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In this supplementary material we give additional de-
tails useful for the discussion in the main text. Sec-
tion, S-I presents the scattering matrices of the differ-
ent regions of the conductor and how they lead to the
global scattering matrix of the system. Section S-II gives
a derivation of the analytical results demonstrating the
rectification induced by a thermalization probe in a min-
imal model. The model including two resonant tunneling
barriers separated by a thermalization probe is analyzed
in Secs. S-III (linear response) and S-IV. The later in-
cludes a discussion of the physical mechanism leading to
the bipolar thermoelectric diode, the effect of the cou-
pling to the thermalization probe and the temperature
dependence. The physical interpretation and tempera-
ture dependence of the screening-induced bipolar diode
is given in Sec. S-V. Finally, we include in Sec. S-VI plots
of the currents and rectification coefficients in different
parameter configurations.

S-I. SCATTERING MATRICES

A. Matrix for the coupling to the probe

The coupling to the probe terminal is introduced by
the scattering matrix [S1]:
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 , (S1)

where λ is the probability of an electron in region 2 to be
absorbed and thermalized by the probe. In the matrix,
indices 1 and 2 correspond to the conductor channels
connecting to regions 1 and 3; indices 3 and 4 correspond
to channels connected to the probe terminal. Note that
λ is treated in the same footing as other transmission
probabilities in the scattering region.

In the configuration considered in the main text, for
λ = 0, transport between the other conductor terminals
(L and R) is elastic. For λ = 1, all electrons are ther-
malized to the probe distribution when entering the cen-
tral region. Transport can in that case be understood in
terms of scattering between three thermal reservoirs (L,
R and the probe) separated by regions 1 and 3.

B. Resonant tuneling barriers

In a mesoscopic conductor, resonant tunneling appears
typically in double-barrier structures forming quantum
dots or quantum wells. Considering symmetric barriers
and a single resonant state, the single-channel scattering
can be described by a Breit-Wigner [S2] scattering matrix

SRTB =

(
1 + τ τ
τ 1 + τ

)
, (S2)

with transmission amplitude

τ =
−iΓ

E − ε+ iΓ
, (S3)

where ε is the energy of the resonant state and Γ/~ is its
inverse lifetime due to coupling to the modes outside the
double barrier [S1].

C. Scattering matrix for the total system

When the transport is fully elastic in the system the
total scattering matrix have to account for processes
that involve both scattering regions S1, S3, and the
possible coherent reflections between them, where elec-
trons accumulate a kinetic phase k(E)d; with k(E) =√

2m(E − U2) the electron wavenumber in region 2. This
is done by taking into account that e.g., the right-
outgoing wave from region 1 is the left-ingoing wave at
region 3, multiplied by a phase factor eik(E)d, and solv-
ing for all the outgoing waves as functions of the ingoing
ones [S3, S4]. Defining Eα = E−Uα, the total scattering
matrix reads:

S(E,U) =

(
r(E,U) τ(E,U)
τ(E,U) r′(E,U)

)
,

τ(E,U) =
eik(E)dΓ2

eik(E)d/l0E1E3 + (E1 − iΓ)(E3 − iΓ)

r(E,U) =
E1(E3 − iΓ)− eik(E)dE3(E1 − iΓ)

eik(E)dE1E3 + (E1 − iΓ)(E3 − iΓ)

r′(E,U) =
E3(E1 − iΓ)− eik(E)dE1(E3 − iΓ)

eik(E)dE1E3 + (E1 − iΓ)(E3 − iΓ)
.

(S4)

One should be careful when using the scattering matrix
obtained by this approach to calculate injectivities for
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FIG. S1. Minimal configuration showing rectification by ther-
malization with a fully transparent coupling (λ = 1) to a
probe terminal, p. A barrier represented by the scattering
matrix S is placed between terminal L and the probe.

energies below U, as it gives spurious divergences near
the band bottom that are not present when using exact
wave-function matching methods. This is relevant for the
determination of the excess injected charge, as it involve
the calculation of an integral starting from the energy
origin. Here we have dealt numerically with this issue.

