
PHYSICAL REVIEW B 111, 045419 (2025)

Autonomous demon exploiting heat and information at the trajectory level
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We propose an electronic bipartite system consisting of a working substance, in which a refrigeration process
is implemented, and of a nonthermal resource region, containing a combination of different thermal baths.
In the working substance, heat is extracted from the coldest of two electronic reservoirs (refrigeration) via
heat transport and particle transport through a quantum dot. This quantum dot of the working substance is
capacitively coupled to the resource region. In such a setup, a finite cooling power can be obtained in the working
substance, while the energy exchange with the resource region exactly cancels out, on average. At the same time,
information is always exchanged, even on average, due to the capacitive coupling between the two parts of the
bipartite system. The proposed system therefore implements an autonomous demon with fully vanishing heat
extraction from the resource. Unlike macroscopic machines, nanoscale machines exhibit large fluctuations in
performance, so precision becomes an important performance quantifier. We give a comprehensive description
of the thermodynamic performance of the proposed autonomous demon in terms of stochastic trajectories and of
full counting statistics and demonstrate that the precision of the cooling power strongly depends on the operation
principle of the device. More specifically, the interplay of information flow and counterbalancing heat flows
dramatically impacts the trade-off between cooling power, efficiency, and precision. We expect this insight to be
of relevance for guiding the design of energy-conversion processes exploiting nonthermal resources.
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I. INTRODUCTION

Thermoelectric energy conversion at the nanoscale [1,2]
opens up new opportunities, with one of the most striking ones
being the possibility to implement engines exploiting informa-
tion as a resource [3,4]. At the same time, nanoscale engines
face new challenges, one of them being that fluctuations [5–7]
can be of the same order of magnitude as the actual desired
outcome. Precision has therefore recently advanced to be one
of the important performance quantifiers of nanoscale thermal
machines [8–11].

Recently, different types of quantum-dot setups have
been proposed and experimentally implemented that operate
as so-called Maxwell demons, either actively implement-
ing feedback protocols [12–20] or operating autonomously
[21–24]. A Maxwell demon is a device which seemingly vio-
lates the second law since an engine is brought to work while
no energy is absorbed from the resource. In contrast, the en-
gine exploits information and feedback as a resource, thereby
reinstalling the second law as required [25–27]. Devices with
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capacitively coupled quantum dots [28–33] or single-electron
transistors [13,15,24] are particularly advantageous electronic
realizations of autonomous Maxwell demons since a capaci-
tive coupling between them allows for a well-defined energy
exchange between device elements, while at the same time
a meaningful interpretation in terms of a bipartite system
with resource region and working substance is guaranteed.
Other platforms for controlled coupling to quantized en-
ergy sources have been explored recently, including qubits
[34,35], vibrating wires [36–38], cavity QED setups [39,40],
and quantum-dot refrigerators [41]. The mentioned proposals
and realizations of autonomous Maxwell demons, however,
have the drawback that the heat exchanged between working
substance and demonic resource only vanishes in limiting
cases, where the desired output typically also vanishes. A
different class of demonic systems has been suggested re-
cently, the so-called N-demons, which do not at all exploit
information and feedback, but rather a resource that is non-
thermal [42–49]. In such systems, finite power production or
even multiple useful outputs [50–53] can be achieved even
when there is no average heat exchange with the resource.
However, nonvanishing fluctuations in the energy exchange
between resource and working substance are required for the
demonic operation of the device in this case. A whole range
of demonic devices spanning from the purely information
driven to nonthermal demons and beyond has been proposed
[54–59], where these devices have in common that they

2469-9950/2025/111(4)/045419(20) 045419-1 Published by the American Physical Society

https://orcid.org/0000-0002-4965-6794
https://orcid.org/0000-0001-9739-9289
https://orcid.org/0000-0002-8810-8811
https://orcid.org/0000-0003-1078-9490
https://ror.org/040wg7k59
https://ror.org/004fze387
https://ror.org/01cby8j38
https://ror.org/01cby8j38
https://ror.org/01cby8j38
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.045419&domain=pdf&date_stamp=2025-01-15
https://doi.org/10.1103/PhysRevB.111.045419
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


JULIETTE MONSEL et al. PHYSICAL REVIEW B 111, 045419 (2025)

(a) (b)

FIG. 1. (a) Setup of a single-level quantum dot W, in contact with
electronic reservoirs at temperatures TL and TR (working substance)
operating as a refrigerator. The cooling power Pcool = JQ

R in the
working substance is produced by exploiting a demonic resource
in the absence of a steady heat flow, JQ

in = 0. This resource con-
sists of two quantum dots, H and C, in contact with a hot and a
cold reservoir at temperatures TH and TC, capacitively coupled to
each other and to quantum dot W. The remaining indicated param-
eters are the level energies εH, εC, εW of the three quantum dots,
the interaction energies UH,UC due to the capacitive coupling of
the demon dots to dot W, the reservoir electrochemical potentials
μH, μC, μL, μR, and the tunnel coupling strengths between dots,
�H, �C, and �hc

L , �hc
R . Red crosses indicate the forbidden transitions.

(b) Markov chain representing the stochastic dynamics of the triple-
dot system. The states are labeled with the occupations of the dots:
hwc ∈ {000, 001, 010, 001, 100, 110}. The arrow color emphasizes
which dot is involved in the particle exchange: red/blue/green for
H/C/W. The transition rates are defined in Sec. II B 1.

seemingly violate the second law; see Ref. [60] for a detailed
discussion.

In this paper, we analyze a triple-dot setup [42], as shown
in Fig. 1, which acts as a demon exploiting both information
and a nonthermal resource. Consequently, it is able to oper-
ate as an autonomous demon in the spirit of the devices of
Refs. [21,24], but with the advantage of having an exactly
vanishing average heat flow between resource and working
substance in a broad range of parameters and at nonvanishing
output cooling power. The idea underlying this device relies
on a nontrivial combination of thermal machines based on ca-
pacitively coupled quantum dots, exploiting heat as a resource
in order to implement a useful task [61–69], and analogous
information-based devices [21,23,70–72], which can also be
viewed as thermal machines exploiting a cold resource [60].

The system that we are studying in this paper is depicted in
Fig. 1. The goal of the shown engine is to extract heat from the
colder reservoir of the working substance via electron trans-
port through the central quantum dot W. The resource region,
which we, on equal terms, refer to as the demon, consists
of two quantum dots, capacitively coupled to each other and
to the working-substance dot W, and tunnel coupled to one
hot and one cold resource reservoir. The basic mechanism is
based on the tunneling rates of the system depending on its
interaction with the demon: tunneling rates in the system are
higher for the left contact when the demon dots are empty and
from the right when they are occupied. Henceforth, charge
fluctuations in the demon modify not only the system energy,

but also its symmetry. In this way, trajectories in which an
electron goes through the system upon exchanging energy
with the demon (via the Coulomb interaction) have a preferred
direction. Note that while this combination of hot and cold
resources might seem to be a very specific choice, it can to
a large extent be representative of any nonthermal resource
since only specific points in the energy distributions of the
resource reservoirs are probed via the addition energies of the
resource dots H and C.

Importantly, while the system works as a refrigerator, we
impose a fully vanishing average energy (or heat) flow be-
tween the working substance and the resource region, which
hence occurs to be “demonic”. We analyze the cooling power,
as well as the entropy production and the information ex-
change between the two parts of this bipartite system, using
a steady-state master equation approach and an unraveling
in state-space trajectories. In addition, we use full counting
statistics (FCS) [6,7,73] in order to reveal the precision of the
engine. While this triple-dot system has previously been ana-
lyzed using a master equation approach [42] focusing mostly
on energy exchange, the FCS analysis [74,75], the trajectory
unraveling [76,77], and the study of average information flows
[78–82] have until now been mostly limited to double-dot
systems working either as heat engines or as information-
driven engines exploiting a cold resource. In particular, a
study of information flows at the trajectory level has been fully
missing and is provided in the present paper, and it appears
here as a valuable tool to understand the role of the different
resources in the thermodynamic performance of the device.
Indeed, charge-detection-based FCS experiments allow for
the detection of trajectories in the state space of quantum
dots [83–87], giving access to the thermodynamic flows
[15,74,88–91], fluctuations [92,93], and even mutual informa-
tion [94].

It is the combination of steady-state master-equation anal-
ysis, FCS, and thermodynamic and information analysis at
the trajectory level which allows us to identify two different
operation regimes of the device. These two regimes lead to
similar cooling power and efficiency, but to very different
performance in view of precision. Importantly, we find one
operation regime where the interaction with both the cold
and the hot resource reservoirs is beneficial for the cooling
process, while only the interaction with the cold reservoir
exploits information. This working principle leads to cooling
at good precision. By contrast, a more information-focused
operation process results in a competition between cooling
and heating in the working substance and thereby comes at
the cost of reduced precision.

