L (the forward) or to R (the backward
case), with the opposite terminal being at temperature T,
and both having the same electrochemical potential,
μ ¼ μL ¼ μR. The diode effect appears when the particle

or heat currents, XiðTL; TRÞ ¼ IiL; J
i
L (i ¼ F, B), are

nonreciprocal, i.e., XF ≠ −XB, with XF ≡ XðT þ ΔT; TÞ
and XB ≡ XðT; T þ ΔTÞ. We quantify this effect with the
thermoelectric, RI, and thermal, RJ, rectification coeffi-
cients [75],

RX ¼ XF þ XB

jXFj þ jXBj ; ð2Þ

which saturate to �1 only when one of the currents is zero
(perfect diode) or when both have the same sign. In the
latest case, the diode is bipolar.
We readily see that assuming fully noninteracting par-

ticles, for which the scattering matrix is independent of the
reservoir temperatures, both currents Xi are antisymmetric
under the exchange TL ↔ TR [cf. Eq. (1) for j ¼ L and
k ¼ R], resulting in no rectification, RX ¼ 0. A diode
hence needs that the nanostructure is sensitive to the
terminal temperatures.
In what follows, we explore the role of interactions as a

requisite for thermal and thermoelectric rectification. We
consider two separate ways in which interactions can
modify the electron propagation through the system,
namely inelastic scattering and screening effects.
Inelastic scattering—When two electrons interact, they

exchange momentum, which involves that they change their
energies and randomize their kinetic phases, limiting both
the elastic and phase-coherent transport implicit in Eq. (1),
while conserving their total energy. In scattering theory, this
effect is routinely described phenomenologically by intro-
ducing a fictitious probe [60,61,76–80] that absorbs elec-
trons with probability λ [81] and reinjects them with a
random phase and thermalized with a distribution fpðEÞ
whose electrochemical potential, μp, and temperature, Tp,
are determined by imposing that the probe injects no particle
and no heat currents on average, Ip ¼ Jp ¼ 0. Intuitively λ
relates the inelastic scattering length linel to the typical size
of the system, l: λ ≪ 1 when linel ≫ l, and λ ≈ 1 in the
opposite limit. Quantum Hall realizations relate λ to the
transmission of a quantum point contact [82]. Trajectories
involving the probe do not obey microreversibility. On a
microscopic description of the particular models, there may
be small deviations from a Fermi distribution function,
especially at very low temperatures and far from equilibrium
[83], that are not relevant for our discussion here. Our
thermalization probe, sketched in Fig. 1(b), is hence
formally equivalent to a thermometer [84–87] and useful
to discuss thermalization in hot-carrier solar cells [88],
broken-time-reversal-induced electrical diodes [79], and
correlations in edge channels [89]. Note that while the flow
of heat will be determined by TL − TR, the particle currents
may be affected by the competition of the thermoelectric
effect and the developed μp − μ.
The rectification properties of thermalization is proven

analytically by considering a simple configuration in
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which all electrons in the conductor are thermalized
(λ ¼ 1), with region 3 being transparent (so SpR ¼ 1)
and region 1 being a barrier with transmission probability
T ðEÞ¼ jSpLðEÞj2; cf. Fig. 1(a). In the limit μ − Uα ≫ kBT,
the contributions of terminal R to the currents into the
probe are given by

R
dE½fRðEÞ − fpðEÞ� ¼ μ − μp andR

dEE½fRðEÞ − fpðEÞ� ¼ π2ðT2
R − T2

pÞ=6. The other con-
tribution to the probe currents coincides with Xi, which are
then determined by the probe conditions

Ii ¼ 2

h
ðμp;i − μÞ and Ji ¼ π2

3h
ðT2

p;i − T2
R;iÞ; ð3Þ

with TR;F ¼ T and TR;B ¼ T þ ΔT. The spatial asymmetry
here is due to the position of the thermalization region with
respect to the thermoelectric element, which is enough to
have TF

p ≠ TB
p. A thermoelectric diode needs that T ðEÞ

breaks electron-hole symmetry, so region 1 has a finite
electric response giving μFp ≠ μBp [81].
We now consider a more specific setup, sketched in

Fig. 1(c), that allows us to control the degree of asymmetry
experimentally [73,90]. We choose the scattering regions 1
and 3 to be resonant-tunneling barriers (RTBs), known
efficient thermoelectric devices [91–95]. We model them
by Breit-Wigner resonances [96] with energy ε0α and
inverse lifetime Γα=ℏ [61] and transmission amplitude [81]

τα ¼
−iΓα

E − ε0α −Uα þ iΓα
; ðα ¼ 1; 3Þ: ð4Þ

For simplicity, we assume Γ1 ¼ Γ3 ≡ Γ, and a totally
coupled probe (λ ¼ 1) so direct elastic transport between
terminals L and R is suppressed, a configuration of
experimental relevance [73,97,98]. We incorporate Ueq