S-II. MINIMAL MODEL WITH
THERMALIZATION

Consider the situation depicted in Fig. S1, with a
fully transparently coupled (λ = 1) thermalization probe
terminal, p, and a scattering region connecting it with
terminal L with a transmission probability T (E) =
|SLp(E)|2. Electrons injected from terminal R are all
absorbed by the probe. We impose µL = µR = µ to the
conductor terminals and Ip = Jp = 0 to the probe.

The conductor currents are given by

IL =
2

h

∫
dET (E)(fL − fp) (S5)

IR =
2

h

∫
dE(fR − fp) =

2

h
(µ− µp), (S6)

for particles and

JL =
2

h

∫
dE(E − µ)T (E)(fL − fp) (S7)

JR =
2

h

∫
dE(E − µ)(fR − fp) =

π2

3h
(T 2
R − T 2

p ), (S8)

for heat. In the probe, Ip = −IL − IR and Jp = −JL −
JR. With charge and energy conservation, the current
through the conductor is fully determined by the exact
expressions for IR and JR above given by µ−µp and T 2

R−
T 2
p . In order to have a diode effect, such that IFL 6= IBL

and JFL 6= JBL , it is hence enough to prove that µFp 6= µBp
and TFp 6= TBp , respectively.

For the thermoelectric case, it is easy to show that
if T is energy independent, so it induces no thermo-
electric effect in the probe, we get IL = 2T (µ − µp)/h

independently of the temperature TL. Therefore, the
only current-conserving solution is µp = µ, indeed giving
IF = IB = 0. If we now consider an energy-dependent
transmission probability,

IFL =
2

h

∫
dET (E)[f(T + ∆T )− fp] (S9)

and

IBL =
2

h

∫
dET (E)[f(T )− fp] (S10)

are necessarily different, as long as the scatterer breaks
electron-hole symmetry i.e., if it has a finite thermoelectic
response. In that case, from Eq. (S6) we get µFp 6= µBp .

For the heat currents, it is sufficient to assume that
0 < T < 1. In the simplest case where it is energy
independent, we get

JFL =
T π2

3h
[(T+∆T )2 − (TFp )2] =

π2

3h
[T 2 − (TFp )2]

JBL =
T π2

3h
[T 2 − (TFp )2] =

π2

3h
[(T+∆T )2 − (TFp )2].

(S11)

Solving for the probe temperatures, we get:

(TFp )2 = (T − 1)T 2 + T (∆T 2 + 2T∆T ) (S12)

(TBp )2 = (T − 1)T 2 − T (∆T 2 + 2T∆T ), (S13)

clearly showing a diode effect, TFp 6= TBp .

S-III. LINEAR RESPONSE OF A
THERMALIZATION PROBE

Consider two scattering regions, α = 1, 3 separated
by a transparently coupled probe terminal, such that all
electrons injected from terminals L and R are either re-
flected at the barriers or absorbed by the probe. The
electrochemical potential, µp, and temperature, Tp, of
the probe need to be calculated to fulfill the conditions
Ip = Jp = 0. Current is only due to a temperature dif-
ference ∆T applied to terminal L in the forward (F), or
to R in the backward configuration (B). Let us consider
first the forward case, where we expand the particle and
heat currents as:

IFL = −G1∆µFp + L1(∆T −∆TFp ) (S14)

IFR = −G3∆µFp − L3∆TFp (S15)

JFL = −M1∆µFp +K1(∆T −∆TFp ) (S16)

JFR = −M3∆µFp −K3∆TFp , (S17)

where ∆µFp = µFp − µ and ∆TFp = TFp − T . Gα, Lα,
Mα and Kα are the electrical conductance, Seebeck co-
efficient, Peltier coefficient and thermal conductance of
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scattering region α, respectively. Solving for the probe
conditions, we get:

∆µFp =
L1K3 − L3K1

GΣKΣ − LΣMΣ
∆T

∆TFp =
GΣK1 − L1MΣ

GΣKΣ − LΣMΣ
∆T,

(S18)

where the subindex Σ indicates the sum over L and R.
With these, we get the currents:

IFL =
G1L3K1 +G3L1K3 − L1L3MΣ

GΣKΣ − LΣMΣ
∆T

JFL =
K1K3GΣ −K1L3M3 −K3L1M1

GΣKΣ − LΣMΣ
∆T.