This paper is structured as follows: We introduce the gen-
eral framework in Sec. II, where we give details about the
studied model (Sec. II A), the master equation formalism
both for average currents as well as for the cooling-power
noise from full counting statistics (Sec. II B), and the tra-
jectory analysis of the model (Sec. II C). In Sec. III, we
analyze the performance of the triple-dot-based bipartite
information-thermal machine. We demonstrate how the state-
space cycles underlying the operation principle of the device
enter the currents of interest in Sec. III B, and analyze param-
eter regimes of optimal performance with respect to cooling
power and precision in Sec. III C. Differences in the trade-off
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between cooling power and precision are analyzed based on
the operational principle in Sec. III D. We conclude in Sec. IV.
Some analytical details and additional numerical results are
presented in the Appendixes.

In the following, we use the convention h̄, kB ≡ 1.

II. GENERAL FRAMEWORK

Here, we present the general framework of thermoelectric
effects and Coulomb interaction in the triple quantum-dot sys-
tem. Notably, experimental control of quantum-dot systems in
the Coulomb blockade regime [95] has enabled useful opera-
tions such as thermoelectric engines [62,96–104] and single-
electron heat control [105–107], also exploiting nonequilib-
rium phonons [108,109], photons [110,111], or noise [112].

In this paper, we study a setup made of three capacitively
coupled quantum dots, as depicted in Fig. 1(a).

A. Triple-dot setup

For each dot, we consider a single level with energy εi,
where i = H, M, C. We assume that the intradot Coulomb
interaction is large enough to exclude double occupation of
a single dot. While the spin degeneracy is known, in general,
to influence the decay rate of the quantum-dot energy [113]
and energy transport [114], this is not of qualitative relevance
for the effect observed here and we therefore neglect the
spin degree of freedom of the electrons in the following. The
Hamiltonian describing the three quantum dots is therefore
given by

Ĥ =
∑

i=H,W,C

εin̂i + UHn̂Hn̂W + UCn̂Cn̂W + Un̂Hn̂C, (1)

where we have denoted the electron number operator in dot i
by n̂i. The interdot interaction energies are given by UH,UC,
and U . Here, we assume for simplicity that the interaction
energy between the two resource dots, H and C [see Fig. 1(a)],
is very large with respect to temperatures, U/maxα (Tα ) → ∞,
so that simultaneous occupation of these dots is excluded. A
finite interaction energy between dots H and C was considered
in Ref. [42] and was shown to merely have a quantitative
effect, while not hindering the operation of the demon.

Each resource dot is furthermore tunnel coupled to a single
terminal, which is a large fermionic reservoir characterized
by its temperature Tα and chemical potential μα , with α =
C, H. We choose TC < TH and therefore call the corresponding
terminals the cold and hot resource reservoirs. Since here
we mostly focus on situations where the resource does not
provide any energy on average, we refer to the resource region
as either “resource” or “demon.” The working-substance dot
W, in the lower part of the setup, is tunnel coupled to two
terminals, called the left (L) and right (R) reservoirs, with
respective temperatures TL, TR and chemical potentials μL,
μR. The condition of zero-energy exchange between resource
and working substance is achieved by fixing one of the model
parameters; see Sec. III C for details.

For simplicity, we assume that the tunnel rates �C and �H

of the upper terminals are energy independent. However, it is
crucial in this work to have energy-dependent tunnel rates for
the left and right reservoirs. Given that the energy at which the

electrons tunnel in and out of the dot W is fully determined
by the occupations h and c of the upper dots, we denote the
lower tunnel rates �hc

L/R. Note that this is a property of the
system imposed by the Coulomb interaction of the electrons
in the different dots, not interpreted as a backaction effect of
the demon acting on the barriers [55].

Since the only possibly relevant potential difference in this
setup is μL − μR, here we set the energy references such that
μL = μC = μH = 0, without loss of generality.

B. Steady-state dynamics

1. Master equation

In the following, we consider the weak-coupling
(sequential-tunneling) limit, i.e., �α � Tα , with �α the
coupling strength (tunnel rate) between reservoir α and the
nearest dot. In this regime,1 higher-order tunneling processes
are negligible and we can describe the steady-state dynamics
of the triple-dot system by a master-equation approach [115].
We therefore introduce the vector of occupation probabilities
of triple-dot states, P = (p000, p001, p010, p011, p100, p110)T,
where phwc denotes the probability that the dots H, W,
and C contain, respectively, h, w, and c electrons, with
h,w, c ∈ {0, 1}. We have left out p101 and p111 since we
exclude the simultaneous occupation of both resource dots.
Then, the dynamics of the system is given by the rate equation

dt P = W P, (2)

where the kernel W is a 6 × 6 matrix which can be
decomposed into contributions from each reservoir, W =∑

α=L,R,H,C Wα [42]. In the occupation basis, the off-diagonal
kernel elements are

[WC]h′w′c′
hwc = δh,h′δw,w′δc,1−c′�C fC

(
�Eh′w′c′

hwc

)
,

[WH]h′w′c′
hwc = δh,1−h′δw,w′δc,c′�H fH

(
�Eh′w′c′

hwc

)
,

[WL/R]h′w′c′
hwc = δh,h′δw,1−w′δc,c′�hc

L/R fL/R
(
�Eh′w′c′

hwc

)
, (3)

where fα (E ) = 1/(1 + eβα (E−μα ) ) is the Fermi-Dirac distri-
bution and �Eh′w′c′

hwc = Ehwc − Eh′w′c′ is the addition energy,
namely, the energy difference between the states hwc
and h′w′c′, with Ehwc = cεC + hεH + wεW + cwUC + hwUH

[Eq. (1)]. Note that the sequential-tunneling approximation
only allows for transitions in which the occupation of one of
the dots changes by one. The diagonal elements are given by
[Wα]hwc

hwc = −∑
h′w′c′ �=hwc[Wα]h′w′c′

hwc .
While this notation for the kernel is most general, we will,

in this paper, also use the more intuitive notation indicating
whether an electron enters (+) or leaves (−) a dot,

�w+
H ≡ [WH]0wc

1wc, �w−
H ≡ [WH]1wc

0wc,

�w+
C ≡ [WC]hw0

hw1, �w−
C ≡ [WC]hw1

hw0,

�hc+
L/R ≡ [WL/R]h0c

h1c, �hc−
L/R ≡ [WL/R]h1c

h0c. (4)

As indicated by the red crosses in Fig. 1, here we choose a spe-
cific situation in which the energy dependence of the tunnel

1Also note that coherences do not play a role for the dynamics here
since we consider spinless and purely capacitively coupled quantum
dots.
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rates in the working substance allows for transitions to/from
the left reservoir only when the dots H and C are empty,
namely, �00±

L �= 0 and �10±
L = �01±

L = 0, while transitions
to/from the right reservoir are allowed only if either dot H or
dot C is occupied, namely, �00±

R = 0 and �10±
R , �01±

R �= 0. The
working principle of the analyzed triple-dot demonic machine
only requires an asymmetry in the energy dependence of the
coupling rates [42], similar to the case of a standard heat en-
gine implemented with a thermal resource [61,116]; however,
the above, fully asymmetric choice significantly simplifies the
analytic study and thereby allows for different intriguing into
the role of heat and information as a resource.

In the following, we study the steady state of the device,
denoted P̄, determined by W P̄ = 0. This state is unique due
to the kernel being regular and it can be computed here ana-
lytically; see Appendix A for the full solution.

2. Steady-state currents

Using the vector notations introduced above, the steady-
state current for quantity ν (particle number N , energy E , heat
Q, ...) from reservoir α, in the weak-tunneling regime, is given
by [117]

Jν
α = (

xν
α

)T
WαP̄, (5)

where xν
α is a vector in the occupation basis (000, 001, 010,

011, 100, 110) with entries [xν
α]hwc. In particular, for the

particle, energy, and heat currents, we have

xN
α = N, xE

α = E, xQ
α = E − μαN, (6)

with [N]hwc = h + w + c the occupation number and
[E]hwc = Ehwc the energy of the dots in state hwc.

One of the main quantities of interest is the cooling power
of the refrigerator, Pcool ≡ JQ

R , namely, the heat current out
of the cold reservoir of the working substance (here chosen
to be the right one without loss of generality). At the same
time, we typically require that the resource used for this task
is demonic, namely, that the heat current flowing out of the
resource region into the working substance, JQ

in = JQ
C + JQ

H ,
equals zero.2

Note that in contrast to the particle current JN ≡ JN
L =

−JN
R , heat currents are, in general, not conserved. Instead, we

have the total entropy production rate given by

	̇ = −
∑

α=L,R,H,C

βαJQ
α � 0, (7)

when considering the full triple-dot system in its steady state
given by P̄. The entropy production rate is constrained by
the second law of thermodynamics; it allows us to define a
meaningful efficiency, even in the case where the total heat
current from the resource vanishes [46,50,118],

ηglobal = βLJQ
L + βRJQ

R

−βHJQ
H − βCJQ

C

, (8)

2Here, the heat current flowing into the working substance JQ
in

equals the heat current out of the resource. This is due to the absence
of particle exchange between the two subsystems and due to the
choice of zero potential difference within the working substance,
JQ
α = JE

α , together with energy conservation.

in terms of the entropy production rate of the demon used as a
resource. We emphasize the fact that this efficiency definition
is based on the global entropy production.