α ,
which allows us to control the system asymmetry via gate
voltages, in the resonance energies εα ¼ ε0α þ Ueq

α , and
neglect Uneq

α here.
The resulting currents and rectification coefficients are

plotted in Figs. 2(a)–2(d) by tuning the resonance energies
of the barriers. As expected, broken inversion symmetry
when ε1 ≠ ε3 results in finiteRI andRJ, whileRX ¼ 0 for
symmetric cases with ε1 ¼ ε3.
The antisymmetric configuration with ε1 − μ ¼ μ − ε3

is particularly interesting: while inversion symmetry is
maximally broken, it respects electron-hole symmetry in
equilibrium. The two RTBs have opposite thermoelectric
contributions resulting in a vanishing linear response for
particles [see Fig. 2(a)]: writing Ii ¼ P

n L
ðnÞ;iΔTn, we get

Lð1Þ;i ¼ 0, with the probe developing a temperature TF
p ¼

TB
p ¼ T þ ΔT=2 and electrochemical potentials of oppo-

site sign in F and B, μFp þ μBp ¼ 2μ [81]. This affects the
nonlinear terms (of order ≥ ΔT2), making IF and IB vanish
at different points (determined by the corresponding μp
and Tp) when, e.g., tuning ε1; see inset in Fig. 2(a). At the

vanishing points, the current flows only in one of the
configurations, as an ideal thermoelectric diode with
RI ¼ 1 (working, however, only for a particular ΔT).
Most remarkably, between vanishing points, the current
flows in the same direction irrespective of which terminal
is hot. This is what we call a bipolar thermoelectric (or
antireciprocal) diode. Furthermore, at the antisymmetric
condition ε1 þ ε3 ¼ 2μ, the problem symmetry imposes
IF ¼ IB [81], with their sign being tunable and maximal
for widths Γ ≈ 2kBT (consistent with similar configura-
tions [99–101]); see Fig. 2(e).
Differently, the heat currents do not change sign (as

imposed by the second law) [see Fig. 2(b)], which avoids a
bipolar thermal diode if μj ¼ μ. We find RJ ∼ 15%,
cf. Fig. 2(d), and RJ ¼ 0 for ðε1 − μÞ ¼ �ðε3 − μÞ, where
both RTBs conduct heat equally.
Screening effects—The injection of a charge current is

able to alter the potential landscape of the conductor via
charge accumulation and screening effects in the nearby
gates defining the scattering regions [102,103]. This
consequence of electron-electron interaction is in fact

FIG. 2. Thermalization diode. Forward and backward (a)
particle and (b) heat currents as functions of ε1 tuned along
ðε3 − μÞ=kBT ¼ 4.8 and 8.7, respectively, indicated by black
lines in (c) and (d). The latter panels show the thermoelectric and
heat rectification coefficients as functions of both resonances.
The thermalization probe is fully coupled (λ ¼ 1), and μ ≫ Uα,
avoiding band bottom effects. The linear response current,
IFlin ¼ Lð1ÞFΔT, is shown for comparison in (a). Parameters:
Γ ¼ 3kBT, μ ¼ 40kBT, and ΔT=T ¼ 1.
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needed to ensure gauge invariance in nonlinear scenarios
[58]. Deviations from the linear regime leading to finite
thermal and thermoelectric rectification have been dis-
cussed in the weakly interacting regime [48,50–52].
We again test this mechanism in the setup of Fig. 1(c),

now with λ ¼ 0, so that transport between terminals is fully
elastic. Then, an important contribution will be the internal
reflections in region 2, leading to Fabry-Perot interferences.
Scattering at the barriers is again given by Eq. (4). Screening
affects the internal electrostatic energies, U, by developing
finite Uneq

α ðTL; TRÞ, and modifies the scattering matrix
of the whole system, SðE;UÞ [81]. The energies U are
linked by

δqα ¼
X

β¼1;2;3≠α
CαβðUβ −UαÞ=ð−eÞ; ð5Þ

where δqα is the injected charge in region α with respect to
the equilibrium scenario, and Cαβ the geometric capacitance
between regions α and β, treated here as a parameter. The
excess charge can be calculated with the aid of the partial
local densities of states of the system, or injectivities [103],

νjαðE;UÞ ¼
i
4π

X
k

�
S†
kj

δSkj

δUα
−
δS†

kj

δUα
Skj

�
; ð6Þ

defining the overlap of waves in region α with states
injected at terminal j, via