(S19)

For the backward currents, we simply replace 1 ↔ 3 in
Eqs. (S18) and (S19). This way we obtain

∆µFp = −∆µB , (S20)

as well as IFL = −IBL and JFL = −JBL . As expected, there
is no rectification in the linear regime.

A. Antisymmetric configuration

A particularly interesting case is when the transmis-
sion of region 3, T3(E) is the reflection of T1(E) over the
electrochemical potential. Then, G1 = G3, L1 = −L3,
M1 = −M3 and K1 = K3. In that case, we get:

∆µFp =
L1

2G1
∆T and ∆TFp =

∆T

2
, (S21)

and

IFL = 0 and JFL =
K

2
∆T. (S22)

In the same way, IBL = 0. Therefore in this case only the
nonlinear contributions are responsible for the thermo-
electric particle currents.

S-IV. BIPOLAR DIODE BY THERMALIZATION

The thermalization-induced bipolar thermoelectric
diode occurs around the condition when the resonances
of scatterers 1 and 3 are antisymmetric with respect to
the base electrochemical potential, µ, and have a similar
(but opposite) response to electrochemical and tempera-
ture differences with the probe terminal. That is the case
represented in Fig. S2. In order to understand this effect,
it is important to first notice that the temperature differ-
ence is the only thermodynamic force. Hence, the flow of
heat is well defined by the second law of thermodynamics
(and by everyone’s intuition) and goes from the hot to
the cold reservoir, i.e., it has opposite sign in the forward
and the backward configurations. Differently, the sign of

IF
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TL

TR
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µp

Tp

Tp

µ

µ

(a)

(b)

(c)

FIG. S2. Mechanism for bipolar rectification induced by the
thermalization probe. The two panels show how the contrib-
tions to the particle flows through the two barriers change
with the chemical potential developed at the probe in (a)
the forward and (b) the backward configurations. The left
column shows the sign of the (purely) thermoelectric contri-
butions when µp = µ. In the right column, these contribu-
tions have modified µp, resulting in the reversal of the flows
through one of the barriers. (c) Electrochemical potential and
temperature developed at the thermalization probe in the for-
ward and backward configurations. Parameters: Γ = 3kBT ,
µ = 40kBT , and ∆T/T = 1.

the thermoelectric current is not fixed by any thermo-
dynamic law. In this particular case, it depends on the
developed potential in the probe.

Consider first the forward configuration, cf. Fig. S2(a),
in which the thermalization probe initially has an electro-
chemical potential µ but its temperature is already the
one fixed by the probe conditions Ip = Jp = 0. Clearly,
TR < Tp < TL, see Fig. S2(c). For concreteness, we fix
ε1 = −ε3 > µ. In such a situation, the thermoelectric
response of the two resonant tunneling barriers results in
charge flowing into the conductor: particles flow from
the hotter to the colder reservoir when the resonance
is over the electrochemical potential, and in the oppo-
site direction when it is below [S5]. The probe terminal
hence increases its electrochemical potential, as shown in
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FIG. S3. Effect of the coupling to the thermalization probe
on (a) the thermoelectric and (b) thermal rectification coeffi-
cients. (c) and (d) show the corresponding particle and heat
currents. Parameters: Γ = 3kBT , µ = 40kBT , ∆T = T ,
d = 2h/

√
8mkBT and (ε3 − µ) = −5kBT .

Fig. S2(c). The voltage established between terminals
L and R and the probe introduces another contribution
to the particle current (additional to the temperature-
driven thermoelectric response). In this particular con-
figuration, the distance ε1 − µp is reduced, while ε3 − µp
increases, so transport through barrier 1 is most sensi-
tive to this change. Eventually (when µp − µ attains
the thermovoltage of barrier 1 under a temperature dif-
ference TL − Tp), the voltage-induced contribution de-
veloped by thermalization is able to reverse the flow of
particles through barrier 1. The particle current through
the conductor then flows from R to L and IF < 0.