The components of the sum in Eq. (7), −βαJQ
α , equal the

entropy current, defined by [80]

JS
α = (ln P̄)TWαP̄, (9)

with [ln P̄]hwc = ln p̄hwc, only in the special case where the
reservoirs are thermal and the capacitive coupling between the
quantum dots is zero. Instead, in the presence of capacitive
coupling, the flow of information between dots contributes to
the entropy production and has to be taken into account. We
describe how to do this in the following.

3. Information flow

We now split the system into a lower part (W), the working
substance, and an upper part (D), the demon [see Fig. 1(a)],
where the working substance is shown with a light-green
background. While we are interested in a situation where there
is no heat or energy exchange between these two subsystems
on average, the two systems are, however, never independent
of each other due to the capacitive coupling between the
dots. This dependence of the two components of this bipartite
system can be cast in terms of mutual information. The mutual
information between W and D reads

IW:D =
∑
h,w,c

p̄hwc ln

(
p̄hwc

p̄W
w p̄D

hc

)
, (10)

with p̄W
w = ∑

h,c p̄hwc and p̄D
hc = ∑

w p̄hwc. We emphasize that
as soon as there is interdot Coulomb interaction and W and
D are out of equilibrium with respect to each other, there is
mutual information between the working substance and the
resource—even in cases where there is clearly no feedback
involved in the refrigeration or work-extraction process.3

Here, we consider the steady state of the system, such that
dt IW:D = 0. Nevertheless, the rate of change of the mutual
information can be split into information flows in the working
substance and demon, respectively [80], dt IW:D = JI

W + JI
D =

0, with

JI
W = −JS

L − JS
R, JI

D = −JS
C − JS

H, (11)

and the entropy currents JS
α defined in Eq. (9). In the fol-

lowing, we denote JI ≡ JI
D = −JI

W, such that a positive
information flow, JI > 0, means that the demon is receiving
information about the occupation of dot W. Similarly, we split
the entropy production rate from Eq. (7) into local entropy
production rates in W and D [80], 	̇ = 	̇W + 	̇D. Both of
them obey a local version of the second law,

	̇W = −βLJQ
L − βRJQ

R + JI � 0, (12a)

	̇D = −βCJQ
C − βHJQ

H − JI � 0. (12b)

In the following, we refer to the relation JQ
in = 0 (where

JQ
in = JQ

C + JQ
H is the heat flow from D to W) as the demon

3For example, infinitely hot reservoirs in the demon make the
occupations of H and C fully independent of W, while the occupation
of W still depends on the dynamics of H and C.
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condition. Indeed, for instance, at zero voltage bias and JQ
in =

0, we also have JQ
L = −JQ

R so we can easily see that when
the setup operates as a refrigerator, i.e., JQ

R > 0, then we
have −βLJQ

L − βRJQ
R < 0. At first glance, this makes it seem

that the second law is not fulfilled when considering only W
since JQ

in = 0. But this reasoning forgets to account for the
information flow between the two parts, as can be seen in
Eq. (12a).

In order to highlight the role of the information flow in the
working principle of this thermal machine, one can define an
information efficiency as an alternative to the global efficiency
defined in Eq. (8). Using Eq. (12a), we define

ηinfo = βLJQ
L + βRJQ

R

JI
. (13)

Due to the local second laws of Eq. (12), one finds that in
general,

1 � ηinfo � ηglobal, (14)

since the information efficiency does not account for effects
of the local entropy production as it could, in general, arise
from mechanisms such as local Joule heating or Fourier heat
conduction from the hot to the cold part of the resource.

4. Cooling-power fluctuations from full counting statistics

A main quantity of interest in this paper, in addition to the
average currents in the device, is the precision of the produced
cooling power, or, in other words, the absence of cooling
power fluctuations. We compute these fluctuations using full
counting statistics.

We here consider the case μR = 0, such that the cooling
power Pcool = JQ

R is equal to the energy current out of the
right reservoir, JE

R . The (zero-frequency) noise in the cooling

power is therefore given by Scool = d〈〈E2
R〉〉

dt , where 〈〈E2
R〉〉 is the

variance (second cumulant) of the energy ER transferred from
the right reservoir into dot W. Similarly, the energy current
defined in Eq. (5) corresponds to the derivative of the first
cumulant, JE

R = d〈〈ER〉〉
dt .

In order to calculate this variance, we define a counting
field ξ for the energy flowing out of the right reservoir. Then,
the master equation (2) including the counting fields becomes
[75,119]

∂t P(t, ξ ) = W (ξ )P(t, ξ ), (15)

with W (ξ ) = WC + WH + WL + WR(ξ ) and [WR(ξ )]h′w′c′
hwc =

[WR]h′w′c′
hwc ei�Eh′w′c′

hwc ξ [see Eq. (3)]. From this, one finds the
moment-generating function as G(t, ξ ) = ∑

hwc[P(t, ξ )]hwc.
As the next step, the kth cumulant of the energy is obtained
by differentiating the cumulant-generating function F (t, ξ ) =
ln[G(t, ξ )], 〈〈

Ek
R

〉〉
(t ) = (−i∂ξ )kF (t, ξ )|ξ=0. (16)

In the long-time limit (of interest for our steady-state analy-
sis), the cumulant-generating function can be approximated
by F (t, ξ ) � λ(ξ )t [119], where λ(ξ ) is the eigenvalue of
W (ξ ) such that λ(ξ ) → 0 for ξ → 0, while all the other
eigenvalues have negative real parts in this limit, due to the

uniqueness of the steady state in the case of interest here.
Then, the noise in the cooling power is given by

Scool = −∂2
ξ λ(ξ )

∣∣
ξ=0. (17)

More precisely, we do the following to obtain the cumulants
analytically. Starting from the moment-generating function in
the long-time limit [75,120], we take the Laplace transform,

G(z, ξ ) =
∑
hwc

[
1

z1 − W (ξ )
P̄
]

hwc

, (18)

where P̄ is the steady state of the master equation (2) (i.e., for
ξ = 0). Then, the eigenvalue λ(ξ ) is the pole z0 of G(z, ξ )
close to ξ = 0. Using the Taylor expansion of z0 around
ξ = 0,

z0 =
∑
n∈N

cn
(iξ )n

n!
, (19)

in the denominator of G(z, ξ ) [Eq. (18)], we determine the
coefficients cn by proceeding order by order. In this way, one
obtains Pcool = c1 and Scool = c2.

In order to analyze the performance accounting for the
trade-off between cooling power, efficiency, and precision, we
define the performance quantifier

XTUR,global/info = 2Pcool
ηglobal/info

1 − ηglobal/info

TL

Scool
ηCarnot, (20)

inspired by the thermodynamic uncertainty relations (TUR)
[121–123]; see explanations in Appendix B. We have denoted
ηCarnot = TR/(TL − TR) the Carnot efficiency of a standard
refrigerator operating between temperatures TR and TL. In par-
ticular, under demon condition, JQ

in = 0, and at zero potential
bias, μR = 0, XTUR,global corresponds exactly to the TUR for
the three-dot system [123]. Therefore, XTUR,global is bounded
by 1, like the standard TUR for refrigerators; however, we
cannot make a similar statement about XTUR,info; see details
in Appendix B. Instead, since 	̇ = 	̇W + 	̇D, from the local
second laws (12), and using the expressions of the efficiencies
given in Eqs. (8) and (13), we find that in general,

XTUR,info � XTUR,global. (21)

In Sec. III C, we will use both quantifiers to analyze the
performance of the triple-dot system operating as a demonic
refrigerator.

C. Trajectory analysis of the dynamics

To get further insight into how the device operates, it is
interesting to look at the trajectories corresponding to the
Markovian stochastic process described by the master equa-
tion (2). Indeed, we can define the thermodynamic quantities
we are interested in at the trajectory level. Furthermore, we
can use our insight on the stochastic dynamics to tune the
parameters of the system to favor trajectories with useful
outcomes—here specifically transporting heat out of the right
reservoir.

1. Trajectories for the entire triple-dot system

We consider trajectories in the triple-dot state space γ =
(γ0, . . . , γM ), where γm = hmwmcm is the state of the dots
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at time tm = mδt , and γ̃ denotes the time-reversed trajectory
(γM, . . . , γ0). We have discretized time with a time step δt
such that τth � δt � 1/ maxα �α , where τth is the character-
istic thermalization time of the reservoirs [124, Chap. 4].

The probability of trajectory γ is given by

P(γ ) = p̄(γ0)
M∏

m=1

Pαm [γm|γm−1], (22)

with the steady-state probability p̄(γ0) = p̄h0w0c0 of finding the
system in the state h0w0c0 at t = 0 and Pαm [γm|γm−1] the prob-

ability of the transition γm−1
αm−→ γm, where αm = C, H, L, R

indicates which reservoir is responsible for the transition.4

The no-jump evolution (γm = γm−1) is denoted by αm = 0.
The transition probability is given by

Pαm [γm|γm−1] =
{[

Wαm

]γm−1

γm
δt if γm �= γm−1(

1 + [W ]γm
γmδt

)
δαm,0 if γm = γm−1.

