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Autonomous conversion of information to work in quantum dots
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We consider an autonomous implementation of Maxwell’s demon in a quantum dot architecture acting on
a system without changing its number of particles or its energy. As in the original thought experiment, only
the second law of thermodynamics is seemingly violated when disregarding the demon. The autonomous
architecture allows us to compare descriptions in terms of information to a more traditional, thermoelectric
characterization. Our detailed investigation of information-to-work conversion is based on fluctuation relations
and second-law-like inequalities in addition to the average heat and charge currents. By introducing a time
reversal on the level of individual electrons, we find a fluctuation relation that is not connected to any symmetry
of the moment-generating function of heat and particle flows. Furthermore, we show how an effective Markovian
master equation with broken detailed balance for the system alone can emerge from a full description, allowing
for an investigation of the entropic cost associated with breaking detailed balance. Interestingly, while the
entropic cost of performing a perfect measurement diverges, the entropic cost of breaking detailed balance does
not. Our results connect various approaches and idealized scenarios found in the literature and can be tested
experimentally with present-day technology.
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I. INTRODUCTION

Many aspects of the theory of thermodynamics are in-
tricately related to the concept of information [1–3]. For
instance, entropy can be understood as a lack of microscopic
information about the system and its environment [4,5]. The
second law then merely states that, on average, information
will be lost to a thermal environment. Similarly, heat can
be understood as the change in energy of degrees of free-
dom that cannot be observed [6]. From this point of view,
it is natural that measurements, which provide information,
allow for decreasing entropy and for converting heat into
work. Historically, the idea of converting information to work
originated from Maxwell’s well-known thought experiment
[7], where a “being whose faculties are so sharpened that
he can follow every molecule in its course” was introduced
as an agent that obtains information about microscopic de-
grees of freedom. This fictional being is usually addressed as
Maxwell’s demon [8]. Acting on the obtained information,
the demon can seemingly violate the second law of thermo-
dynamics. The reason this does not result in any practical
device that can overcome the laws of thermodynamics is
best expressed in Landauer’s famous quote: “Information
is physical” [9]. Any device that performs a measurement
and stores the outcome must itself be a physical device and
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should therefore be taken into account in the thermodynamic
bookkeeping [10,11]. It then follows that any measurement-
feedback device, or demon, that is itself limited by the laws of
thermodynamics will generate a sufficient amount of entropy
such that the second law is restored [12,13], as illustrated
in Fig. 1.

In macroscopic thermodynamics, the distinction between
accessible and inaccessible degrees of freedom is very clear
[6]. The former could for instance be a position of a weight
and the latter the random movements of molecules in a
gas. Any device like Maxwell’s demon therefore acts on a
scale that is completely different from the observable degrees
of freedom. This picture changes drastically in nanoscopic
systems, where all processes are happening on a similar scale
and fluctuations can no longer be neglected. In recent years,
this regime, described by stochastic thermodynamics [14–18],
has seen tremendous progress both theoretically as well as
experimentally. Theoretically, strong and exact results such
as the Jarzynski relation [19,20] and the Crooks fluctua-
tion theorem [21–25] have deepened our understanding of
fluctuating thermodynamic processes far from equilibrium.
This investigation has furthermore clarified how the second
law arises from microscopic equations of motion that are
time-reversal symmetric [4,5,16,26] and how logical informa-
tion should be taken into account in thermodynamic book-
keeping [12,13,27–56]. Experimental advances in controlling
small systems have opened up the possibility of investigating
stochastic thermodynamics in a variety of platforms including
electronic systems [57–74], DNA molecules [75,76], photons
[77], Brownian particles [78,79], and ultracold atoms [80].
Extensions to the quantum regime [81], where additional
subtleties and challenges are encountered, have already led to
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FIG. 1. Composite system under investigation. (a) Illustration
of the demon, measuring the occupation of a quantum dot and
manipulating the transition probabilities such that electrons enter
the dot from the left reservoir and leave the dot toward the right
reservoir. Within the system alone, the first law of thermodynamics
holds while the second law is violated. (b) Real-space schematics and
(c) spectral properties of an implementation with quantum dots. Both
the system as well as the demon can host at most one electron. The
demon includes a temperature gradient which is used to overcome
the voltage bias within the system. Capacitive couplings (with equal
charging energy U ) between the system dot and the demon dots serve
for measuring the occupation of the system dot. Capacitive couplings
between the demon dots and the tunnel barriers within the system
result in the desired modulation of transition rates.

many exciting insights both from theory [3,82–84] as well as
from experiment [85–88].

