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Rectification of thermal fluctuations in a chaotic cavity heat engine
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We investigate the rectification of thermal fluctuations in a mesoscopic on-chip heat engine. The engine consists
of a hot chaotic cavity capacitively coupled to a cold cavity which rectifies the excess noise and generates a
directed current. The fluctuation-induced directed current depends on the energy asymmetry of the transmissions
of the contacts of the cold cavity to the leads and is proportional to the temperature difference. We discuss the
channel dependence of the maximal power output of the heat engine and its efficiency.
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I. INTRODUCTION

Rectification is central to the operation of electrical circuits.
More than 60 years ago, Leon Brillouin, then at IBM, raised the
question of whether an electric circuit consisting of a resistor
and a diode can become a Maxwell demon rectifying its
own thermal fluctuations.1 Using inappropriate generalizations
of Langevin dynamics for systems with nonlinear diffusion
coefficients could indeed lead to such rectification, in obvious
violation of the second law of thermodynamics.2 Brillouin’s
paradox was solved by taking into account the diode’s contact
potentials.3 Later, it was shown that a system with diode and
resistor at two different temperatures cannot exceed Carnot
efficiency4 in agreement with the second law.

Nowadays, thermoelectrics is of increasing importance. In
the continuing quest for smaller scale electric circuits the
evacuation of heat proves to be a major obstacle. Therefore
it is interesting to explore whether some of the energy that is
dissipated can be harvested and put to use.

There are many ways to generate directed currents. In recent
years Brownian particles in ratchets subject to periodic driving
have found much interest in very different fields of science.5

Here we are concerned with a more subtle form of driving:
The only external agent acting on the system is noise that can
be generated by an external thermal equilibrium bath. External
noise can generate directed currents even in periodic potentials
with inversion symmetry if the noise power depends on the
location of the Brownian particle.6–10 Such state dependent
diffusion is also at the origin of the difficulties encountered by
Brillouin.1

In this paper, we investigate the rectification of thermal
fluctuations into a directed electric current in a mesoscopic
heat engine. The latter consists of two capacitively coupled
chaotic cavities arranged in a three-terminal geometry as
shown Fig. 1. The upper cavity is the rectifier and is connected
via two contacts with energy-dependent transmissions to
electron reservoirs. The lower cavity provides the external
source of thermal noise. It is connected via only a single
contact to another electron reservoir. The energy dependence
of the contact transmissions is a generic feature of mesoscopic
conductors and leads to an intrinsic nonlinearity in the upper
cavity.11 The three-terminal setup allows for separated heat
and charge currents in contrast to two-terminal setups where
these currents are necessarily aligned.

The mechanism giving rise to the current is shown schemat-
ically in Fig. 1. Electrons enter the cold upper cavity at an
energy E. They absorb the energy eδU from the fluctuating
potential generated by the hot lower cavity in the upper
cavity and afterwards leave the cold cavity again. As the
transmissions through the upper cavity’s contacts are energy-
dependent, the ratio between transport processes involving the
left and right lead is different at energies E and E + eδU ,
thus giving rise to a net electrical current through the cavity.
The rectification is controlled by Coulomb coupling which is
dominant at low temperatures, whereas at higher temperatures
phonon effects become important.12

Thermoelectric properties of both open mesoscopic
cavities13,14 and in the Coulomb blockade limit15–17 have been
of interest. The quantization of energy levels in small dots
leads to exceptional thermo-electrical properties.18 Both in
two- and three-terminal structures the limit in which the ratio
of electric to heat current is given by the ratio of the charge
to an energy quantum can be reached.19,20 Still, while the
efficiency of such nanoengines can in principle be optimal
leading to an infinite figure of merit ZT ,21 the current they
deliver is small, typically of the order of 1 pA. It is therefore
of interest to explore how power output and efficiency scale
as dots are opened and turned into cavities with contacts that
permit currents that are much larger than the tunneling current
of a Coulomb-blockaded quantum dot.

The physics of Coulomb coupled conductors is of interest in
nanophysics for on-chip charge detectors,22 quantum Hall edge
states,23 and the Coulomb drag in which one system that carries
a current induces a current in a nearby unbiased conductor.24–27

In the setup of Fig. 1 the current carrying conductor in the
Coulomb drag problem is replaced by an unbiased but hot
conductor.