(23)

With this definition, if the transition γm−1
αm−→ γm is not

feasible in the setup (e.g., αm = C while changing the
occupation of dot W), we clearly have Pαm [γm|γm−1] = 0.
Furthermore, we have Pαm [γm|γm] � 1 and ∀γm−1,∑

γm

∑
αm

Pαm [γm|γm−1] = 1 since [W ]γm
γm < 0 and∑

γm
[W ]γm−1

γm = 0; see Eq. (3).
At the single-trajectory level, the entropy production is

given by [125]

	(γ ) = ln
P(γ )

P(γ̃ )
, (24)

where P(γ̃ ) is the probability that the triple-dot system fol-
lows the time-reversed trajectory,5 γ̃ . The entropy production
can be split into 	(γ ) = �S(γ ) + ∑

α �Sα (γ ) [126], where

�S(γ ) = ln

(
p̄(γ0)

p̄(γM )

)
,

�Sα (γ ) =
M∑

m=1

δαmα ln

(
Pα[γm|γm−1]

Pα[γm−1|γm]

)

= −βαQα (γ ) (25)

are, respectively, the stochastic entropy variation of the dots
and of reservoir α, with Qα (γ ) the heat received by the
system from reservoir α along the trajectory γ . One recov-
ers all quantities defined in Sec. II B 3 by averaging over
all possible trajectories and dividing by the duration, e.g.,
	̇ = limM→∞〈	(γ )〉γ /tM .

2. Trajectories for the bipartite system: Demon
and working substance

In the same spirit as in Sec. II B 3, we now define the
stochastic thermodynamic quantities for a single subsystem

4Strictly, we only need the αm notation for dot W since it is the
only dot connected to two different reservoirs, which can induce
transitions.

5Note that we do not need to modify the probability function to the
probability of the time-reversed system because we are looking at
steady-state and constant external parameters.

of the bipartite systems, consisting either of the work-
ing substance W or the (demonic) resource D. Following
Refs. [78,82], we define the subsystem entropy variations,

�SW(γ ) = ln

(
p̄W

w0

p̄W
wN

)
,

�SD(γ ) = ln

(
p̄D

h0c0

p̄D
hN cN

)
, (26)

[see below Eq. (10) for the definition of the probabilities
inside the logarithms] and the information acquired by the
working substance and demon, respectively,

IW(γ ) = ln

(
M∏

m=1

p̄(hm−1, cm−1|wm)

p̄(hm−1, cm−1|wm−1)

)
,

ID(γ ) = ln

(
M∏

m=1

p̄(wm−1|hm, cm)

p̄(wm−1|hm−1, cm−1)

)
. (27)

Here, p̄(w|h, c) denotes the (steady-state) conditional proba-
bility of finding occupation w in W, knowing that the demon
dots are in state (h, c), and vice versa for p̄(h, c|w).

With these definitions, we can write the local entropy pro-
ductions of the two subsystems,

	W(γ ) = �SW(γ ) − βLQL(γ ) − βRQR(γ ) − IW(γ ),

	D(γ ) = �SD(γ ) − βCQC(γ ) − βHQH(γ ) − ID(γ ). (28)

By averaging over all possible trajectories, we recover the
local second laws given in Eq. (12) from Sec. II B 3.
Note that we can also define trajectory-resolved quantities
corresponding to the mutual information and entropy currents;
see Appendix C.

III. TRIPLE-DOT REFRIGERATOR

We are interested in the refrigerator operating mode of
the device shown in Fig. 1. We therefore assume that TR <

TL and define T̄ = (TL + TR)/2 and δT = TL − TR > 0. We
recall that the cooling power is then directly given by the
heat flow out of the right reservoir, Pcool ≡ JQ

R . Furthermore,
we assume that all electrochemical potentials are equal, in
particular μL = μR, since we are not focusing on possible
thermoelectric effects (e.g., Peltier cooling) which might oth-
erwise occur in the working substance independently of the
demonic resource.

A. Operation cycles acting in parallel

From now on, we focus on the special case depicted in
Fig. 1(a), in which trajectories in state space can occur fol-
lowing the scheme of Fig. 1(b). Concretely, this means that
we only allow for a certain set of tunneling transitions, which
is selected by a fully asymmetric energy dependence of tunnel
rates. We assume that tunneling from and to dot W can occur
from the right reservoir only when one of the dots H and
C in the resource region is occupied, namely, �00

R = 0 and
�10

R , �01
R �= 0. At the same time, we assume that tunneling

from and to dot W due to the left reservoir can occur only
when dots H and C are empty, namely, �10

L = �01
L = 0 and
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�00
L �= 0. The nonvanishing transition rates are found from

Fermi’s golden rule and given by

�w±
C/H = �C/H fC/H(±(εC/H + wUC/H)),

�hc±
L/R = �hc

L/R fL/R(±(εW + hUH + cUC)); (29)

see, also, Eqs. (3) and (4). Here, we have furthermore used
that the Coulomb interaction between dots H and C is in-
finitely large, meaning that simultaneous occupation of the
two resource dots is excluded. This assumption implies that
heat exchange between reservoirs H and C can occur only via
dot W and not directly within the resource region, i.e., Fourier
heat flow is weak within the resource region.

This fact, together with the tunnel-rate asymmetry de-
scribed in this section, implies that the operation of the
triple-dot device is largely based on heat and information
exchange with the two dots H and C—and hence with the two
reservoirs H and C—separately. Therefore, the device exhibits
two operation cycles involving a single resource reservoir
acting in parallel to achieve cooling in the absence of average
heat flow between the working substance and the resource
region, as will be explained next in Sec. III B.

This situation is in contrast to Ref. [42], where the
nonequilibrium character of the combined resource region
was explicitly apparent. Here, we instead make a parameter
choice which rather allows us to focus on the interplay of
heat-driven [61,62] and information-driven [21,23] machines,
enabling a demonic effect in the absence of any average heat
flow in a broad range of parameters.

B. Average currents from basic cycles

In this section, we establish links between the average
currents and noises defined in Sec. II B and the stochastic
version of the quantities, as defined in Sec. II C.

1. Basic cycles

As a first step, we take a stochastic trajectory γ and cut it,
without loss of generality, every time the system goes back
to state 000. In this way, we get all possible cyclic jump se-
quences C ′ starting from 000 in the Markov chain dynamics of
the triple-dot system, represented in Fig. 1(b). We now want to
classify these cycles based on their thermodynamic properties.
We compute the stochastic thermodynamic quantity X (C ′)
along C ′, with X = Qα,	,	W/D, IW/D, using the definitions
from Sec. II C. Given that self-retracing jump sequences such
as �w+

H �w−
H do not contribute to X (C ′), then X (C ′) = X (C)

where the basic cycle C ∈ {C0, CC, C̃C, CH, C̃H, CHC, C̃HC} is
obtained by removing all the self-retracing parts from C ′.
This basic cycle set is not the most fundamental one, as will
be detailed in Sec. III B 3, but is insightful from the ther-
modynamic perspective as it classifies cycles based on how
the system interacted with the different resource reservoirs;
see, also, Ref. [127] where a similar strategy was used to
classify cycles in a two-terminal engine. C0 denotes the empty
jump sequence, namely, C ′ was fully self-retracing, such that
X (C0) = 0. The cycle CC involves only the cold resource reser-
voir, the cycle CH involves only the hot resource reservoir, and
the cycle CHC involves both of them; see graphical represen-
tation in Fig. 2. Their jump sequences, consisting of four or

FIG. 2. Graphical representation of the stochastic cycles from
Table I, CC (solid blue), CH (solid red), and CHC (dashed purple). See
Fig. 1(b) for the transition rates associated with each arrow. Green
dots indicate the presence of electrons in the dots and red crosses
correspond to blocked transitions.

six jumps, are indicated in the second column of Table I. The
time-reversed version of cycle C is denoted by C̃.

Then, for each basic cycle C, one can evaluate the in-
formation acquired by the demon, ID(C) = −IW(C) ≡ I (C)
[Eq. (27)], as well as the local entropy productions 	W(C) =
−βLQL(C) − βRQR(C) + I (C) and 	D(C) = −βHQH(C) −
βCQC(C) − I (C), expressed in terms of information and heat
exchanges [Eq. (28)]. All relevant thermodynamic quanti-
ties for the basic cycles CC, CH, and CHC are listed in
Table I.

2. Average currents

The basic cycles C, as defined in Sec. III B 1, provide a
thermodynamically relevant way to classify any cycle C ′. In-
deed, we find that in the considered case, the average currents
[Eq. (5)] can be decomposed into a sum of contributions of
each basic cycle C,

Jν
α =

∑
C=CC,CH,CHC

[να (C)rC + να (C̃)rC̃]. (30)

Here, ν = N, E , Q, I, S and να (C) is the total transported
quantity along cycle C by the considered current. Equa-
tion (30) can either be obtained by direct calculation or
by relying on methods from network theory [128]; see Ap-
pendix A 2 for details. When we analyze ν = N, E , Q, S, the
index α indicates reservoir C, H, L, or R. When we analyze
ν = I (i.e., the information flows), the index α indicates sub-
system W or D. The cycle quantity Sα (C) for the entropy
current [Eq. (9)], ν = S, is defined in Appendix C; please note
that it should not be confused with the entropy variation of
reservoir α, �Sα (C), defined by Eq. (25). The basic cycles
contribute to all average currents with weights rC , which we
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TABLE I. Cycles and associated exchanged heat and particles corresponding to the Markov chain represented in Fig. 1(b), with parameter
choices indicated in Sec. III A. See, also, Fig. 2 for a graphical representation of these cycles. The first two cycles, CC and CH, make a
fundamental set that allows one to construct all the other cycles [Eq. (38)] and compute the associated thermodynamic quantities [Eq. (39)].
From this table, we can easily identify which cycles contribute to the refrigeration, namely, QR(C) > 0, and whether C is more likely to occur
than its time reverse C̃, namely, 	(C) > 0, for a given set of parameters. We have defined �βαα′ = βα − βα′ .

