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Asymmetries of thermal processes in open quantum systems
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An intriguing phenomenon in nonequilibrium quantum thermodynamics is the asymmetry of thermal pro-
cesses. Relaxation to thermal equilibrium is the most important dissipative process, being a key concept for the
design of heat engines and refrigerators, contributing to the study of foundational questions of thermodynamics,
and being relevant for quantum computing through the process of algorithmic cooling. Despite their importance,
the dynamics of these processes are far from being understood. We show that the free relaxation to thermal
equilibrium follows intrinsically different paths depending on whether it involves the temperature of the system
to increase or to decrease. Our theory is exemplified using the recently developed thermal kinematics based on
information geometry theory, utilizing three prototypical examples: a two-level system, the quantum harmonic
oscillator, and a trapped quantum Brownian particle, in all cases showing faster heating than cooling under
the appropriate conditions. A general understanding is obtained based on the spectral decomposition of the
Liouvillian and the spectral gap of reciprocal processes.
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I. INTRODUCTION

When a system is pushed far from equilibrium, its evolu-
tion may follow anomalous paths. A series of seminal works
done during the past century [1-7] provided essential ad-
vances in studying transitory phenomena in the linear regime
associated with fluctuations, except for some particular cases
[8,9] where predictions can extend beyond equilibrium. De-
spite this progress, we still lack a general theory beyond linear
response and fluctuation theorems to decipher the dynam-
ics and behavior of transient regimes of a freely evolving
system between two desired states [10,11]. This problem is
of particular interest for quantum information [12,13], quan-
tum thermodynamic processes [14—16], finite-time quantum
heat engines [17-21], and for establishing speed limit bounds
[22-26], as well as for transport in interacting nanojunctions
[27,28], where propagation along chiral edge states [29,30]
can be used to resolve the thermalization process spatially
[31-35]. Recent progress in this direction has been done by
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unraveling anomalous shortcuts during relaxation processes
in out-of-equilibrium systems [36].

A remarkable example of a possible counterintuitive be-
havior of a system is the Mpemba-like effect (ME) [37-40].
Namely, put two identical systems at different initial tem-
peratures in contact with a reservoir at a hotter or colder
temperature than those of the two systems. The ME occurs
when the initially hotter/colder system cools down/heats up
faster than the system that was initially closer to the final
temperature. In the case of cooling, the effect is called nor-
mal ME, and for heating, it is called inverse ME [41,42]. In
Markovian systems, the ME can be well understood using
a spectral decomposition of the decay modes, diminishing
(weak ME), or canceling slow-decaying modes (strong ME) to
enhance the fast ones, making it possible to control the speed
of the relaxation. In this way, up to an exponential acceleration
is achievable [43]. This phenomenon has been realized both
in classical [41,43-54] and open quantum systems [55-63].
Additionally, a generalization of the ME to quantum entangled
configurations has been very recently proposed [64-67]. Note
that a strong relation exists between exceptional points and
speed up relaxation in open quantum systems [57,68].

Alternatively, when spectral methods are not applicable,
other strategies can be used to understand anomalous evolu-
tion using macroscopic observables depending on the system
of interest. The origin of anomalous relaxation is associated
with energy nonequipartition in water and granular gases com-
posed by rough hard spheres [69,70], a particular condition in
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(a)

Ty /1<0

FIG. 1. (a) Asymmetric cooling and heating relaxation to an
equidistant stationary state at temperature 7y . Thermalization takes
longer when the system is initially hot (i.e., thermalized with a bath at
Ty, which is decoupled at ¢ = 0) than when it is initially cold (at 7¢),
with Tc < Ty < Ty. (b) Asymmetric cooling and heating evolution
between two states at temperatures T and Ty, with T¢ < Ty. The
evolution from hot to cold (cooling) is slower than from cold to hot
(heating).

kurtosis also in the former with smooth hard spheres [42,71],
and correlation length in spin glasses [72]. Furthermore, the
strategy of employing several sudden changes in temperature
has been proven useful for shortening relaxation times, such
as preheating protocols [73]. This approach takes advantage
of the slow growth of magnetic domains near phase transitions
in systems where time-scale separation is not possible [74], or
through different control techniques [75-77].

A fundamental question, illustrated in Fig. 1, is whether
free cooling and heating processes after a sudden change
of the environment temperature are identical or follow in-
trinsically different paths, see Fig. 1(a). In classical systems
heating and cooling can show an asymmetry that has been
verified both theoretically and experimentally far from equi-
librium [78,79] and in simple few-level systems [80,81]. In
Ref. [80], Vu and Hasegawa used several particular assump-
tions to demonstrate the nonuniversality of the asymmetry
between thermodynamically equidistant quenches in discrete
systems with more than two energy levels. This happens for
particular choices of the energy gap and transition rates. In this
work, we present complementary results, and protocols that
explore the existence of asymmetry in quantum systems of
different nature and complexity. An even more emphatic result
is that the asymmetry is revealed when relaxation processes
occur between two fixed temperatures [79], see Fig. 1(b).
This has been successfully explained mathematically by using
the so-called thermal kinematics [79], based on information
geometrical arguments [82-84]. In this paper we focus on
that question, that is, unraveling the mechanism of the heating
and cooling processes in the realm of open quantum systems.
In order to do this we use geometric concepts of quantum
information theory [85,86] to extend the thermal kinematics

theory to the thermodynamics of open quantum systems. We
analyze whether a relaxation process far from equilibrium, say
from an initially hot to a colder thermal state, is equally fast
as its reverse, from the colder to the hotter, and relate it to
the properties of the spectral gap [87-92]. To showcase this,
we use simple models based on a thermal qubit, a quantum
harmonic oscillator, and a quantum Brownian particle.

The heat properties of such simple quantum systems have
recently become accessible experimentally. Solid-state real-
izations of qubits coupled to fermionic or bosonic reservoirs
allow to control the spectral properties, couplings, and tem-
peratures externally [93-95]. This is the case of quantum dot
systems [96,97], which can selectively be (un)connected to
different reservoirs with gate voltages [98] and whose distri-
bution can be measured via charge detectors [99-102], or of
superconducting circuits coupled to resistors acting as ther-
mal baths via tunable resonators [103—108]. Furthermore, the
qubit state can be monitored [12,13,109—111]. Improvements
in high-frequency thermometry even allows us to detect single
temperature fluctuations [112]. These ingredients make the
detection of relaxation paths in quantum information systems
possible.