In the backward configuration, see Fig. S2(b), the same
arguments apply, with the difference that, as the reso-
nances are opposite, when exchanging the temperatures
TL and TR, the initial thermoelectric contributions have
the opposite sign, i.e., the flow into the L and R ter-
minals. Then, the electrochemical potential of the probe
tends to diminish, , see Fig. S2(c), again approaching the
resonance coupled to the hot reservoir (ε3), so it is the
contribution through barrier 3 the one that is finally re-
versed. As a consequence, we again have particles flowing
from R to L, i.e., IB < 0.

In the perfectly antisymmetric case, we furthermore
have IF = IB < 0.

FIG. S4. Thermalization diode. Forward and backward (a)
particle and (b) heat currents as functions of ε1 tuned along
(ε3−µ)/kBT = 4.8 and 8.7, respectively, indicated by black
lines in (c) and (d), correspondingly. The later panels show
the thermoelectric and heat rectification coefficients, as func-
tions of both resonances. The thermalization probe is fully
coupled (λ = 1), and µ � Uα, so the band bottom has no
effect. Parameters: Γ = 3kBT , µ = 40kBT , and ∆T/T = 1/2.

A. Effect of the finite coupling to the probe

In the main text we have discussed the case where all
the electrons entering the center region are thermalized
by the probe, with λ = 1. The effect of a finite coupling
to the probe is plotted in Fig. S3, showing that the recti-
fication coefficients and currents have the same qualita-
tive behaviour. In particular, the bipolar thermoelectric
effect is robust to finite λ, though the region where it
appears is reduced with the opacity of the coupling.

B. Temperature dependence

We plot in Fig. S4 the currents and rectification coef-
ficient for ∆T = T/2, showing that, though expectedly
weaker, the same effects discussed in the main text for
∆T = T also appear in this case. Antireciprocal ther-
moelectric currents are restricted to a narrower region
around ε1 = −ε3. This is because the shift of µ2 is not
large enough to invert one of the currents far from the
antisymmetric condition.

Figure S5 shows the temperature dependence of the
thermalization-induced bipolar thermoelectric and ther-
mal diode effects for two configurations of Fig. 3 of the
main text. The one for the thermoelectric case is chosen
slightly de-tuned from the antisymmetric configuration
with ε1 + ε3 = 0, for which we find RI = 1 for ev-
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FIG. S5. Temperature dependence of the thermalization-
induced rectification. Forward and backward (a) particle
and (b) heat currents as functions of ∆T for temperatures
T = 1.8T0 and 1.2T0, respectively, indicated by black lines
in (c) and (d), correspondingly. The later panels show the
thermoelectric and heat rectification coefficients, as functions
of ∆T/T0 and T/T0, for configurations of Fig. 3 of the main
text with (ε1 − µ)/kBT0 = −6 and 0, and (ε1 − µ)/kBT0 = 7
and 10 respectively. The remaining parameters are the same,
with λ = 1.

ery ∆T , T . In this particular configuration, the bipolar
thermoelectric diode still occurs for almost all tempera-
ture configurations, see Figs. S5(a) and S5(c). Only close
to the linear response regime, with small temperature
differences, we have RI < 1. As shown in Figs. S5(b)
and S5(d), the difference of the forward and backward
currents increases with ∆T , as expected. The thermal
rectification coefficient however saturates. We have in-
troduced a new reference temperature T0 specifically for
this plot.