Cycle Jump sequence N QC QH QL QR 	 I

CC γ 4
CC

= �0+
C �10+

R �1−
C �00−

L −1 −UC 0 −εW εW+UC �βCRUC−�βRLεW ln( p̄001 p̄010
p̄000 p̄011

)

CH γ 4
CH

= �0+
H �10+

R �1−
H �00−

L −1 0 −UH −εW εW+UH −�βRHUH−�βRLεW ln( p̄100 p̄010
p̄110 p̄000

)

CHC γ 6
CHC

= �0+
H �10+

R �1−
H �1+

C �01−
R �0−

C 0 UC −UH 0 UH−UC −�βCRUC−�βRHUH ln( p̄100 p̄011
p̄110 p̄001

)

express in terms of tunnel rates,

rCC = γ 2
Hγ 4

CC

γ 5
, rCH = γ 2

Cγ 4
CH

γ 5
, rCHC = γ 6

CHC

γ 5
,

rC̃C
=

γ 2
Hγ 4

C̃C

γ 5
, rC̃H

=
γ 2

Cγ 4
C̃H

γ 5
, rC̃HC

=
γ 6
C̃HC

γ 5
, (31)

with

γ 2
C = �0−

C �1−
C + �0−

C �01−
R + �1−

C �01+
R ,

γ 2
H = �0−

H �1−
H + �0−

H �10−
R + �1−

H �10+
R . (32)

In these expressions, γ 4
CC

, γ 4
CH

, γ 6
CHC

correspond to the jump
sequences from Table I, and the corresponding quantities for
the time-reversed cycles are obtained by reversing the jump
sequences, namely, swapping + and − in the transition rates.
The denominator γ 5 is the normalization factor of the steady-
state probabilities p̄hwc, as given in Appendix A.

The cycle rates rC defined in Eq. (31) can be linked to the
probabilities π (C) that a cycle C ′ equivalent to basic cycle C
occurs, which are discussed in detail in Sec. III D. We show
this link starting from the expression of the average current
in terms of the trajectory average, Jν

α = limM→∞〈να (γ )〉γ /tM .
Since we are considering the long-time limit, we can neglect
contributions to να (γ ) from the small initial and final portions
of γ which are not part of a closed cycle, and write

Jν
α = lim

M→∞
1

tM

∑
C

〈να (C)MC (γ ) + να (C̃)MC̃ (γ )〉γ . (33)

We have denoted MC (γ ) as the number of cycles C ′ in trajec-
tory γ which are equivalent to basic cycle C after removing
the self-retracing parts. The cycle probability π (C) tells us
how often a cycle C ′ equivalent to basic cycle C occurs; there-
fore, we can write 〈MC (γ )〉γ = π (C)〈Mcycles(γ )〉γ , where
Mcycles(γ ) is the total number of cycles from 000 back to 000
of any kind in trajectory γ , including purely self-retracing
ones. From Eq. (33), we thus get

Jν
α =

∑
C

[να (C)π (C) + να (C̃)π (C̃)] lim
M→∞

〈Mcycles(γ )〉γ
tM

= 1

t̄cycle

∑
C

[να (C)π (C) + να (C̃)π (C̃)], (34)

where the time t̄cycle is the average duration of any cycle from
000 to 000, namely, the average time it takes the system to
come back to state 000. Identifying the terms in Eq. (34) with

Eq. (30), we finally obtain

rC = π (C)

t̄cycle
. (35)

The average cycle time t̄cycle is given by the recurrence time
from state 000. This recurrence time, in turn, is equal to the
average holding time in 000, namely, 1/(�0+

C + �0+
H + �00+

L ),
divided by the steady-state occupation of state 000 [129]. We
therefore obtain the explicit expression for the average cycle
time t̄cycle in terms of tunnel rates and of the steady-state
master equation solution as

t̄cycle = 1

p̄000
(
�0+

C + �0+
H + �00+

L

) . (36)

We find that the analytical expression of π (C) obtained from
Eqs. (35) and (36) is in excellent agreement with our results
from numerical simulations, as we discuss in Secs. III C and
III D.

We now use the relation between rates rC and probabil-
ities π (C) given in Eq. (35) to simplify the general current
expression and to thereby highlight the role of time-reversed
cycles. Using, furthermore, the fact that να (C̃) = −να (C) and
the fluctuation relation (24), we find

Jν
α =

∑
C=CC,CH,CHC

να (C)rC[1 − e−	(C)]. (37)

3. Average currents for cycles acting in parallel

With these compact expressions for all currents of inter-
est, we are now able to give a more precise meaning to the
concept of “cycles acting in parallel” outlined in Sec. III A
by showing that all currents can be split into contributions
where the working substance interacts separately with the cold
and hot resource reservoirs. To that aim, we introduce the
fundamental set of cycles {CC, CH} [128] (see Appendix A 2
for details). Any basic cycle C, as defined in Sec. III B 1, can
be constructed from this fundamental set as

C = σCCC ⊕ σHCH, (38)

with σα = −1, 0, 1 and α = C, H . The symbol ⊕ means the
union of the two cycles where any transition they have in
common has been removed [128], for instance, C̃C = −CC or
CHC = −CC ⊕ CH. This decomposition allows us to express
the generic thermodynamic quantity X (C) in terms of contri-
butions of the cold and hot cycles,

X (C) = σCX (CC) + σHX (CH), (39)
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with, in particular, X (CHC) = X (CH) − X (CC) and X (C̃) =
−X (C). Using the decomposition (38) for each basic cycle in
Eq. (30), we can write

Jν
α = να (CC)F C + να (CH)F H, (40)

where we have defined the fluxes

F C = rCC + rC̃HC
− rC̃C

− rCHC = − JQ
C

UC
,

F H = rCH + rCHC − rC̃H
− rC̃HC

= − JQ
H

UH
. (41)

This means that one can rewrite any average current in terms
of the heat currents out of the hot and cold resource reservoirs.
Equation (40) is particularly insightful for JQ

R since it allows
splitting the cooling power into Pcool = PC

cool + PH
cool, with

Pα
cool = QR(Cα )Fα, (42)

such that we can see whether reservoir α = C, H from the
demon part contributes to the cooling, Pα

cool > 0, or is detri-
mental to it, Pα

cool < 0. For the particle current, Eq. (40)
becomes

JN = JQ
C

UC
+ JQ

H

UH
. (43)

This coincides with the result from Ref. [42, Eq. (13)], which
was obtained, unlike here, in the absence of temperature and
voltage biases between the left and right reservoirs, but for
possibly nonzero tunnel rates �10

L , �01
L , and �00

R .
We can also write the heat current out of the right reservoir,

namely, the cooling power, as

JQ
R = −(εW + Ū )JN − δU

(
JQ

H

UH
− JQ

C

UC

)
, (44)

with Ū = (UH + UC)/2 and δU = (UH − UC)/2. Interest-
ingly, the heat current out of the left reservoir,

JQ
L = εWJN , (45)

is always proportional to the particle current, also referred to
as “tightly coupled” [130–132], due to the choice of �10±

L =
�01±

L = 0 (electrons exchanged between contact L and dot W
all have the same energy, εW). This is in contrast to the cooling
power, which—in addition to a tightly coupled component—
also has a term proportional to δU that is independent of the
particle current.

Since we are specifically interested in the performances of
the device operating under the demon condition, JQ

in = 0, it
is interesting to express this condition as a condition for the
interaction energies in terms of the fluxes of the fundamental
cycles. We find

UH

UC
= −F C

F H
. (46)

While this is an insightful relation, showing how the pa-
rameter choice needs to connect to the occurrence rates [see
Eq. (41)], in the following, we fix the demon condition by a
choice of single-level energies (which, here, are implicit in the
fluxes on the right-hand side of the equation).

(a)

(b)

(c)

(d)

FIG. 3. (a) Cooling power maximized over εC and εW, Pεmax
cool , as a

function of UH (see Appendix D for the values of εα). We identify two
local maxima (I) and (II), the position of which is indicated by dotted
lines, throughout the four panels of this figure. (b) Efficiencies ηglobal

and ηinfo, (c) fluctuations of the cooling power Scool, and (d) precision
trade-off parameters XTUR,global and XTUR,info at the same conditions
as (a). In all panels, the level position of dot H, εH, is set to fulfill
the demon condition, JQ

in = 0, and single-level energies εC and εW

are fixed to maximize the cooling power. Other parameters (in units
of �C = �H = �): TH = 16, TC = 4, T̄ = 8, δT = 1, UC = 12, and
�00

L = �01
R = �10

R = 0.01.