Our paper is organized as follows: In Sec. II, we present
our model of the double cavity and describe our theoretical
approach. Our results are presented in Sec. III and conclusions
are drawn in Sec. IV. Calculational details are presented in the
Appendices.

II. MODEL AND METHOD

We investigate transport through two capacitively coupled
open quantum dots with mutual capacitance C, cf. Fig. 1. Each
cavity i = 1,2 is coupled via quantum point contacts (QPCs) to
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FIG. 1. (Color online) Schematic of the double cavity and
operation scheme: Electrons enter the cavity, gain an energy eδU

and then leave the cavity again, experiencing different transmissions
of the contacts.

electronic reservoirs r = L,R. The latter ones are assumed to
be in local equilibrium and described by a Fermi distribution
fir (x) = {exp[(x − μir )/kB�i] + 1}−1 with temperature �i

and chemical potential μir . Interaction effects are captured
by capacitive couplings Cir between the cavities and their
respective reservoirs that leads to screening of the potential
fluctuations.

We consider the system in the semiclassical limit where
the number Nir of open transport channels28–30 in the QPCs is
large under conditions at which dephasing destroys phase in-
formation but preserves energy. We can, thus, characterize the
chaotic cavities by a distribution function fi(E) that depends
on energy only, and focus on a semiclassical description of the
physics without coherence.31 For later convenience, we write
the distribution function as

fi =
∑

r Tirfir∑
r Tir

+ δfi. (1)

Here, the first term describes the average value of fi and
is given by the average of the distributions of the reservoirs
weighted with the transmission Tir of the respective QPC. The
second term δfi describes fluctuations of fi around its average.
Additionally, each cavity is characterized by its potential Ui

which also fluctuates by δUi .
We assume the transmissions to be energy dependent, which

we model to first order as Tir = T 0
ir − eT ′

ir δUi . The energy-
dependent transmission leads to a nonlinear current voltage
characteristic. Even without external noise such a nonlinearity
requires a self-consistent treatment.32,33 In our system, Fig. 1,
we need a self-consistent treatment not only of the average
Hartree potential but in addition the fluctuating potentials.
We remark that while the energy-independent part T 0

ir scales

linearly with the number of open transport channels Nir , the
energy-dependent part T ′

ir is independent of Nir .
The starting point of our theoretical investigation is a kinetic

equation for the distribution functions fi (see, e.g., Ref. 34),

eνiF
dfi

dt
= eνiF

∂fi

∂Ui

U̇i + e

h

∑
r

Tir (fir − fi) + δi�, (2)

where νiF denotes the density of states of cavity i. It describes
the change of charge in a given energy interval due to changes
in the potential Ui , in- and outgoing electron currents through
the QPCs as well as their fluctuations δi� where the index �

indicates summation over all contacts r of cavity i.
Expressing the charge inside the cavities via the distribution

functions fi as well as via the capacitances and potentials,
we obtain a relation between δfi and δUi which allows
us to transform the kinetic equation (2) into a Langevin
equation for δUi . Neglecting terms that are cubic and higher
in the potential fluctuations, the latter can be converted into
a nonlinear Fokker-Planck equation with a diffusion function
that depends on the cavity potential. The nonlinearity of the
Langevin equation leads to subtleties in the interpretation of
the stochastic integral (known as the Itô and Stratonovich
problem) that gives rise to different Fokker-Planck equations.
The “kinetic prescription” of Klimontovich35 provides a
steady-state solution of Eq. (2) that is in global thermal
equilibrium, thus avoiding the Brillouin paradox mentioned
in the introduction.

We stress that the nonlinearity is the technical origin of
rectification in the cavity. A linear system would not exhibit
this feature. From the Klimontovich-Fokker-Planck equation
we obtain 〈δUi〉 and 〈δUiδUj 〉, cf. Appendixes A–D for details.
The charge currents between upper cavity and contact r are
given by

I1r = e

h

∫
dET1r (f1r − f1) + δIr . (3)

III. RESULTS

The critical nonlinearity of the cavity is quantified by the
amount of symmetry breaking in the energy derivatives of the
transmissions of the upper cavity, given by the rectification
parameter �:

� = G′
1LG1R − G′

1RG1L

G2
1�

, (4)

where Gir = (e2/h)T 0
ir and G′

ir = (e3/h)T ′
ir . We will see

below that it is the rectification conversion factor between
energy and charge for an unbiased cavity. This parameter
appears in many places in terms of interaction corrections. For
example, if we consider the uncoupled upper cavity (C = 0,
i = 1), the single cavity conductance G1 = G1LG1R/G1�

(which is the series combination of the left and right leads) has
an interaction correction of �G1 = −2C1μG��2kB�1/C2

1� ,
where C1� = ∑

r C1r is the total capacitance of the upper
cavity and C−1

1μ = (e2ν1F)−1 + C−1
1� is its electrochemical

capacitance. We note that while G1 scales with the channel
number N , the correction �G1 is of order ∝ N−1 (quantum
corrections in a coherent cavity36 are of order ∝ N0). The
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rectification parameter � also appears in the second-order
conductance.