The recent measurement of asymmetric relaxation of a
classical particle in a harmonic trap [79] motivates us to treat
this problem from a quantum perspective. To do so, we inves-
tigate the thermalization of a quantum Brownian particle, a
model that has successfully been applied to describe a plethora
of quantum effects, such as quantum dissipation [113,114],
harmonic oscillators [115], macroscopic quantum tunneling
[116-118], metastable states [119], single-electron transistors
[120], the spin-boson problem [121], or impurity dynamics
in Luttinger liquids [122] and ultracold atomic gases [123].
Augmenting the number of degrees of freedom comes with
longer relaxation time scales, which favors its detection. We
hence emphasize that understanding the relaxation processes
is of importance for quantum thermodynamics and for the
physics of driven nanoscale devices [11,14], the building up
of correlations [124], and the thermalization of macroscopic
quantum states [125,126].

The remainder of this paper is organized as follows. In
Secs. I and III, we present the theoretical framework based on
the master equation for open quantum systems and the mea-
sures of thermodynamic distances. In Sec. IV, the definitions
of the different protocols are provided. We then apply these
methods to three different systems. In Sec. V we consider
the simplest case of a two-level system coupled to a thermal
bath, which can be solved analytically. Then Sec. VI considers
more complex systems, namely the harmonic oscillator and
the quantum Brownian particle. Additionally, this section in-
cludes numerical simulations for the nonanalytically solvable
systems. Section VII provides a theoretical justification for all
the phenomena based on the spectrum of the Liouvillian and
the influence of the considered initial state on the evolution.
Finally, the conclusions are drawn in Sec. VIII.

II. THEORETICAL FRAMEWORK: MARKOVIAN OPEN
QUANTUM SYSTEMS

The state of a quantum system, weakly coupled to
the environment, is described by its reduced density
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matrix p(t), whose evolution is governed by the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) quantum master
equation [127-135]

p(t) = LIp®)], ey

where L is the Liouvillian superoperator

. N . 1
Lip@)] = —[H. pO)] + ) (Lm(:)L; - SiLL, p(r)}),
i=1
@

and H is the Hamiltonian of the system describing its
coherent dynamics. The N jump operators L; describe the
dissipative effects due to the presence of an environment. The
Liouvillian superoperator L preserves the trace, i.e.
Tr (L[p(t)]) = 0, Hermiticity, i.e., (L[pD" = LI[pT ()],
Vp(t), and complete positivity.

The general solution to Eq. (1) can be directly obtained as
p(t) = €*[p(0)], where the superoperator ¢'“ is defined by
its power expansion. Assuming the generator to be diagonal-
izable, one finds the right eigenmatrices, A7, such that

C[A}] = AAL 3)

The complex numbers X; are the eigenvalues of the
Liouvillian. Note that, due to the Hermiticity preservation of
L, if A is a complex eigenvalue, then A; must also be an
eigenvalue. For the same reason, one can also show that if
Ak is real, then A} can be chosen to be Hermitian. Associated
with the map defined in Eq. (2), there is a dual map, also called
the adjoint Lindblad map, which implements the evolution of
observables:

. N
o1 = L "OL — Y10 LiL
,C[O]_h[H,O]—i—Z(LiOL, 2{O,LiL,}>. )

i=1

This dual map, £, is diagonalized by the left eigenmatrices
AL

LI[AL] = A 3)

The matrices Ai are in principle different from the matrices
A7 in Eq. (3). However, Af and A; still form a biorthogonal
basis for the space of matrices and can always be defined
fulfilling the property Tr (AL A}) = 8.

Since the dynamics generated by £ is completely positive,
the eigenvalues of the Liouvillian superoperator all have a
nonpositive real part, Re(A;) < 0. Furthermore, for bounded
systems, Evan’s theorem [136] enforces that at least one
eigenvalue is zero, A; = 0, and this is also the case for many
unbounded systems. Assuming that the null eigenvalue is
nondegenerate, the asymptotic stationary state of the open
quantum system is directly related to its associated eigenma-
trix [137,138],

pss = lim p(1) = AJ. ©)
=00
Integrating Eq. (2), the spectral decomposition of £ allows us
to write the dynamics of any initial density matrix as
d2

p(t) = ¢Flpl = AT+ D €M Tr(Afpo)Ap,  (7)
k=2

where d is the dimension of the Hilbert space of the system.
This decomposition shows that the matrices Aj are nothing
but the excitation modes of the system, each one character-
ized by a decay rate |Re(A;)|. For long times, the relevant
terms are those related to the A; with the smallest real part
in modulus and finite overlap with the initial state. To study
the time evolution of our systems we order the eigenvalues
At in such a way that |[Re(A;)] < [Re(A3)] < - -+ < |Re(Ap)].
The overlap between the ith eigenmatrix and the initial state,
Po, is determined by

& = Tr(Afpo). (8

Note that this term &; is the same as the one appearing in
the sum presented in Eq. (7). It provides the influence of
the Lindbladian, which fixes the temporal evolution, onto the
initial state.

III. QUANTUM THERMAL KINEMATICS:
MEASURES OF DISTANCE AND SPEED

The concept of thermal kinematics, established for clas-
sical systems recently in Ref. [79], combines arguments
from stochastic thermodynamics with information geometry
to analyze the thermodynamical processes [83]. For classical
systems, it is possible to define a statistical distance [79,139],
related to the classical Fisher information, (), which quan-
tifies the temporal variation of local flows. Therefore, for two
time-varying infinitesimal processes, the line element can be
defined from the Kullback-Leibler divergence (KLD) of two
probability distributions, defined as

DalPu(x, t +dt), Pa(x, )] = Ia(t)dt* + O(dt*),  (9)

which allows us to define a proper statistical distance between
two states [see Appendix A, Eq. (Al)]. Note that we denote
all classical quantities and variables with the subscript cl. The
line element is then defined from Eq. (9) as

dly := /Ia(t)dt. (10)

where +/1.i(¢) can be identified as the statistical velocity at a
given time ¢, namely

va(t) == VI (1). (1n

To study thermal kinematics in the quantum regime, we may
use two different measures. The first one will be the fidelity
between two states (analog to the KLD in the classical case),

defined as
F(p1, p2) :=Try/ /p1p2:/P1. (12)