S-V. BIPOLAR DIODE BY SCREENING
EFFECTS

The screening-induced bipolar thermoelectric diode oc-
curs when the transmission energy dependence presents
two nonzero contributions, one above and one below the
reference electrochemical potential, as sketched in Fig. S6
and plotted in Fig. S7(a): a wide double-peak at pos-
itive energies, due to the two Breit-Wigner resonances
being close in energy, and a sharp peak at negative en-
ergies, due to the Fabry-Perot interference in region 2.
The nonlinear response will depend on how the inter-
nal energies Uα react to the temperature increase in one
of the reservoirs, therefore modifying the overall trans-

TL TR

ε1ε1

ε3ε3

U1 U1U2 U2

U3U3

µ

(a) (b)

(c)

(d)

FIG. S6. Scheme of the developed internal potentials, Uα,
induced by charge accumulation in (a) the forward and (b)
the backward configurations. Solid lines mark the energy of
the resonances, ε1 < ε3, with the dotted line indicating the
position of a Fabry-Perot interference peak. Under the appro-
priate conditions, this effect results in a bipolar thermoelectric
diode with particles flowing from L to R in both configura-
tions. Developed nonequilibrium electrostatic energies in the
three regions for the (c) forward and (d) backward configu-
rations. Same configuration as in Fig. 3 in the main text,
with λ = 0, d = 2h/

√
8mkBT , Γ = 1kBT , µ = 40kBT and

∆T = T .

mission probability, T ({U}). The internal energies are
obtained self-consistently by solving the change in the in-
duced charge, δqα, in each region. This is given by the
injectivities νlα from terminal j into region α via

δqα
−e =

∫
dE
∑
j

[νjα(E,U)fj(E)−νeq
jαfeq(E)], (S23)

see main text. Clearly for a given region the injectivity is
larger for the terminal with which it is directly coupled
i.e., νL1 � νR1 and νR3 � νL3, see Figs. S7(b) and
S7(c). Hence, one expects the potential of region 1(3)
to change more in the forward (backward) configuration.
The opposite region in each configuration is expected to
be barely affected by the temperature increase, therefore
this small modification can then also be influenced by the
charging of the other regions via the self-consistency.

To get a better intuition, let us focus on a particular
configuration, as the one sketched in Fig. S6, with both
Breit-Wigner resonances having energies over the chem-
ical potential, µ < ε1 < ε3. Close to equilibrium (for
small temperature differences), the current is dominated
by the Breit-Wigner resonances, so particles flow from
L to R in the forward, and opposite in the backward
configuration. Consider first the forward configuration,
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FIG. S7. (a) Transmission probability when the system is in
equilibrium (solid green), and in the forward (dashed black)
and backward (dotted red) configurations, once the electro-
static potentials have build-up in the three areas as a result
of the corresponding non-equilibrium situation. (b)-(c) In-
jectivities in regions α = 1, 2, 3 from reservoirs L and R,
respectively. The parameters correspond to the ones where
IB = IF 6= 0 in Fig. 3(e) of the main text, marked by ? in
Fig. 3(a) [as well in Fig. S6(c) and S6(d)].

depicted in Fig. S6(a). The change in the nonequilibrium
electrostatic energies is shown in Fig. S6(c) as the reso-
nances are tuned. The temperature increase in terminal
L contributes to charge region 1 by increasing the occu-
pation of the lead at the energies around ε1 (for enhanc-
ing the tail of the Fermi distribution). Hence, U1 is ex-
pected to increase. The next region to consider is region
2, whose coupling to terminal L is weaker. This region
features a sharp interference peak below the chemical po-
tential, thus resulting on a decrease of the charge with
respect to the equilibrium state (states of the lead below
the chemical potential are less occupied when increasing
the terminal temperature), so U2 decreases. Finally, re-
gion 3 is in this case little affected by the temperature
variation in terminal L, but it can be indirectly affected
by the potential variation in the regions in between: the
change in U1 and U2 also affects region 3 and compete
in the resulting U3 is a complicated manner. In this par-
ticular case, it also decreases. With this, the two Breit-
Wigner resonances in regions 1 and 3 are then brought
closer in energy, resulting in a narrower and sharper fea-
ture at positive energies in the transmission probability,
see Fig. S7(a), which is favorable for the thermoelectric
current from L to R.