We now turn to the coupled cavities, cf. Fig. 1. Applying
different temperatures �1 and �2 to the reservoirs that couple
to cavity 1 and 2, respectively, while keeping the electrical
contacts grounded (Vir = 0), we find to leading order in the
nonlinearity a charge current through the cavity given by

〈I1L〉 = �

τRC

kB(�1 − �2), (5)

where we assumed identical capacitances and densities of
states for the two cavities. Now, we give a physical in-
terpretation of each term in Eq. (5), the rectified current.
τRC = Ceff/Geff denotes an effective RC time of the double
cavity. It is determined by the effective conductance of the
double cavity, Geff = G1�G2�/(G1� + G2�), which is largest
if both cavities have equal conductances. Furthermore, it
depends on the effective capacitance

Ceff = C�(2C + C�)
(
C2

� + 2CC� − CCμ

)
2C2Cμ

(6)

describing how strong the interaction is between the two
cavities. It should be minimized (without entering the Coulomb
blockade regime) to maximize the rectified current. It grows
as C−2 and for large couplings approaches the constant value
(2C� − Cμ)C�/Cμ, cf. Fig. 2. Next, as stated, the rectified
current (5) is proportional to �, which characterizes the asym-
metry of the system: The system is asymmetric if either the
left-right conductances and/or their energy derivatives differ.
Finally, the current (5) is linear in the applied temperature
difference, so the rectified current is zero in global thermal
equilibrium, as must be the case in order to satisfy the second
law of thermodynamics. We note that the sign of the current
flips under either exchange of the system lead nonlinearity or
under exchange of the cavity temperatures.

As the energy-dependent part of the transmission does
not scale with the number of transport channels, the current
Eq. (5) also turns out to be independent of the channel number.
For realistic values28–30 of Ceff = 10 fF, G′ = (e2/h)(mV)−1,
and �2 − �1 = 1 K, we find I ∼ 0.1 nA, which can be readily
detected in current experiments and is two orders of magnitude
larger than currents through typical Coulomb-blockaded dots.
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FIG. 2. (Color online) Inverse effective capacitance as a function
of the capacitance between the two cavities C for different values of
e2νF/C� . Note the different scale for the various curves.

In order to convert the heat extracted from the hot reservoir
into useful work, we have to make the noise-induced current
flow against a finite bias voltage V1L − V1R. The bias induces
a counterflow of current given to leading order in the
nonlinearity by G1(V1L − V1R), thus reducing the total current.
At the stopping voltage, Vstop = �kB(�1 − �2)/(G1τRC),
there is no current flowing through the system. The output
power is given by P = 〈I1L〉(V1L − V1R). It is parabolic as a
function of the applied voltage, vanishing at zero bias and the
stopping voltage; it has a maximum at half the stopping voltage
given by

Pmax = �2

4G1τ
2
RC

[kB(�1 − �2)]2. (7)

Energy is transferred between the cavities in the form of
dissipated power in the upper cavity, P = ∑

r〈I1rV1r〉, the
heat current given up by the lower hot cavity to the upper cold
cavity, JH = 〈U2I2〉, and the heat current given up by the upper
cold cavity to its heat reservoirs, JC = ∑

r〈(U1 − V1r )I1r〉. It
is straightforward to check that JH = JC + P in our model,
so energy is conserved in the system. The efficiency η of the
heat-to-charge-current converter is given by the ratio between
the output power P to the intercavity heat current, JH . To
leading order in the energy-dependent transmissions, this heat
current is given by

JH = 1

τRC

kB(�2 − �1), (8)

because heat will flow from hot to cold even without the
nonlinearity. The correction to this result that is linear in the
voltage applied across the upper cavity is suppressed by G′

1r

(as it must to satisfy an Onsager relation, see Appendix E).
As indicated earlier, the asymmetry parameter � controls the
process of energy-to-charge conversion 〈I1L〉/JH .