It measures how close two quantum states are in terms of their
density matrix. It is symmetric and invariant under unitary
operations. Despite not defining a metric distance [140], the
fidelity allows us to define the so-called Bures distance

[Dg(p, 0)]* :=2[1 — F(p,0)], (13)

which is a statistical distance. Similarly to the classical case,
in our context of thermal relaxation, an infinitesimal statistical
line element may be defined as follows [85,86,141,142]

[D(p(t), pt + dt)* = 1Tp[p(@)ldt* + Odt!)  (14)
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with respect to the parameter time, being Z, the quantum
Fisher information (QFI), defined as

Tolp()] := Te[ L7 p(1)], (15)

where L, is the logarithmic time-derivative operator defined
by p(t) := (Lip(t) + p(t)L;)/2, see Appendix A. Now, we
have a symmetric and proper metric distance. From Eq. (14),
we can directly define the line element as

dl == 1/Tplp()ldt, (16)

and thus
v(1) := 1/Iolp(1)] (17

represents the quantum instantaneous statistical velocity of the
system in the quantum case [85,142]. The statistical length of
a path taken between time #; and ¢ is computed as

1 (v
e(ti,tf)=§/ VZolp@®)ldt. (18)

As reaching the steady state during a dissipative process takes
infinite time, to establish a kinematic basis for quantifying
thermal relaxation kinematics, we define the quantum degree
of completion as

1)
(p(s) L e(ll’[f)’

being a monotonically increasing function bounded between
Oand 1.

19)

IV. HEATING AND COOLING PROTOCOLS

To puzzle out the properties of cooling and heating far
from equilibrium in quantum systems subject to instantaneous
quenches, we define two possible experiments.

A. Three-temperature protocol

The first feasible protocol is to compare the free evo-
Iution with respect to an intermediate temperature. Hence,
we define three temperatures 7o < Ty < Ty, the subscripts
corresponding to cold (C), warm (W), and hot (H), respec-
tively. Associated to this temperatures there are three Gibbs
states, p}gh = exp[—pB;H]/Z, with H being the Hamiltonian
of the system, B; = 1/kgT; the inverse temperature, and Z =
Tr{exp[—pB;H]} the partition function for i € {C, W, H}.

In this protocol, the system is initially prepared to be ther-
malized by interacting with either a hot (p,ts};,) or cold bath
(pg;). At t = 0, we introduce a sudden quench by coupling
the system to the warm bath, as illustrated in Fig. 1(a). As both
trajectories, cooling and heating up, evolve towards the same
steady state (pg;v), we can use the fidelity between our time-
dependent state and the target one as a measure of distance.
To fix the initial conditions, we consider thermal states with
equal fidelity values with respect to Ty for both 7¢ and Ty,
meaning that

F(ohes oh) = F (05 Ph)- (20)

The relaxation of the heating and cooling processes is then
monitored by the evolution of their fidelities.

We first focus on what we call forward protocol where the
relaxation occurs toward the warm temperature, Ty starting
from the states at hot, Ty, and cold, T¢, temperatures. To sort
out interpretations related to the different temperature differ-
ences for equidistant states (in fact, Ty — Ty # Ty — T¢), we
introduce a backward protocol: we prepare the system to be
in equilibrium at the warm temperature 7y and track back the
relaxations at Ty and Ty, respectively.

B. Two-temperature protocol

We can also proceed using a simpler protocol, namely,
cooling and heating between two temperatures T < Ty, re-
spectively, as sketched in Fig. 1(b). This protocol eliminates
possible effects related to the details different relaxations
paths, e.g., that one of them takes place at lower temperatures
than the other one. In this case the absence of a reference
density matrix prevents us to use the fidelity as a distance
measure. We need to use a true metric distance, namely, the
quantum Fisher information, Eq. (15).

In this scenario, starting with the system thermalized at one
of the temperatures, after a sudden quench, we put the system
in contact with a bath at the other temperature and let the
system evolve freely. This phenomenon allows us to observe
heating, i.e., relaxation at 7y in a temperature quench from an
equilibrium prepared at 7¢; and cooling, i.e., relaxation at T¢
in a temperature quench from the equilibrium at 7. In order
to compare the two processes in a proper way we will use
the quantum degree of completion given by Eq. (19) and the
quantum instantaneous statistical velocity, Eq. (17).

In the following, we test these protocols in three different
quantum systems of increasing complexity. The first one is
the simplest case: a two-level system coupled to a thermal
bath at a given temperature. In this case, all the relevant
quantities will be obtained analytically, since the solution for
the Lindblad master equation is available exactly. This model
will serve as a motivating case to perform an in-depth analysis
of the two main models presented in the paper: the quantum
harmonic oscillator and a quantum Brownian particle. For
the harmonic oscillator, since the Hilbert space characteriz-
ing the system has infinite dimensions, all the computations
performed are potentially more complicated. For this reason,
only some of the results are obtained analytically. Finally,
the results presented for a quantum Brownian particle are
obtained numerically.

V. A SIMPLE CASE: THERMAL QUBIT

Let us start with a preliminary analysis of the simplest
system of interest: a two-level system weakly coupled to a
thermal bath. Despite its simplicity, this is a paradigmatic
example as the coupling of few-level systems to thermal baths
has been mastered in the last decades in different condensed
matter platforms, e.g., semiconductor quantum dots [96,97] or
superconducting qubits [93-95]. They are important pieces in
the development of modern quantum thermodynamic engines
[17-19,143]. This simple case provides us with analytical
understanding of the problem. It is important to remark that
all the final conclusions drawn for the more involved examples
of the harmonic oscillator and quantum Brownian motion will
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be in accordance with the ones obtained from this simple
analysis.