From Eqs. (44) and (45), we get further insights into the
interaction energies required for a refrigerator working under
demon conditions. We note that imposing the demon condi-
tion JQ

in = JQ
R + JQ

L = 0 for δU = 0, Ū �= 0 necessarily results
in a vanishing average particle current in the working sub-
stance, JN = 0. This means that the cooling power vanishes
in that case, as can also be seen in Fig. 3 at UH/UC = 1.

C. Steady-state performance and precision

We start by presenting the performance of the device work-
ing as a refrigerator while exploiting a resource in the absence
of heat extraction from the resource, based on the steady-
state transport properties presented in Sec. II B. This means
that from now on, we strictly impose the demon condition,
namely, the average heat (energy) flow from the resource to
the working substance is zero, JQ

in = 0. This can be achieved
in different ways using some demon parameters as knobs,
while the others are fixed. Here we have decided to adjust the
single-level energy of dot H, εH, which can easily be tuned
experimentally using gate voltages.

Typically, one of the most relevant performance quanti-
fiers is the cooling power Pcool ≡ JQ

R . Since it depends on
all other parameters εC, εW,UC,UH, as well as TL, TR, TH, TC,
we choose to analyze the cooling power, Pcool, maxi-
mized over all level positions εC, εW. We show the result,
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(a) (b) (d)

(c) (f)

(e)

FIG. 4. Analysis of the stochastic quantities for the basic cycles for two configurations: case (I) UH/UC = 3.93 and case (II) UH/UC = 0.72,
corresponding to the two local maxima of Pεmax

cool , indicated by vertical dotted lines in Fig. 3(a). All other parameters are the same as in Fig. 3.
[(a),(d)] Sketches of the level configurations of cases (I) and (II) (not at exact scale) and [(b),(e)] bar plots characterizing the steady-state average
currents, mutual information in the steady state IW:D, and cooling-power fluctuations Scool (divided by the adequate power of � to make them
dimensionless). [(c),(f)] Stochastic thermodynamic quantities at the cycle level (see Table I), weighted by the cycle probability π (C) (plotted in
the top-left panel) to quantify their respective contribution to the average quantity. The probability π (C) was obtained by counting the relative
number of occurrences of cycle C from (c) 65 000 and (f) 25 000 numerically generated trajectories of duration 2 × 105/�. Note that a higher
amount of trajectories was required for case (I) to match the analytical results since the occurrence of cycles involving the hot resource is
strongly suppressed. The error bars in the top-left panel correspond to the confidence interval ±1/

√
Mcycles, where Mcycles is the total number

of cycles found in all the trajectories combined, and the long black horizontal bars indicate the analytical value of π (C) from Eq. (35). The
crosses in the top-right panel indicate the entropy production values computed from the numerical values of π (C), namely, ln[π (C)/π (C̃)].
Bar colors are chosen as a guide for the eye, matching the representation of the cycles in Fig. 2.

Pεmax
cool ≡ maxεH,εCPcool, in Fig. 3(a) as a function of the ratio

of interaction energies UH/UC for a fixed interaction energy
UC = 12 and fixed temperatures TH = 16, TC = 4, T̄ = 8,
δT = 1. All these values are expressed in units of the tunnel
rate �C = �H = �, while �00

L = �01
R = �10

R = 0.01. In other
words, here we choose a situation in which the temperature
difference in the resource part is larger than in the working
substance. Note that while one might imagine a trivial situa-
tion where exchange between the hot reservoirs of resource
and working substance happens independently of heat ex-
change between the cold reservoirs of resource and working
substance (which would hence also allow for a trivial inter-
pretation of the demonic operation), this is not what we are
considering here and it is even fully excluded by the fact
that all energy exchange happens via the same dot W, which
is indeed capacitively coupled to the full resource region.
The resulting intricate energy exchange with the full resource
region is furthermore reflected in the energy exchange of the
basic cycles, as shown in Table I, showing that all basic cycles
exchange energy with three reservoirs, with a direction of en-
ergy flow that changes depending on the choice of parameters.

Figure 3(a) shows two local maxima of the
ε-maximized cooling power, which are of a similar
order of magnitude. The larger of those two maxima is

found for UH/UC > 1, and the slightly smaller one for
UH/UC < 1, indicating that the working principles of these
two configurations, which we refer to as cases (I) and (II), are
expected to be very different. This expectation is confirmed by
the trajectory analysis, which will be presented in Sec. III D;
see, also, Fig. 4.

Interestingly, also, the efficiencies, shown in Fig. 3(b), are
of similar magnitude at the positions (I) and (II), despite the
fact that the underlying working principles are different. This
applies both to the global efficiency ηglobal [see Eq. (8)] and to
the information efficiency ηinfo [see Eq. (13)], which here turn
out to be close to identical for any value of UH/UC. The reason
for ηglobal ≈ ηinfo is that the Fourier heat flowing directly from
hot to cold within the resource region is strongly suppressed in
this parameter regime.6 All in all, both cases are very similar
in terms of average thermodynamic quantities, with even the
heat currents from the cold bath JQ

C , the information flow JI ,

6This is, however, not the case in other parameter regimes. In partic-
ular, for very large values of UC, there can be a significant difference
between the information and global performance quantifiers due to
the entropy production in the resource region; see Appendix D.
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and the mutual information in the steady states IW:D being of
the same order of magnitude; see Figs. 4(b) and 4(e).

In contrast to the similar average performance of the two
configurations of maximum cooling power, the difference in
the precision is striking. This is shown in Fig. 3(c). Configu-
ration (I), having a slightly larger maximum cooling power
Pεmax

cool , displays a maximum in cooling-power fluctuations
Scool, which basically coincides with the maximum in Pεmax

cool .
This means that while the desired output, namely, the cooling
power, in this configuration, is large, the precision is very low.
This is in contrast with configuration (II), which has a slightly
smaller maximum cooling power than (I), but at the same time
strongly suppressed cooling-power fluctuations Scool.

This difference in performance becomes even more strik-
ing when considering the trade-off factor XTUR, shown in
Fig. 3(d). Indeed, this factor is not far from its bound under the
demon condition, XTUR,global � 1, for configuration (II), while
for configuration (I), it is almost two orders of magnitude
smaller. It is furthermore interesting that the trade-off factor
XTUR exhibits two regions of almost plateaulike character, in-
terrupted by the dip at UH = UC at which the demon condition
excludes a nonzero cooling power. This clearly shows that the
regime where the interaction energy UH, mediating the energy
exchange with the hot resource reservoir, is larger is far less
advantageous from the point of view of the precision trade-
off with respect to the regime where the interaction energy
UC, mediating the energy exchange with the cold resource
reservoir, is larger.

In the following, we analyze the different working princi-
ples of configurations (I) and (II), which are representative of
the regimes UH > UC and UC > UH, and show their impact
on the performance with respect to the average output and
precision. We note that having similar average performances
in both configurations, in terms of cooling power and effi-
ciency, is rather specific to our choice of interaction energy
UC. However, we emphasize that the two distinct working
principles, detailed in Sec. III D below, apply to a wide range
of values of UC, as discussed in Appendix D.

D. Distinguishing operation based on basic cycles

The final important task is to identify in which way the
working principles of the two optimal cases (I) and (II) differ,
leading to very different performances with respect to the
precision of the refrigeration process.

The addition energies of the three quantum dots in cases (I)
and (II) result in the following situation, depicted in Figs. 4(a)
and 4(d). In case (I), the single-level energy of dot W is
positive; a positive cooling power Pcool = JQ

R = −JQ
L [see

Eqs. (44) and (45)] thus needs to go along with a negative
particle current, JN < 0 [cf. Fig. 4(b)], meaning that cooling
is mediated by electronlike excitations. By contrast, in case
(II), the single-level energy of dot W is negative; a positive
cooling power Pcool > 0 thus needs to go along with JN > 0
[cf. Fig. 4(e)], meaning that cooling is mediated by holelike
excitations.7

7When analyzing the two components of the heat current JQ
R of

Eq. (44) instead, we find that the tightly coupled and the nontightly

More important for the operation principle of the device
is the contribution of the hot resource reservoir to the cool-
ing, quantified by PH

cool; see Eq. (42) as well as Figs. 4(b)
and 4(e). Indeed, in case (I), reservoir H acts detrimentally
to the cooling, with PH

cool < 0. Its main role in the device
operation is therefore to provide the heat flow JQ

H to suppress
the average heat flow JQ

in from the demon to the working
substance. Consequently, the cold resource reservoir is the
only one to drive the cooling process, in the same manner as
described in Ref. [21] for a double-dot setup with a single-
reservoir resource. Conversely, in case (II), both resource
reservoirs contribute positively to the cooling process, hence
collaborating in parallel. While this consideration concerns an
effect of the cooling-power contribution from each resource
contact [namely, the decomposition in terms of cycles of the
fundamental set, as given in Eq. (40)], the contribution of
the different basic cycles, as introduced in Sec. III B 1, to the
operation also plays an important role, as discussed below.