The efficiency η = P/JH exhibits the same parabolic bias
dependence as the output power since the heat current is
independent of the applied bias. Hence, for a given temperature
difference, the maximal efficiency occurs at maximum power
and is given by

ηmax = �2

4G1τRC

kB(�2 − �1). (9)

For G1 = 5e2/h and parameters as above, we estimate Pmax ∼
2 fW and a maximal efficiency of ∼ 1% of the Carnot
efficiency for a device working at liquid-helium temperatures.
We note that while the maximal power of the system scales
inversely with the number of available transport channels,
the maximal efficiency even decreases with the number of
channels squared. This is because for a large number of
open channels the effect of the energy dependence of the
uppermost channel becomes less important. This effect can
be seen in Fig. 3 where the logarithmic derivative of the QPC
conductance is plotted, which controls the stopping voltage
and other rectification figures of merit in the case where one
contact is energy independent. For a stronger nonlinearity, such
as a truly steplike transmission, a nonperturbative analysis is
required which could give rise to much higher efficiencies.4

In order to demonstrate that it is the nonlinearity of the
rectifying cavity that is the key ingredient to our heat engine,
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FIG. 3. (Color online) Conductance of a QPC for both fully
quantized steps (full black) and semiclassical interpolation (full
red). Its logarithmic derivative (black and red dashed) controls the
heat-to-charge conversion, stopping voltage, power, and efficiency of
the energy harvester.

we now briefly consider an alternative setup where a rectifier
is coupled to a resistor R at temperature �2 with a capacitor
CR in parallel instead of a second cavity (see Fig. 4 for a
circuit diagram). Repeating the same analysis as above, we
find that the heat-induced current, the maximal power, as well
as the efficiency at maximum power are given by the same
expressions as above. The only difference is that the effective
conductance and capacitance take on different values, Geff →
G1�,Ceff → [CRC� + C(CR + C�)] [CμC�(C + C�) +
RG�(CCRC� + [C + CR]C2

� − CCRCμ)]/(C2CμC�).
We finally apply our results to the semiclassical regime in

the limit G2� � G1� for simplicity. For large energies the
conductance of the QPCs is given by

Gr (E) = e2

h

(E − Er )γ

�
γ
r

�(E − Er ), (10)

with Er being the energy that marks the transition from
tunneling to ballistic transport and �r describing how open
the contact is. For equal conductances of the two QPCs at the
Fermi energy, GL(EF ) = GR(EF ), we obtain for the maximal
power

Pmax = e4

8h

γ 2[kB(�1 − �2)]2(1 − R)2(EF − EL)γ−2

�
γ

LC2
eff

, (11)

VL VR
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C

FIG. 4. Circuit diagram of a cavity coupled to a hot resistor.

with R = �L/�R. We thus see that in order to maximize
the power, we need a strong asymmetry in the contacts,
�L 	 �R, while keeping the conductance of each contact
the same. For the semiclassical result γ = 1/2, we find that
the power drops upon increasing the energy transport window
EF − EL. We note, however, that for γ > 2 the contribution
from the conductance will outweigh the contribution from the
nonlinearity and, thus, lead to a maximal power that increases
with the transport window. While the efficiency will drop
with the inverse square of the transport window, we remark
that a conductance that is exponential in energy will have an
efficiency that is independent of the window size.

IV. CONCLUSIONS

We have examined a mesoscopic energy harvester consist-
ing of a pair of quantum dots and find that as the contacts are
opened, the power output can increase but typically with a drop
in efficiency for the weak nonlinearity considered here. Our
work demonstrates the importance of the asymmetric energy
dependence of the contact transmissions. Energy harvesting
from environmental fluctuations is an important goal. It might
lead to nanoscale devices which can function independently of
an external power supply. In densely packed electronic circuits,
energy harvesting might alleviate the heat removal problem.
Our results are useful for future experiments that realize solid
state energy harvesters.
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APPENDIX A: KINETIC EQUATION

Our starting point is the set of kinetic equation for the
distribution functions fi of the cavities,

dfi

dt
= ∂fi

∂Ui

U̇i + 1

hνiF

∑
r

Tir (fir − fi) + 1

eνiF
δi�. (A1)