Consider a two-level system weakly coupled to a thermal
bath at inverse temperature 8 = 1/kpT. Transitions between
the ground (n = 0) and the excited (n = 1) states, split by
an energy fw, occur with rates Wyy = yii(w, T) and Wy, =
y[1 + ii(w, T)] induced by the bath [127], with the coupling
rate y and an average number of photons with frequency w in
the bath, given by the Bose-Einstein distribution

filw, T) = [exp(fiw/kgT) — 1171, 21

where 71 and kg are Planck’s and Boltzmann’s constants. When
thermalized, the state of the system can be written as a vector
formed by the diagonal elements of the density matrix giving
the occupation of the two states, p = (0o p11)7 in the Fock-
Liouville representation, with pgy + p11 = 1. In this case, the
Lindblad equation, Eq. (2), is a simple rate equation

iy — (Y A@.T)  yla T)+1]
p= ( yilo,T) —yli(w,T)+ 1]),00). (22)

Note that, in the absence of coherence in the initial state,
the Hamiltonian term of the Lindblad equation (2) does not
contribute to the occupations, so the dynamics is purely
dissipative.

We are interested in the relaxation from an initial thermal
state at temperature 7o = T + AT = 1/kgBy. The time evo-
lution of the density matrix can be obtained solving Eq. (22)

e—l"t (ehwﬁo _ ehwﬁ) 1
(1 + e"P)(1 + elobo) <—1>’ 23)

with the total rate I' = y[1 + 2#(w, T)] = y coth(hwpB/2),
that is proportional to the thermal fluctuations of the bath.
The fact that there is a single relaxation channel in this case
makes it clear that the hotter the steady-state bath, the larger
the relaxation rate of the system will be.

It is, however, convenient to look further into the details of
the dynamics, as introduced in Sec. II. We start by obtaining
the eigenvalues of L. In this case, the spectrum is reduced to
only two values: A; = 0 related to the trivial stationary state,
and A, = —T", which takes into account the decay mode and
depends on the bath parameters, contained in 7i(w, T'), and on
the coupling y. The temperature dependence of the decaying
mode corresponding to A; is plotted in Fig. 2(a). Their corre-
sponding (right) eigenvectors, see Eq. (5), are given by

1 Bhw
r_ . th _ e
AL =pj _W( 1 ) @4

corresponding to the stationary state of the system, character-

ized by A, and
. 1
(1) o

which is related to the decaying mode, A,.
These results agree with the exact evolution obtained in
Eq. (23), where we identify

p(t) = pj +

eﬂghw _ eﬂhw

(P £ 1) (P 4 1)

§=56 (26)

FIG. 2. Thermalization kinematics for a qubit. (a) Dependence
of the decaying mode corresponding to the nonzero eigenvalue.
(b) Overlap of the first decaying mode of a state thermalized at a
temperature 7 + AT with the stationary state at a temperature 7', for
different values of AT /T. The black line in (b) corresponds to the
asymptotic behavior at large AT .

as the overlap (T + AT, T) = Tr(AS o) between the initial
state pg = A(T + AT) (athermal distribution at temperature
Ty) and the decaying mode

1

= ol - ")y, 27

¢

Aj
see Eq. (8). Note that, as expected from a nonequilibrium
quantity, the overlap vanishes in equilibrium [§(T, T') = 0],
and it’s modulus is invariant under the exchange of tempera-
tures 7' and Ty

1&(To, T)| = |§(T, To)|. (28)

As shown in Fig. 2(b), the overlap increases monotonically
with AT, i.e., far from equilibrium states are more strongly
overlapped with the decaying mode. The overlap of an
infinite-temperature and a zero-temperature state is maximal:
|&] — 1/2, with the bound [§(T + AT, T)| < |€a5ym| for the
asymptotic value

1 ho
|%—asym| - E tanh ZkBT (29)

when AT > T, see black curve in Fig. 2(b).

This overlap is a measure of the speed of decaying to
the new steady state of the system and gives information
on the influence of the initial state in the dynamics. In
this single-mode problem, where the density matrix can
be expressed in terms of a single occupation, say that of
the ground state, poo(r) = pifyy +E&e™"", cf. Eq. (23), the
overlap can be interpreted as the total change in the qubit
populations between the initial and the stationary states:
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= Ty = 0.5hw/kp
== Ty =hw/kg
= 0.2
&
=
s
0.0

I
kpAT /hw

FIG. 3. Overlap of the first decaying mode of the cooling (7 =
Ty, blue) and heating (7y = T¢, red lines) processes after quenches
from two equidistant states with respect to a thermal distribution a
temperature Ty . AT is the increase in temperature Ty = Ty + AT.
The cold temperature T¢ is chosen accordingly.

E= ,02200 — 000(0) = —[,0;3"’ 11 — P11(0)]. In the relaxation from
an initial state with overlap &, a given difference of population
8p = poof) — P,tah,oo will be attained in a time

1
F= = In/8p). (30)

Hence, for two states decaying toward the same stationary
state (i.e., with the same rate I"), the one with a larger overlap
will take a longer time 7. These properties already shed some
light on the behavior of the two protocols: the symmetry (28),
involves that in a two-temperature protocol, the overlap is
the same in both ways (cooling and heating), |£(Ty, T¢c)| =
|& (Te, Ty )|: therefore any asymmetry in such protocol is to be
attributed only to the monotonous increase of the coupling rate
shown in Fig. 2(a): indeed I is larger when relaxing to a hot
bath, so [A§7H| > |AZ=C|. However, for a three-temperature
protocol we have the opposite situation: |AS™Y| = [AF=W|,
so an asymmetric relaxation is to be attributed to the temper-
ature dependence of the overlap with the decaying mode. As
shown in Fig. 3, we always find |£(Ty, Tw)| > |£(T¢, Tw)| for
pairs of Bures-equidistant initial states. Therefore, according
to Eq. (30), cooling is expected to be a slower process. This
analysis shows that, even in this simple configuration, the two-
and three-temperature protocols are intrinsically different:
while the former can be understood by the higher fluctuations
of a hot bath governing the decaying rate, the later relies on the
different overlap of the initial states with the decaying mode.

To compute the fidelity as a measure of distance between
two thermal states, let the system be described by a Gibbs
state at an inverse temperature 8 and frequency w in the Fock-
Liouville space, pfgh given by Eq. (24). Consider two thermal
states at different inverse temperatures 8, and B,. In this case,
the fidelity is simply

1+ eloBi+£2)/2
T 4 ePriio) (1 + eboheo)]1/2”

F(oh+ pj) 3D
With this expression, we calculate the Bures distance D% =
2[1 — F(,og:, pg; )], see Eq. (13) and Fig. 4(a).