Indeed, an interesting aspect distinguishing cases (I) and
(II) is the information exchange as compared to the heat
exchange going along with the different cycles. The basis for
understanding the importance of the acquired information is
the positions of the addition energies of the resource dots,
shown in Figs. 4(a) and 4(d). In case (I), the Coulomb inter-
action of dot H is large. As a result of this and of the position
of the single-level energies, both dots H and C hence “see”
both the electronlike and the holelike parts of the distributions
of the reservoirs to which they are tunnel coupled. The two
addition energies are thus aligned with very different parts of
the distributions, making both of them effectively cold (note
that UH ≈ 3TH). This is in contrast to case (II), where the addi-
tion energies of dot H communicate only with (mostly empty)
holelike excitations of reservoir H, and dot C only communi-
cates with electronlike excitations of reservoir C. Whether or
not dot W is occupied hence has a smaller influence on the
tunnel rates of dot H. This is particularly clearly visible in
the information exchanged with the basic cycle CH: I (CH) �
I (CC) in case (II), while I (CH) � I (CC) in case (I); see Fig. 4
and also Fig. 8 in Appendix E to compare the information
(as well as other thermodynamic quantities) at the cycle level.
Furthermore, in case (I), both CC and CH, which have the
largest positive cooling power of the three basic cycles, go
along with information received by the demon; see Fig. 4(c).
Interestingly in case (II), while cycles CC and C̃HC exploit an
information flow into the demon, this is not the case for cycle
CH, whose contribution to the cooling power is negative; see
Fig. 4(f). The beneficial working principle of cycle CH is hence
more similar to the one of an absorption refrigerator, using
heat for a useful task, such as in the double-dot heat engines
of Refs. [61,62]; see, also, a qubit implementation [133].

A further important difference between the two cases,
which has an influence on the fluctuations of the cooling

coupled parts have opposite signs in both cases (I) and (II). For (I),
both contributions have the same order of magnitude, with a positive
tight-coupling contribution. For (II), the tight-coupling contribution
is negative but much smaller than the non-tight-coupling one (−εW ∼
Ū ).
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power, is the following. When analyzing the probability with
which basic cycles C occur compared to their time-reversed
C̃, we note that in case (I), the more probable C̃H and C̃HC

contribute with a negative cooling power. They are hence
counterproductive to the result of cycle CC, which is more
probable than C̃C and contributes with a large positive cooling
power. The situation is very different in case (II). Here the
more probable of the pairs of basic cycles C and C̃ (CC, CH, and
C̃HC in this case) are all beneficial for the refrigeration process.
It is clear that this significantly reduces the fluctuations in the
cooling power.

IV. CONCLUSIONS

We have provided a detailed analysis of an information-
based refrigerator exploiting capacitive coupling between
three quantum dots, inspired by previous proposals and real-
izations of quantum-dot-based Maxwell demons [21,24] and
heat engines [61,62].

We showed that this triple-dot refrigerator can work as an
ideal autonomous Maxwell demon generating finite cooling
power in the working substance, while not extracting any heat
on average from the resource region. We showed, furthermore,
that the precision of this refrigerator and the trade-off between
precision, cooling power, and efficiency strongly depend on
the underlying parameter regimes, in particular on the ratio of
interaction energies with different parts of the resource region.

Our detailed analysis based on steady-state master-
equation dynamics, full counting statistics, as well as
trajectory-resolved dynamics allowed us to identify that
refrigerator realizations mostly exploiting information suffer
from reduced precision compared to those realizations which
exploit both information and heat engine aspects.

We expect these insights to be important for the design of
energy-converting devices, which exploit generic types of re-
sources that are not characterized by one unique temperature.
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APPENDIX A: STEADY STATE

1. Analytical solution

For the case considered in Sec. III, �00
R = �10

L = �01
L = 0,

we solve the equation W P̄ = 0 and obtain the steady state,

p̄000 = 1

γ 5
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C �0−

H �1−
H �00−

L + �0−
C �1+
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R + �0−

C �0−
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R
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C �1−
H �00−
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L �01+

R �10+
R

)
,

p̄001 = 1

γ 5
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,
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(a) (b) (c) (d)

FIG. 5. Illustration of the graphical calculation of the steady-state probabilities and fluxes. (a) Graph representation G (with an arbitrary
choice of direction for each edge; see Ref. [128]) of the master equation (2) and chosen set of fundamental cycles, {CC, CH}. (b) Set of maximal
trees of G, {T (i)(G)}i=1,...,15. [(c),(d)] Graphical calculation of the flux F C: sets of maximal trees of G (in black) directed, respectively, towards
states 000 and 001 used in the calculation of p̄000 and p̄001. The added red edge in each graph corresponds to the extra rate, respectively, �0+

C
and �0−

C , appearing in the first and second terms of F C; cf. Eq. (A4b).
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, (A1)

where γ 5 is the normalization factor required to have∑
hwc p̄hwc = 1. This result for the steady-state probabilities

allows us to get the expressions of the average currents from
Eq. (5). For each kind of current, ν = N, E , Q, S, I , we then
check that the obtained expression is equal to the basic-cycle-
based expression given by Eq. (30).

The steady-state occupations, P̄, and currents can also
be computed graphically by applying network theory results
[128] to the Markov chain graph representing the transitions
in the studied regime, as explained in the next section.

2. Network theory analysis of the master equation

Applying the methods from Ref. [128] to the triple-dot
setup in the case considered in Sec. III, we obtain the graph
G depicted in Fig. 5(a), which is similar to the Markov chain
representation from Fig. 1(b) but replacing each pair of ar-
rows representing the transitions by a single edge with an
arbitrary direction, corresponding to our choice of direction
for cycles CC, CH; see Fig. 2. A fundamental set of cycles for
G is {CC, CH}. There are other possible sets but this choice
is physically more meaningful than, e.g., {CC, CHC} since it
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allows us to separate the contribution from the hot and cold
resource reservoirs to the thermodynamic quantities.

We can then construct the steady state P̄ from the set of
maximal trees of G, {T (i)(G)}i=1,...,15 given in Fig. 5(b). A
maximal tree T (G) is a subgraph of G consisting of all the
vertices of G and a subset of edges of G, such that T (G) is
connected and contains no cycles. The steady state is then
given by p̄hwc = γ 5

hwc/γ
5 [128], where

γ 5
hwc =

15∑
i=1

g
(
T (i)

hwc(G)
)
, γ 5 =

∑
h,w,c

γ 5
hwc. (A2)

T (i)
hwc(G) is the ith maximal tree of G in which all the edges are

directed toward state hwc; see Figs. 5(c) and 5(d) for the sets
of directed maximal trees for states 000 and 001, respectively.
Then, the quantity g(T (i)

hwc(G)) associated to the tree T (i)
hwc(G)

is the product of the transition rates W h′′w′′c′′
h′w′c′ corresponding

to the directed edges h′′w′′c′′ → h′w′c′ of T (i)
hwc(G); see, also,

Fig. 1(b). From Eq. (A2), we find the same results as in
Eq. (A1).

Furthermore, the entropy production rate in the steady state
can be expressed in terms of affinities A and fluxes F for each
cycle of the chosen fundamental set [78,128],

	̇ = ACF C + AHF H, (A3)

where, in our case,

Aα = ln

(
γ 4
Cα

γ 4
C̃α

)
, (A4a)

F C = �0+
C p̄000 − �0−

C p̄001, (A4b)

F H = �0+
H p̄000 − �0−

H p̄100, (A4c)

with α = C, H . Using the analytical expression (A1), one can
show that the expressions (A4b) and (A4c) are equal to the
fluxes F C and F H given in Eq. (41) in the main text. Alterna-
tively, these fluxes can be computed graphically, as illustrated
in Fig. 5 for F C. Figures 5(c) and 5(d), respectively, show the
trees corresponding to the first and second terms of Eq. (A4b),
with the edge in red corresponding to the added transition
rate in front of the probability p̄hwc, namely, 000 → 001 for
�0+

C and 001 → 000 for �0−
C ; see, also, Fig. 1(b). We see that

most of the trees (including the red edge) cancel each other in
Eq. (A4b), except for the four trees where the red edge was
not an edge of the tree (disregarding the orientation), leading
to Eq. (41). Then, from the definition of the stochastic entropy
production (24), we obtain Aα = 	(Cα ), with α = C, H , lead-
ing to the entropy production rate

	̇ = 	(CC)F C + 	(CH)F H. (A5)

Finally, using Eq. (41), 	(C̃) = −	(C) and 	(CHC) =
	(CH) − 	(CC), we get

	̇ =
∑

C=CC,CH,CHC

[	(C)rC + 	(C̃)rC̃]. (A6)

With the same kind of graphical analysis and using the ex-
pression of the current, given by Eq. (5), we find the equivalent
of Eqs. (A5) and (A6) for the steady-state current Jν

α , namely,
Eqs. (40) and (30).

(a)

(b)

FIG. 6. (a) Plot of Pεmax
cool (solid orange line), the cooling power

Pcool maximized over εC and εW, as a function of UH and corre-
sponding fluctuations of the cooling power Scool (dashed blue line).
(b) Single-level energies εC and εW maximizing the cooling power
and energy εH giving the demon condition, JQ

in = 0. The parameters
are the same as in Fig. 3.