In the following, we write the distribution function as a
constant part that is given by the average of the Fermi
functions of the reservoirs weighted with the transmission of
the respective QPC and a fluctuating part δfi :

fi =
∑

r

Tirfir

Ti�

+ δfi

=
∑

r

Gir

Gi�

fir − �iLR(fiL − fiR)

[
δUi + G′

i�

Gi�

(δUi)
2

]

+ δfi. (A2)

Here, in the last step, we used Tir = T 0
ir − eT ′

ir δUi and
expanded the whole expression up to second order in δUi .
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We, furthermore, introduced the asymmetry parameter

�iLR = G′
iLGiR − G′

iRGiL

G2
i�

(A3)

and abbreviated Gir = (e2/h)T 0
ir , and G′

ir = (e3/h)T ′
ir , where

r = L,R,� refers to the left QPC, the right QPC, or the sum
over all QPCs adjacent to cavity i = 1,2.

In order to relate the fluctuating part of the distribution
function δfi to the fluctuating part of the potential δUi , we
express the charge Qic inside cavity i once in terms of its
distribution function and once in terms of the potentials and
capacitances,

Qic = eνiF

∫
dE

(∑
r

Tir

Ti�

fir + δfi

)
− e2νiFUi, (A4)

Qic =
∑

i

Cir (Ui − Vir ) + Cig(Ui − Vig) + C(Ui − Uī),

(A5)

where ī denotes the index opposite to i. Equating the
fluctuating parts of both equations, we find∫

dEδfi = e

(
Ci�

Ciμ

+ χi

e3νiF

)
δUi + χi

eνiF

T ′
i�

T 0
i�

(δUi)
2

+ e
C

e2νiF
(δUi − δUī). (A6)

Here, we introduced χi = �iLR(ViL − ViR), the total ca-
pacitance of cavity i, Ci� = ∑

r Cir + Cig , as well as its
electrochemical capacitance Ciμ = e2νiFCi�/(e2νiF + Ci�).

Using Eq. (A6) to eliminate δfi from the energy-integrated
kinetic equation (A1), we obtain a set of coupled, nonlinear
Langevin equations that determine δUi ,

(Ci� + C) ˙δUi − C ˙δU ī

= −Gi�

(
Ci�

Ciμ

+ χi

e3νiF

)
δUi + G′

i�

Ci�

Ciμ

(δUi)
2 + δIi�

−Gi�

C

e2νiF
(δUi − δUī) + G′

i�

C

e2νiF
[(δUi)

2−δUiδUī].

(A7)

APPENDIX B: DIFFUSION COEFFICIENTS

The diffusion in Eq. (A7) is characterized by the diffusion
coefficients defined as37

〈δIir (t)δIir (0)〉 = 2e2

h

∫
dETir [fir (1 − fir ) + fi(1 − fi)

+ (1 − Tir )(fir − fi)
2]δ(t)

= Dirδ(t). (B1)

Importantly, the diffusion coefficients Dir depend themselves
on δUi through the energy dependence of the transmissions Tir .
This leads to a certain ambiguity when converting the Langevin
equation into a Fokker-Planck equation, see below. Evaluating
the above integral and expanding the diffusion coefficient to
linear order in the applied voltage, we obtain

Dir = 4kB�i(Gir − G′
ir δUi). (B2)

APPENDIX C: FOKKER-PLANCK EQUATION

Given a nonlinear Langevin equation of the form

ẋi = fi(x) + gij (x)ηj (t) (C1)

where x = (x1,x2, . . .) and ηj (t) is a noise source satisfying
〈ηj (t)〉 = 0 and 〈ηi(t)ηj (t ′)〉 = δij δ(t − t ′), one can show38

that it is equivalent to a Fokker-Planck equation of the form

∂P

∂t
= ∂

∂xi

[
−

(
fi + α

∂gil

∂xk

gkl

)
P + 1

2

∂

∂xj

(gilgjlP )

]
,

(C2)

where Einstein’s sum convention is implied. The parameter
α takes the values 0 in the Itô prescription, 1/2 in the
Stratonovich prescription, and α = 1 in the Klimontovich
prescription.35 In our analysis, it turns out that only the
Klimontovich prescription gives vanishing currents in global
thermal equilibrium. In our problem, we have gij = δij gi such
that the Fokker-Planck equation simplifies to

∂P

∂t
= ∂

∂xi

[
−

(
fi + α

∂gi

∂xi

gi

)
P + 1

2

∂

∂xi

(g2
i P )