For the density matrix evolution given by Eq. (23), we find
an analytical expression for the time evolution of the fidelity
of a system initially at a state pg(‘) with respect to the stationary
state as it is put in contact with a bath at inverse temperature

(a) (b)

1.00
0.10
0.99
=g =
0.05 = 098 L T o Ty
0.97 < Tiv = Tn
- -=- Ty Te
0.00]
00 05 10 15 20 005 0 5 20
AT/hw vt
© @ 1o -
0.3 —_— Ty Te
Te =Ty 0.75
02 _
D T 050
01 0.25 —_— Ty
Te — Tu
0.0 0.0

.00]
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FIG. 4. Relaxation of a thermal qubit. (a) Bures distance as a
function of AT. The blue and red dots mark the equidistant temper-
atures Ty and T¢ considered for the cooling and heating protocols,
respectively. These are used to compute (b) the fidelity in the direct
and inverse three-temperature protocol (from 7y and T to Ty and
the opposite). (c) Velocity as function of time, and (d) level of com-
pletion for a given time normalized by 75, = 6/y in the two terminal
protocol between Ty and T¢. In all panels fiw = 1, Ty = hw/2kg,
and AT =Ty — Ty = ho/kg, with Tc ~ 0.30hiw/kg chosen to be
equidistant from Ty as depicted in (a) and 7, = 0. The dashed line
in (a) is a quadratic expansion of D3 around AT = 0, according to
Eq. (50).

B, namely

\/eﬁwﬁ [ehwﬁo +A/3ﬂo ]+ \/1 — Aﬂﬂo ®)
[(1 4 ef@B)(1 + ewbo)]1/2

Flp®), pg] =

(32)

where the time dependence is encapsulated in the term
App, (1) = (1 — e 1) (P — ePoloy /(1 4 P, Note that at
time t = 0, Agg,(0) = 0, thereby recovering the fidelity given
by Eq. (31). The fidelity as a function of time is plotted in
Fig. 4(b) for the heating up and cooling down processes in
a three-temperature protocol, this result confirming that the
heating protocol is faster than the cooling one even when
both correspond to a bath at the same temperature 7' = Ty,
as anticipated by its smaller overlap shown in Fig. 3. We have
verified that this effect is much stronger for low temperatures.
Remarkably, reversing the protocol, i.e., quenching the initial
state at Ty to couple it to baths at temperatures Ty and T¢, we
also find that the heating processes Ty — Ty and To — Ty
are faster than the respective cooling ones (Ty — Ty and
Tw — T¢), see Fig. 4(b). Note that these four processes realize
two two-temperature protocols, confirming that in those the
heating process is always faster.

We get additional insight by using the quantum Fisher
information to compute the thermal kinematic distance and
velocity for the two-temperature protocols, see Eqs. (16)
and (17). In this case, being the density matrix diago-
nal, and 9,000(t) = —0;011(¢), the QFI reads Zp[p(t)] =
[3: oo (1)1*/ poo(t)p11(2), for which we have used poo(f) +
p11(t) = 1, leading to

FZ

Lolr Ol = e — e ) £ 11"

(33)
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where the time dependence is encapsulated in the term
k()= —e" J("P + 1. (34)

Equation (33) shows explicitly that Z is asymmetric under
the exchange B < fy. With this, we write the instantaneous
statistical velocity

ry/2
Verobic(t) — 1k + 1
with the property that the velocity is low for states with sim-
ilar temperatures: v — ce™'" with ¢ <« 1, when By — B. As
shown in Fig. 4(c), though the velocity of the cooling process
is larger, the faster decay of v(¢) for the heating mechanism

indicates that it approaches the thermal state much earlier. To
analyze the full process, we compute the statistical length

|
I

(36)

u(t) = (35)

(P —1(t) =2
21k (t)— [k (1)+1]

1
L(tg, t) = F{arctan |:

— arctan |:

which we use to plot the ratio ¢(f) = £(0,1)/£(0, t,) in
Fig. 4(d). It confirms that the heating protocol is indeed faster,
despite having a smaller velocity, cf. Fig. 4(c), as expected for
it having a larger |X;|.

(P — Di(ty) — 2
2/[em P (t)— [ (to)+1]

VI. INCREASING COMPLEXITY

A. Quantum harmonic oscillator

After having introduced the main concepts presented in
the paper with a clear and analytically solvable case, we will
perform a similar analysis for more complicated and richer
systems. The quantum harmonic oscillator allows us to derive
some analytical expressions for the behavior of the system,
however, numerical methods are required to compute quanti-
ties of interest such as the quantum speed through the quantum
Fisher information.

A harmonic oscillator is described by the Hamiltonian

H = hwd'a, 37)

where o is the oscillator frequency and a,a’ are the an-
nihilation and creation bosonic operators, respectively. The
interaction with a thermal bath is described by the jump

J

oo

(@ a)i(w, T))"

F(p§(t). pr) =Tr Y

where  r = {{a'a),i(w, T)/[(1 + (a"a),)(1 + (o, T)]}'/2.
In Fig. 5 both the Bures distance as a function of the
temperature, Fig. 5(a), and the fidelity as a function of time,
Fig. 5(b), are displayed. The results confirm the behavior
obtained for the two-level system. One main difference is
that to obtain the same Bures distance, we need a higher

12
1
par [U +{ata) (1 + e, T))Hﬂ} e S A @G T ate, TP T

operators

Li=Jyi(w,T)d" and L_=/y[i(w, T)+1]a, (38)

where y is the coupling strength with the bath, and 7n(w, T')
is the average number of excitations in the bath at a given
temperature T, see Eq. (21). The state of a thermal harmonic
oscillator and its dependence on temperature and frequency
are determined by 7(w, T') as
(e, D))"
=3 In) (n|

PP = 1 4 (o, T

> fiwB
_ —(+1/Dfiwf nwp
—Z;E s1nh< > >|n> (nl, (39)
being |n) the pure state of a system with n photons. Initially,
we will consider the system to be in such thermal state.