δqα
−e

¼
Z

dE
X
j

½νjαðE;UÞfjðEÞ − νeqjαfeqðEÞ�; ð7Þ

with νeqjα and feqðEÞ evaluated at equilibrium. Note that we
do not assume a weak deviation from equilibrium [104].
We show in Figs. 3(a) and 3(b) the resulting currents in

the limit Cαβ → 0 for small conductors. The thermoelectric
response shows an oscillating behavior, with sign changes
close to the crossings of the barrier resonances by the
chemical potential, and at the crossing of the two reso-
nances. As U depends on the temperature distribution,
these crossings occur at different points in F and B, again
resulting in regions with RI ¼ 1; see Fig. 3(c). The heat
currents do not change sign, finding wide regions with
strong rectification (RJ ∼ 0.2) close to the resonance
condition ε1 ≈ ε3; see Fig. 3(d).
Screening hence also induces a bipolar thermoelectric

diode, in this case respecting microreversibility:
jSLRðE;UÞj2 ¼ jSRLðE;UÞj2 ¼ T ðEÞ. To further under-
stand this mechanism, let us concentrate on the particular
configuration marked by ⋆ in Fig. 3(a), where IF ¼ IB.
There, both resonances are over the chemical potential and
slightly detuned, ε3 > ε1 > μ. The transmission probabil-
ity T ðEÞ [see Fig. 3(e)] shows two main features with
opposite thermoelectric contributions: a wide double peak
around ε1; ε3 > μ, and a sharp peak at E < μ due to the

Fabry-Perot interference in α ¼ 2. Note that T ðE ≈ μÞ is
flat, which suppresses the linear term (Lð1Þ ∝ ∂T =∂E)
according to the Mott formula [54]. In F, increasing TL
increases δq1 and hence U1, bringing the two Breit-Wigner
resonances closer and resulting in a sharper and higher
double peak at positive energies; see Fig. 3(e). Oppositely,
the corresponding increase of U3 in B separates the two
resonances, making the double peak wider and lower, i.e.,
reducing its contribution to IB. Eventually, the opposite
contribution of the Fabry-Perot peak at negative energies
dominates, inducing IB to change sign [81]. This bipolar
diode is hence induced not only by screening but also by
quantum interference.
The bipolar effect persists for higher ΔT, cf. Fig. 3(f),

and the thermal diode is robust: one polarity exhibits
vanishing and even negative thermal differential conduct-
ance for largeΔT [81]; see Fig. 3(g). We attribute this effect
to the same mechanism discussed above.
Mixed regime—To confirm the quantum interference

origin of the screening-induced bipolar thermoelectric

FIG. 3. Rectification by screening. (a) Particle and (b) heat
currents as functions of ε1, for fixed ðε3 − μÞ=kBT ¼ 8.2 and 7.5
as marked by black lines in (c) and (d), respectively. The latter
show the dependence of RI and RJ with gating the RTBs.
The green curve in (a) shows the current obtained by imposing
the equilibrium transmission probability, for comparison.
(e) Transmission probability in equilibrium and in the F and
B configurations at the point marked by ⋆ in (a), for which the
temperature dependence of the charge and heat currents are
shown in (f) and (g). Parameters: λ ¼ 0, d ¼ 2h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mkBT

p
,

Γ ¼ kBT, μ ¼ 40kBT, ΔT=T ¼ 1.
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diode, we compute a mixed configuration where screening
coexists with thermalization, cf. Fig. 4. For λ ¼ 1, the probe
avoids any Fabry-Perot interference in region 2. Hence
screening only contributes to shift U1 and U3. By compar-
ing Figs. 2, 3, and 4 we see that the currents are indeed
dominated by thermalization, and the interference-induced
off-diagonal features in RI are strongly suppressed [81].
Still, we find a thermalization-induced bipolar effect
around ε1 − μ ¼ μ − ε3.
Conclusions—We have provided a fully quantum

mechanical description of temperature-induced mesoscopic
diodes by considering interaction-induced thermalization
and screening affecting elastic transport (strongly correlated
effects like Coulomb blockade, however, are not covered
[105]). With this we find diode effects both for particle and
thermal currents. Remarkably, we find an antireciprocal
response in the form of a bipolar thermoelectric effect
caused by both thermalization and screening-controlled
quantum interference in ballistic resonant tunneling con-
figurations. While the fully thermalized case can be inter-
preted in terms of locally reversing currents between three
regions (the reservoirs and the internal thermalization
region) at different thermal configurations, the fully
coherent case exploits nonequilibrium states and quantum
interference to achieve antireciprocity while maintaining
microreversibility. In both cases, it occurs when sharp
spectral features with opposite but similar in magnitude
thermoelectric contributions depend differently on the local
reaction of the conductor to the nonequilibrium situation.
We find measurable currents of a few nA at mK temper-
atures in state of the art configurations [73,98].
Related effects have been predicted before, however,

requiring dissipation [26,30,31] or multiterminal configu-
rations [33–35]. Differently, our treatment imposes particle
and energy conservation in the two-terminal diode. Our
results add to other recently found bipolar nonlinear
thermoelectric functionalities in superconducting junctions

[106–108] (based on spontaneous symmetry breaking
mechanisms), contributing to set the base for thermally
driven on-chip devices.
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