The same arguments apply to the backward config-
uration, depicted in Fig. S6(b). The developed Uneq

α

are shown in Fig. S6(d). In this case, it results in U1

decreasing and U3 increasing, which separates the two
Breit-Wigner resonances and makes the double peak at
positive energies wider and lower, see Fig. S7(a). Thus
the thermoelectric contribution at positive energies (from

FIG. S8. Rectification by screening. Forward and back-
ward (a) particle and (b) heat currents as functions of ε1,
for fixed (ε3 − µ)/kbT = 8.2 and 7.5 as marked by black
lines in (c) and (d), respectively. The later show the depen-
dence ofRI andRJ with gating the RTBs. Parameters: λ=0,
d = 2h/

√
8mkBT , Γ = kBT , µ = 40kBT , ∆T/T = 1/2.

the hot R to the cold L) is reduced. The Fabry-Perot in-
terference peak, being at negative energies contributes to
transport in the opposite direction (from L to R). Eventu-
ally, the Breit-Wigner contribution gets so weak that the
Fabry-Perot contribution, which is robust to the change
in temperature, starts to dominate. At that point, the
current through the system changes sign, so particles flow
from L to R, as in the forward configuration.

In other words, the antireciprocal effect is due to a
change of the contribution of positive- and negative-
energy spectral features, which contribute oppositely to
the thermoelectric response.

A. Temperature dependence

Figure S8 shows the thermoelectric and thermal rectifi-
cation properties at a lower temperature difference than
the one considered in the main text, ∆T = T/2. The
same features observed in Fig. 3 of the main text ap-
pear, with smaller rectification coefficients, as expected.
The bipolar thermoelectric diode occurs in narrower re-
gions of the gate-voltage map.

The temperature dependence is plotted in Fig. S9 for
the particular gating corresponding to Fig. S7 (marked
with a ? in Fig. 3(a) of the main text). It shows that the
bipolar thermoelectric diode occurs for wide temperature
ranges, cf. Figs. S9(a) and S9(c), showing a threshold
at low temperatures and temperature gradients which is
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FIG. S9. Temperature dependence of the screening induced
rectification. Forward and backward (a) particle and (b) heat
currents as functions of ∆T for temperatures T = 1.1T0 and
1.8T0, respectively, indicated by black lines in (c) and (d),
correspondingly. The later panels show the thermoelectric
and heat rectification coefficients, as functions of ∆T/T0 and
T/T0. The remaining parameters correspond to the ones
where IB = IF 6= 0 in Fig. 3(e) of the main text, marked
by ? in Fig. 3(a) [as well in Fig. S6(c) and S6(d)].

tunable with gating. The thermal currents show a ro-
bust diode effect, with the IF increasing with ∆T , while
IB saturates and even shows negative thermal differen-
tial conductance for large enough ∆T , cf. Fig. S9(b).
The thermal rectification coefficient increases both with
T and ∆T , see Fig. S9(d).

S-VI. CHARGE AND HEAT CURRENTS

Figures S10, S11, S12 and S13 show the forward and
backward particle and heat currents as well as the ther-
moelectric and thermal rectification coefficients for the
different configurations as functions of the quantum dot
linewidth, Γ, and of the distance between barriers 1
and 3, d (for the thermalization free case with λ = 0,
Fig. S12). The thermoelectric currents reach values of
the order of nA at T = 1 K and ∆T/T = 1, where a
bidimensional GaAs device would have a carrier concen-
tration of ∼ 1012 cm−2 and sizes of tens of nm for the
explored regimes.
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FIG. S10. (a)-(c) Forward and (d)-(f) backward particle currents, and (g)-(i) thermoelectric rectification for the double resonant
tunneling barrier conductor sandwiching a strong thermalization region (λ = 1) and neglecting screening, as functions of the
resonance energies, ε1 and ε3 and for increasing quantum dot linewidth, Γ. (j)-(l), (m)-(o) and (p)-(r) show the corresponding
the heat quantities. In all cases, ∆T = T .

FIG. S11. Same as Fig. S10 in the elastic case with λ = 0 including screening effects, for d = 2h/
√

8mkBT and µ = 40kBT .
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FIG. S12. Same as Fig. S11 for Γ = kBT and for different lengths of region 2, d, which controls the position and width of the
Fabry-Perot resonance at energies below the chemical potential.

FIG. S13. Same as Fig. S11 in the strong thermalization regime with λ = 1.
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