If a system is in a Gaussian state, including a thermal
state, and the interaction with the bath is also Gaussian,
its state would be entirely characterized by the evolution of
its occupation numbers (a) and (a'a). This fact reduces the
problem to the computation of the evolution of the expected
values instead of the whole density matrix, leading to a single
ordinary differential equation. The dynamics of (a) and (a'a)
are described by the following expressions [144]:

d(a) . I

ek —t(w—i— E)(a),

d{a’a)
dt

Focusing on the temporal evolution of the average number of
the system excitations, the solution to this differential equa-
tion can be obtained, leading us to the variation in the average
number of excitations

= —I'(a'a) + Ti(w, T). (40

t
(d'a), =(a"a)pe™™" +/ Tn(w, T)e T09ds, 41
0

Note that the subindex ¢ represents the time dependence and
0 the initial value for the average number of excitations. We
consider that the system and the bath are in contact at ¢ =
0, without loss of generality. The protocol is modeled by a
quench, i.e., a step function, so 7i(w, T') is constant within the
integral. Thus

(a'a), = (a'a)oe™™ + n(w, T)(1 — ). 42)

With this, we compute analytically the time evolution of the
fidelity with respect to the stationary state, which reads

1
43)

(

temperature difference in the harmonic oscillator case than
for the two-level system. This is due to the infinite size of the
Hilbert space of the harmonic oscillator, in comparison to a
two-dimensional Hilbert space.

To analyze the thermal kinematics of the system we have
computed numerically the quantum Fisher information of
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FIG. 5. Simulation of the protocols for the harmonic oscillator.
(a) Bures distance as a function to the temperature difference with
respect to the equilibrium state at 7y . The red and blue dots mark the
initial temperatures T¢ and Ty for the heating and cooling processes,
respectively. (b) Fidelity with respect to the thermal state at Ty
corresponding to the heating (orange) and cooling (blue line) pro-
cesses of the three-temperature protocol. (c) Instantaneous statistical
velocity and (d) degree of completion computed for the heating and
cooling processes in the two-temperature protocol. In all plots, the
temperature ranges are such that n(w, Tc) = 1 and n(w, Ty ) = 10,
with y = 0.1, iw = 1, and tg, = 50.

the two-temperature protocol. The results are displayed in
Figs. 5(c) and 5(d). It is clear that, even if the harmonic oscil-
lator is a different and more complicated system, its thermal
behavior is similar to the one for the two-level system. Note
that the velocities behave differently: despite v being initially
larger for the heating process, it has a faster decay, again
signaling that the stationary state is reached earlier.

B. Quantum Brownian particle in a trap

The third model introduced to analyze the protocols is a
quantum Brownian particle in a harmonic trap, following the
results and experiments already performed in the classical
case [79]. This is the most sophisticated case that is treated
in the paper, where all the relevant quantities need to be
computed numerically.

A quantum Brownian particle interacting with a
bosonic bath is described by the following Hamiltonian
[117,118,145,146]:

P% - K} 2
H =215 i
2mg + ; 2mp ‘xs +olxs)

i (B,

n n
T
+ E th,aB,,-aB,i_ E KiXp iXs, (44)
i=1 i=1

where the indexes S, B hold for the system and bath operators,
respectively. Here myg is the mass of the Brownian particle, xg
its position, pg its momentum and ¢(x) is a trapping poten-
tial. Similarly, mg,, wgp,, and xp, are the mass, frequency, and
position of the ith bath particle, for all i=1,...,n. The
factors «; represent the coupling between the system and the
ith bath mode.

The trapping potential is customarily taken as a harmonic
term so that

P(x) = gaﬂxz, (45)

for a given trap frequency &.

A treatment for the problem can be performed by a
Lindblad-equation-like transformation of the equations of mo-
tion of the system. The global evolution of the system and bath
may be described by a unitary operator, and the state of the
system at a given time ¢ is described by

ps(t) = Trg{U (t)(ps(0)@pp)U (1)} = e“'[ps(0)],  (46)

being L the Liouvillian superoperator of the coherent dynam-
ics. Given the fact that the interaction between the system and
the bath is linear and assuming it to be also weak, we can
consider a single Lindblad operator L(7") such that [146]

L(T) = a&(T)x + B(T) p, 4N

for some parameters &@(7T), B(T) € C. In order to match the
coefficients represented in Eq. (47) with a general Born-
Markov treatment of the problem within the Caldeira-Leggett
limit, they must be given by

a(T) = — (48)
and
sy S (kT E
B(T) = h&( A + 2). 49)

In these relations, A is the so-called Lorentz-Drude cutoff
appearing in baths with Ohmic spectral density; ¢ is a damp-
ing constant, whose inverse is related to the relaxation scales;
T is the temperature of the bath and m the mass of the
oscillators. The Caldeira-Leggett limit is satisfied for large
temperature and cutoff limits. Under this regime, one recovers
the Caldeira-Leggett equation for general diffusion processes
in a quantum framework for a quantum Brownian particle
[117,118]. Note that the average number of excitations is
related to the temperature of the baths via the Bose-Einstein
relation as in the previous models.

In Fig. 6 we observe a similar behavior under the two-
and three-temperature protocols to the ones performed for
both the two-level system and the harmonic oscillator. In this
case, the temperature range that we need to consider is even
larger, due to the complexity of the bath. All the results are
similar, suggesting the general character of our results. One
interesting feature is that during the heating up process in the
three-temperature protocol [cf. Fig. 6(b)] the fidelity reaches
a value close to one in a finite time, and then bounces down.
This interesting behavior suggests that the system suffers
from hysteresis, an interesting feature specially due to the
Markovian character of the dynamics.

C. Analysis of the results

In the three-temperature protocol, the fidelity of the state
at a given time ¢ has been compared to the thermal state at
the intermediate temperature, Ty, so that it increases to one,
when thermalization takes place. As indicated in Sec. IV A,
the thermal state at the warm temperature, pgzv, is chosen
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FIG. 6. Simulation of the protocols for the quantum Brownian
particle. (a) Bures distance dependence with the temperature differ-
ence with respect to the equilibrium state. (b) Fidelity for the state
with respect to the thermal state at Tyy. The process corresponds
to the three-temperature protocol, evolving from T¢ to Ty (orange
line) and Ty to Ty (blue line). (c) Instantaneous statistical velocity
and (d) degree of completion computed for the heating and cooling
processes in the two-temperature protocol. In this case, the values of
the parameters are t5, =5 - 10°, m = 1,Q =103, A =1,¢ =0.1.

to be equidistant to the cold, ,0/3 , and hot states, ,olgh The
Bures distance is depicted in Figs. 4(a), 5(a), and 6(a) as a
function of the temperature difference AT with respect to
Tw, meaning that ATy = T¢ — Ty for the initial cold state
(heating up protocol), and ATy = Ty — Ty for the initial hot
state (cooling down protocol). The temperature of both initial
points is represented by a hollow red circle for the case of
heating and by a hollow blue circle for the cooling. Both
points evolve to the equilibrium thermal state, clearly repre-
sented by a minimum. It is worth noticing that the asymmetry
in the different protocols is appreciated here.