]
. (C3)

Multiplying the Fokker-Planck equation with xk and xkxl ,
respectively, and integrating over all variables xi , we obtain
the following equations for the expectation values

d

dt
〈xk〉 = 〈fk〉 + α

〈
∂gk

∂xk

gk

〉
, (C4)

d

dt
〈xkxl〉 = 〈xlfk + xkfl〉 + α

〈
xl

∂gk

∂xk

gk + xk

∂gl

∂xl

gl

〉
+ δkl

〈
g2

k

〉
. (C5)

To make a closer connection to the discussion above, we
introduce gi =

√
2D̃i with the diffusion constants D̃i and

obtain

d

dt
〈xk〉 = 〈fk〉 + α

〈
∂D̃k

∂xk

〉
, (C6)

d

dt
〈xkxl〉 = 〈xlfk + xkfl〉 + α

〈
xl

∂D̃k

∂xk

+ xk

∂D̃l

∂xl

〉
+ 2δkl〈D̃k〉. (C7)

By comparing the equation for 〈xk〉 with the original Langevin
equation, we furthermore obtain for the expectation value of
the random currents

〈δIir〉 = 〈
√

2D̃irηir (t)〉 = α

〈
∂D̃ir

∂xi

〉
. (C8)

For the calculation of heat current, we also need correlators
of the form 〈xigij (x)ηj (t)〉. In order to obtain them, we
multiply the Langevin equation (C1) by xi ,

1

2

d

dt
x2

i = xifi(x) + xigij (x)ηj (t). (C9)

Taking expectation values and equating with Eq. (C7), we find

〈xiδIir〉 = 〈xi

√
2D̃ir ηir (t)〉 = 1

2
〈D̃ir〉 + α

〈
xi

∂D̃ir

∂xi

〉
.

(C10)
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APPENDIX D: CHARGE AND HEAT CURRENTS

The charge current between lead r and dot i is given by

Iir = e

h

∫
dE

(
T 0

ir − eT ′
ir δUi

)
(fir − f ) + δIir , (D1)

which can be rewritten as

Iir = GirGir̄

Gi�

(Vir − Vir̄ ) − G′
irGir̄

Gi�

(Vir − Vir̄ )δUi

−
{

(Gir − G′
ir δUi)

[(
Ci�

Ciμ

+ C

e2νiF

)
δUi

− C

e2νiF
δUī

]}
+ δIir . (D2)

The expectation value of the fluctuating current part is obtained
from Eq. (C8).

The heat current between lead r and cavity i is given by
Jir = (Ui − Vir )Iir . Without an applied bias voltage, we have
Jir = δUiIir and, hence,

〈Jir〉 = −Gir

[(
Ci�

Ciμ

+ C

e2νiF

)
〈(δUi)

2〉(0)

− C

e2νiF
〈δUiδUī〉(0)

]
+ 〈δUiδIir〉(0), (D3)

where the potential-current correlator can be obtained using
Eq. (C10). The superscript (0) on the expectation values
indicates that they have to be evaluated to zeroth order in
the applied bias voltage.

The heat current up to linear order is again given by Jir =
δUiIir as both the nonfluctuating part of Ui as well as the

expectation value of Iir are of first order in the bias voltage.
We find

〈Jir〉 = GirGir̄

Gi�

〈δUi〉(0)(Vir − Vir̄ )

− G′
irGir̄

Gi�

(Vir − Vir̄ )〈(δUi)
2〉(0)

−Gir

[(
Ci�

Ciμ

+ C

e2νiF

)
〈(δUi)

2〉(1)

− C

e2νiF
〈δUiδUī〉(1)

]
+ 〈δUiδIir〉(1). (D4)

APPENDIX E: ONSAGER RELATIONS

According to Onsager39,40 the linear response coefficients
of charge and heat currents as a response to bias voltage
and thermal gradients are related to each other. To verify the
Onsager relation for our system, we expand the charge current
through cavity 1 and the heat current between the two cavities
to linear order in the bias �V applied to cavity 1 and the
temperature difference �� between the reservoirs of the two
cavities,

〈I1L〉 = G�V + L��, (E1)

〈J2�〉 = M�V + N��. (E2)

In the main text we already found that L = kB�1LR/τRC .
Evaluating similarly the heat current in response to an applied
bias voltage, we find M = −kB��1LR/τRC in agreement with
the Onsager relation L = −M/�.
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