APPENDIX B: THERMODYNAMIC
UNCERTAINTY RELATION

Since we are studying the steady state of a Markov jump
process, the thermodynamic uncertainty relation holds [123],
namely,

Scool	̇ � 2P2
cool. (B1)

Based on this relation, we define the coefficient

xTUR, global = 2P2
cool

Scool	̇
, (B2)

which is therefore bounded by 1. Using the expression ηglobal,
given by Eq. (8), we get

ηglobal

1 − ηglobal
= βLJQ

L + βRJQ
R

	̇
, (B3)

such that

xTUR, global = 2Pcool

Scool

ηglobal

1 − ηglobal

JQ
R

βLJQ
L + βRJQ

R

, (B4)

since Pcool = JQ
R . We are interested here in the case where

there is no potential bias, μR = 0, and the demon condition
is fulfilled; therefore, JQ

L = −JQ
R . With this, we find

xTUR, global = 2Pcool

Scool

ηglobal

1 − ηglobal

TLTR

TL − TR
, (B5)

which is our motivation for the definition of the performance
quantifier XTUR, global given in Eq. (20).

By analogy, we define xTUR, info = 2P2
cool/Scool	̇W, which

becomes XTUR, info at μR = 0, JQ
in = 0. However, the reduced

dynamics of dot W alone cannot be described by a Markov
jump process due to the capacitive couplings to dots C and
H. Therefore, the TUR does generally not hold and xTUR, info

is not bounded by 1. Nevertheless, we observe in our plots
[Figs. 3(d) and 7(e)] that XTUR, info � 1 for our choice of pa-
rameters, such that there is no TUR violation for the reduced
system.
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(a)

(b)

(c)

(d)

(e)

FIG. 7. (a) Pmax
cool , the cooling power maximized over εC, εW,

and UH, with the constraint UH > UC (green) or UH < UC (purple
curves). (b) Components PC

cool and PH
cool of Pmax

cool . (c) Cooling-power
fluctuations Scool. (d) Efficiencies ηglobal/info. (e) Precision trade-off
parameters XTUR,global/info. All the quantities are plotted as functions
of UC, at the values of εC, εW, and UH maximizing the cooling power.
The vertical dotted black line indicates the value of UC used in all the
other figures. The other parameters are the same as in Fig. 3.

Also, note that at the demon condition and μR = 0, the
global efficiency from Eq. (8) can be expressed as

ηglobal = βR − βL

βC − βH

εW(UH − UC)

UCUH
� 1, (B6)

showing that the efficiency increases with the temperature
difference δT between the working substance reservoirs, but
decreases when increasing the temperature difference be-
tween the resource reservoirs. However, note that there is a
maximum value of δT above which the demon condition can
no longer be achieved.

APPENDIX C: MUTUAL INFORMATION AND ENTROPY
FLOW AT THE TRAJECTORY LEVEL

The stochastic mutual information along trajectory γ can
be defined as follows:

IW:D(γ ) = ln

(
p̄(γM )

p̄W
wM

p̄D
hM cM

)
− ln

(
p̄(γ0)

p̄W
w0

p̄D
h0c0

)
. (C1)

Note that here we have IW:D(γ ) = IW(γ ) + ID(γ ), with IW(γ )
and ID(γ ) given in Eq. (27). This is proven using p(x|y) =
p(x, y)/p(y) combined with the sequential tunneling regime.

Since transitions are only due to sequential tunneling, we
can further split ID(γ ) = −SC(γ ) − SH(γ ) with

SC(γ ) = − ln

(
M∏

m=1

p̄(wm−1|hm−1, cm)

p̄(wm−1|hm−1, cm−1)

)
,

SH(γ ) = − ln

(
M∏

m=1

p̄(wm−1|hm, cm−1)

p̄(wm−1|hm−1, cm−1)

)
, (C2)

and, similarly, IW(γ ) = −SL(γ ) − SR(γ ), by counting only
the jumps mediated by the left (right) reservoir in Eq. (27).
Sα (γ ) corresponds to the entropy current JS

α integrated over
the trajectory γ .

APPENDIX D: POWER OPTIMIZATION

To supplement Fig. 3, together with the optimized cooling
power and its noise in Fig. 6(a) for reference, we have plotted
the single-level energies εC and εW maximizing the cooling
power and the energy εH giving the demon condition, JQ

in = 0,
as functions of UC/UH in Fig. 6(b). We also clearly see in
this plot the two different operating regimes, UH > UC, like in
case (I), and UH < UC, like in case (II), with a sharp change at
UC = UH. For UH > UC, the optimal values of εC, εW are only
weakly dependent on UH, like the efficiencies [Fig. 3(b)] and
precision trade-off parameters [Fig. 3(d)]. On the contrary,
for UH < UC, εC, εW and the efficiencies ηglobal/info steeply
decrease when UH gets closer to UC, while XTUR,global/info

remain constant almost until UH reaches UC.
In the main text, we have discussed the operating mode

and performances of the device based on the choice of the
interaction energy UH, for cases (I) and (II). For our choice of
other parameters (temperatures, tunnel couplings, and interac-
tion energy UC), we found that cases (I) and (II) have similar
cooling powers and efficiencies but very different precisions
due to the difference in operating mode (see Sec. III D). We
investigate here how dependent on the value of UC those find-
ings are by plotting in Fig. 7 the key performance quantifiers
of the refrigerator as functions of UC for UH > UC (green
curves) and UH < UC (purple curves). More precisely, we are
interested in the maximized cooling powers,

Pmax,UH>UC
cool = max

εC,εW,UH�UC

Pcool,

Pmax,UH<UC
cool = max

εC,εW,0�UH�UC

Pcool, (D1)

corresponding, respectively, to cases (I) and (II) when UC =
12� (vertical dotted black line in Fig. 7). In Figs. 7(a)
and 7(d), we see that having η

UH>UC
global/info � η

UH<UC
global/info and

Pmax,UH>UC
cool � Pmax,UH<UC

cool is restricted to a small range of
values of UC, which also coincide with the maximal values
of XTUR,global/info [Fig. 7(e)]. However, the identified oper-
ating modes apply to a much larger range of values. This
is shown by splitting Pmax,UH≷UC

cool into the two components

PC,UH≷UC

cool and PH,UH≷UC

cool from the cold and hot resource reser-
voirs. Figure 7(b) shows that PC,UH>UC

cool is always negative,
that is, the hot resource reservoir works against the cooling,
while PH,UH<UC

cool and PC,UH<UC
cool are both positive for UC up to

around 4TH and therefore both resource reservoirs contribute
in parallel to the cooling. Overall, the performances of the
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(a)

(c)

(b) (d)

(f)

(e)

FIG. 8. Analysis of the stochastic quantities for the basic cycles for cases (I) and (II) supplementing Fig. 4. [(a),(d)] Sketches of level
configurations of cases (I) and (II) (not at exact scale) and [(b),(e)] bar plots of the steady-state probabilities p̄hwc. [(c),(f)] Stochastic
thermodynamic quantities at the cycle level; see Table I and Eqs. (28). Unlike in Fig. 4, these quantities are not weighted by the cycle
probability π (C), which is plotted in the top-left panel. The long black horizontal bars in that panel indicate the analytical value of π (C)
from Eq. (35). The crosses in the top-right panel indicate the entropy production values computed from the numerical values of π (C), namely,
ln[π (C)/π (C̃)].

device, combining cooling power, efficiency, and precision, as
quantified by XTUR,global/info, are always significantly larger in
the case UH < UC. Note that XTUR,global remains farther away
from its bound, 1, than in Fig. 3(d) since the maximum of
XTUR,global is not reached for the same value of UH as the
maximum cooling power. Finally, in the case UH < UC, the
efficiencies ηglobal and ηinfo become increasingly different at
larger UC [Fig. 7(d)] due to an increased entropy production
in the resource region. This, in turn, makes XTUR,info deviate
from XTUR,global [Fig. 7(e)].

APPENDIX E: THERMODYNAMIC QUANTITIES
AT THE CYCLE LEVEL

We give a more in-depth characterization of the differ-
ences between cases (I) and (II), depicted in Figs. 8(a) and
8(d), by plotting the corresponding steady-state probabilities
in Figs. 8(b) and 8(e). We see that in case (I), the sys-
tem is most often in state 001, while case (II) has a more

uniform probability distribution, with most p̄hwc of the order
of 0.1–0.2. Figures 8(c) and 8(f) show the same stochastic
thermodynamic quantities at the cycle level as in Fig. 4, with
the addition of the local entropy productions 	W and 	D, but
without weighting them with the corresponding cycle prob-
ability π (C). We can see that during cycles CC and CH, the
demon acquires an almost identical amount of information
on dot W in case (I), which is consistent with the fact that
even the hot demon reservoir appears as “cold” in this regime.
Conversely, in case (II), much less information is acquired
during CH and it is actually C̃H which contributes to the cooling
[QR(C̃H) > 0], while the demon provides information to dot
W [I (C̃H) < 0], highlighting that the cooling is done thanks to
the thermal resource of the hot reservoir in that case. Finally,
as expected from Fig. 3(b) which shows that ηglobal � ηinfo,
in both cases 	(C) � 	W(C), namely, most of the entropy
production is generated in the working substance. Note that
the local entropy production 	W contains not only the entropy
exchanged with the left and right reservoirs, but also the
information exchanged with the demon; see Eq. (28).
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