The asymmetry in the three-temperature protocols is ana-
lyzed by the use of the fidelity between the initial states and
the target one, as a function of time. This is displayed in
Figs. 4(b), 5(b), and 6(b). Remarkably, the necessary times
to thermalize differ by several orders of magnitude due to
the increasing complexity of each configuration. However,
the three of them show a similar behavior. This fact is also
relevant for the velocity analysis.

Regarding the two-temperature protocol, we shall make
use of the instantaneous velocity quantity, Eq. (17), and the
degree of completion, Eq. (19). Figures 4(c), 5(c), and 6(c)
represent v(¢) for the qubit, the harmonic oscillator, and the
Brownian particle, respectively. As we anticipated in the pre-
vious paragraph, the thermalization times differ by several
orders of magnitude. This is also represented by the scale in
the velocity axis in the aforementioned plots. The behavior is
also different in the three cases (while the heating and cooling
velocities cross for the harmonic oscillator and the Brownian
particle, for the qubit we find that the heating velocity is
always smaller), which avoids to extract general conclusions
from the analysis of v(z). To establish the fastest process one
needs to compute the degree of completion, derived consider-
ing the values of the instantaneous velocity, Egs. (18) and (19).
Figures 4(d), 5(d), and 6(d) show the temporal evolution of

the degree of completion and, as it is expected, the functions
are similar regardless of the sort of system, and the heating
process takes less amount of time to be completed than the
cooling.

Despite their different complexities, in all three cases the
thermal kinematics theory finds the same overall behavior in
the description of the dynamics towards the equilibrium state.
A better intuition of the physical origin of this phenomenon
a spectral analysis of the Liouvillian will be presented in
Sec. VIL

D. Linear response regime

We conclude the section providing a brief comment on
the near-equilibrium, i.e., linear regime, for thermal evolution
close to the equilibrium temperature in the three-temperature
protocol.

The linear response theory, developed mainly by Kubo
[5,6], is the cornerstone to analyze the near-equilibrium
behavior in classical thermodynamics. The fluctuation-
dissipation theorem states that the fluctuation properties of a
system in thermal equilibrium determine its linear response
to an external perturbation [6]. In the quantum counterpart,
this theorem has been derived for closed quantum systems and
recently for open quantum systems [147,148]. This extension
allows us to apply the existing results from isolated equilib-
rium systems to open systems, with Lindbladian dynamics
[147,148]. Within this regime, one expects to recover the same
as in classical thermodynamics results, where the asymme-
try between heating and cooling is absent. That means, for
small temperature differences in both protocols, we expect the
asymmetry to diminish as the initial deviation is closer to the
equilibrium state.

For the qubit case this phenomenon is clearly appreciated
in the analytical derivation of the fidelity comparing two
states, Eq. (31). For small AT, the fidelity is quadratic

ePho AT \? ATN?
- 2 2 +O0{ )
8(1 + efho) T T

(50)

F(ph: pf) =

i.e., no asymmetry is expected for states close to equilibrium.
Regarding the simulations for the harmonic oscillator, the
results for close temperatures is depicted in Fig. 7(a) and 7(d).
As the temperature difference increases, the asymmetry starts
to appear, making this discrepancy in both protocols more
acute the larger is this gap. Figures 7(b)-7(c) and 7(e)-7(f)
show this behavior. Figures 7(a)-7(c) represent the fidelity
with respect to the thermal state at warm temperature Ty, i.e.,
in the three-temperature protocol. Similarly, Figs. 7(d)-7(f)
showcase the asymmetry in the two-temperature scenario,
displayed in the velocity needed to reach the opposite state.
It is clear that the asymmetry arises as one deviates from
equilibrium when the temperature difference increases.

VII. SPECTRAL ANALYSIS

Performing a spectral analysis of the Liouvillian, we can
gain intuition about the relaxation time of our models for
the heating and cooling protocols, while the dynamics of the
system follow Eq. (7). In Fig. 8 the eigenvalues of both the
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FIG. 7. Near-temperature simulations for the three-temperature protocol for the harmonic oscillator. (a)—(c) Fidelity with respect to the
thermal state at 7(w, Ty ) and (d)—(f) instantaneous velocity. In all cases w = 1, and T¢ chosen such that 71(w, Tc) = 1. The hot temperature
is such that 7i(w, Ty) = 1.1 for panels (a), (d); 7i(w, Ty) = 2 for (b), (e); and i(w, Ty) =5 for (c), (f). When T¢ and Ty are close, both
curves collapse and the processes remain symmetric. However, as the temperature difference increases, heating up and cooling down evolve

differently.

harmonic oscillator and the Brownian particle are displayed.
Due to the infinite size of the Hilbert space of the systems,
we have used a truncated Fock basis of dimension N = 150,
large enough to display the general behavior. As discussed
in Sec. II, the spectrum of the Lindbladian is composed of

(2)

eigenvalues whose real part is negative, apart from the null
eigenvalue which determines the stationary state. This de-
composition does not depend on the initial state we consider
but on the parameters defined in the Lindbladian, i.e., the
Hamiltonian and jump operators, as well as the constants

100

Im (\)

—100

® Heat up
* Cool down

C ek

—600

—0.6 —0.4

Re ()

—0.2 0.0

® Heat up
* Cool down

]

= 0.000 o—Ft

500

=

—1000 -5
Re ()

00

—0.6 —0.4

Re (A)

—0.2 0.0

FIG. 8. Eigenvalues of the Liouvillian operator £ for the harmonic oscillator (a), and a quantum Brownian particle (c) for 7i(w, Ty ) = 10
(red points) and 7i(w, Tc) = 1 (blue points). (b) and (d) represent the first eigenvalues of the respective panels (a) and (c), with a size proportional
to the overlap with the thermal state at the opposite temperature, see Eq. (8). In both cases, the truncated dimension of the Hilbert space is

N = 150.
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and variables defined therein, in particular on the temperature
of the bath. The dependence of the relaxation of an open
quantum system on the initial state after the quench is rather
given by its overlap with the different decaying modes, &;, see
Eq. (8).

The spectra for the heating and cooling cases and the dif-
ferent systems are displayed in Fig. 8. For the Lindbladians
with higher temperature there is a spreading of the eigen-
values towards the negative real axis, see Fig. 8(a) for the
harmonic oscillator and Fig. 8(c) for the quantum Brownian
particle. This means that, in the heating up processes, there
are many more fast-decaying modes than in the cooling down
counterparts, indicating that heating will be faster. This be-
havior is in agreement with Fig. 2(a) for the thermal qubit.
In Figs. 8(b) and 8(d), the slowest decay modes, which act
as bottlenecks to the dynamics, are plotted with the symbol
size being proportional to the overlap with the initial state
of the cooling down and heating protocols. The initial state
in each case is chosen to be equal to a thermal state at
the same temperature as the opposite process. This means
that if the cooling down/heating up process is causing the
system to evolve to i(w, T¢)/n(w, Ty ), the initial state will
be o /.

It is clear that in the cooling protocol, there is a higher
overlap with slower decay modes in both cases. Moreover,
the number of slower modes in the cooling case (represented
by the blue stars) is larger than the number of modes in the
heating case (red dots), apart from being closer between them
and to the null eigenvalue. This spectral analysis provides us
with a justification for the asymmetry in all the processes,
referring all of them to mere observations of the decaying
modes appearing in the spectra of the Liouvillians. This expla-
nation allows us to justify and clarify all the results obtained
throughout the paper. We recall, however, that this asymmetry
in the overlap was not present in the thermal qubit case, which
only has a single decaying mode.

VIII. CONCLUSIONS

In this work, we have investigated an intriguing effect of
nonequilibrium open quantum systems: the asymmetry of the
time evolution of heating up and cooling down trajectories.
By introducing quantum information measures such as the
fidelity, the Bures distance, and the quantum Fisher informa-
tion, we analyzed this phenomenon in two different protocols.
The first (three-temperature) protocol involves an intermedi-
ate temperature, equidistant between a hotter and a colder one,
while the second (two-temperature) protocol works between
two absolute temperatures. The measures developed in this
work are general and applicable to various other dissipative
processes.

We extended the thermal kinematics to open quantum
systems and applied these protocols to three different configu-
rations of increasing complexity: a thermal qubit, a harmonic
oscillator coupled to a bosonic heat bath, as well as a canon-
ical model for the quantum Brownian motion. The qubit
system provides an analytical description that can be solved
exactly for all the studied magnitudes, and allowing for
separate interpretations of the two protocols; the other sys-
tems are analyzed numerically. Our results unequivocally

indicate that heating up and cooling down are intrinsically
different processes, with heating up always being the fastest
for the explored configurations. In the limit of small tem-
perature differences we recover a symmetric behavior in
accordance with equilibrium thermodynamics in the quantum
regime. Note that particular configurations of multilevel sys-
tems have been described showing that the asymmetry can be
inverted (cooling can be faster than heating) [80].

By studying the Liouvillian spectrum of the system, we
observe that the eigenvalues spread towards the negative real
line as temperature increases. This indicates that for thermal
baths at higher temperatures there are more fast-decaying
modes, making the evolution faster. Additionally, the overlap
between the initial state and the fast-decaying modes is larger
for the heating up processes. Despite their simplicity, the pro-
posed configurations can be readily be tested experimentally
is various platforms, e.g., semiconductor qubits [97] or su-
perconducting cavity quantum thermodynamic circuits [95].
As systems with higher complexity require longer times to
thermalize, harmonic oscillators or quantum Brownian motors
are ideal candidates to detect thermalization asymmetries.
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APPENDIX: CLASSICAL AND QUANTUM FISHER
INFORMATION

In classical parameter estimation a canonical measure is
the classical Fisher information, 7(0), of a probability density
p(x, 0), defined as

00 2
101(0):=/ (%) o, 0)dx. (Al
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The geometric interpretation of the Fisher information arises
from defining a statistical line element, ds, such that ds? =
1(0)d6?. Therefore, the line element ds can be regarded as a
dimensionless distance between probability densities p(x, 6)
and p(x, 0 + d6).

Consider a quantum state, p, parametrized by an
n-dimension vector 6 = 01, ...,6,), and denoted by ,0(9).
For an infinitesimal change in the parameters, one can relate
the Bures distance to the quantum Fisher information matrix
(QFIM), Z, so that

- 5 5 1
[Ds(p (@), p® +dONF = § D Tijdxidx; + Odx*). (A2)
iJj

The complete derivation can be found in Ref. [86]. The ele-
ments of the QFIM are given by

Tij = Tr[Lo,p(0)Ly,]. (A3)

where {Lg,}?_, are the symmetric logarithmic derivative (SLD)
operators for the kth parameter, implicitly defined as

0p®) _ Lop®)+ @)L,
30, 2 ’

We are only interested in single-parameter estimation, in this
case the QFIM reads

Iy = Tr[L;p(9)]. (A5)

(A4)

We are intended to obtain an operational expression for the
SLD. In the eigenbasis of p(8), by means of the spectral
theorem, the density matrix can be decomposed in terms of
its eigenvalues and eigenvectors

P(O) =" 1i(0) 11:(0)) (1:(O)] . (A6)

i=1

Hence, in the eigenbasis of the state p(6), the SLD operator is
simply given by

ww»%we»
L=2) o 5®)

[2:0))(2;0), (A7)

ij
where {|Ax(0))};_, is the eigenbasis of p(8) for A(0); +
A0); #0, Vi, j=1,..., n Forour analysis, we use only the
time as a parameter, giving

dp()
(i1 — 12 ®)
L=2)" WO+ 0 i) (A ()], (A8)
and the QFIM
Tp = Tr[L} p(t)]. (A9)
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