Even centuries after its conception, Maxwell’s (and Szi-
lard’s [89]) thought experiment provides a prime concept
for illustrating novel ideas and insights in the thermody-
namics of information. Studies on Maxwell’s demon can
broadly be grouped into two categories: demons which
rely on external control [60,61,68,77,78,80,87,88,90–96] and
autonomous demons [41,64,86,97–114], where no exter-
nal control is needed. Connections between autonomous
and nonautonomous implementations of Maxwell’s demon
were investigated in Refs. [43,104,115–118]. Autonomous
demons offer the possibility to keep track of informa-
tion flows and to investigate the necessary entropy pro-
duction associated with a certain level of performance.
Such devices often rely either on an information reser-
voir [41,97,98,100,101,103,105,107,110], providing a storage
medium for the measurement outcomes, or on thermal reser-
voirs [64,99,102,106,108,109,111,112,114]. The latter are of
particular interest as they only require standard thermody-
namic resources and are thus within the paradigm that ad-
dresses the question, “What can be achieved by coupling a
small system to thermal reservoirs?” These devices can give
insight into how descriptions in terms of information relate to
a more traditional description in terms of energy flows alone,
where it is well established how to account for the required
resources.

Here we consider autonomous demons based on quan-
tum dots that only require thermal reservoirs. Quantum dots
and metallic islands, where electrons can hop between well-

defined regions, provide promising architectures because of
multiple reasons [70,119]: First, charging energies confine the
system to few states, resulting in a tractable behavior that is
well described by Markovian master equations. Furthermore,
these systems are comparably stable over time [70]. Second,
tunneling rates and on-site energies can be controlled by
external gates which allows for tuning the relevant timescales
and energy scales in situ [62,120]. Third, all relevant in-
gredients for stochastic thermodynamics, such as a tempera-
ture gradient, have already been implemented experimentally
[121–128]. Indeed, experiments based on Maxwell’s thought
experiment have been reported in Refs. [60,61,64,66–68].

The system under investigation is sketched in Fig. 1.
Before looking into the working principle and the details
of the information-to-work conversion, we briefly summa-
rize our main results and the main merits of the considered
system:

(1) In the spirit of Maxwell’s original thought experiment,
and in contrast to previous investigations [64,99,106], the
energy of the system does not change. The first law is hence
respected by both the demon as well as the system alone. Only
the second law is seemingly violated when disregarding the
entropy production of the demon.

(2) Our model allows for a detailed investigation of
information-to-work conversion keeping track of the entropy
produced by the demon. This allows for comparing a de-
scription based on information to a description in terms of a
machine that uses only conventional thermal resources.

(3) In the limit of a fast demon, we find a Markovian
master equation for the system alone, where detailed balance
is explicitly broken. This allows for investigating the thermo-
dynamic cost of breaking detailed balance.

(4) Considering different forms of time reversal, we find
different fluctuation relations. Notably, a form of time reversal
on the single-particle level results in a fluctuation relation
which cannot be found from the full counting statistics of heat
and charge currents.

The rest of this article is structured as follows: In Sec. II,
we introduce the system and illustrate how information is used
to convert heat into work. Section III discusses the system
as a heat engine. A description based on information flows
is given in Sec. IV. In Sec. V we go beyond mean values
and introduce fluctuation relations. Efficiencies and second-
law-like inequalities are discussed in Sec. VI. Section VII
is devoted to experimental considerations, and we conclude
in Sec. VIII.

II. SYSTEM AND WORKING PRINCIPLE

The system under investigation is sketched in Fig. 1. It
consists of three quantum dots and four fermionic reservoirs.
The system can be divided into two parts that are only coupled
through the Coulomb repulsion between electrons. The lower
part [in Fig. 1(b)] of the system will be referred to as the
system while the upper part will be referred to as the demon.
The combination of system and demon will henceforth be
referred to as the composite system. Related bipartite systems
are interesting for Coulomb drag [129–132], heat engines
[62,120,133,134], fluctuation theorems [129,135,136], ther-
mal drag [137], and refrigerators [113,138,139]. The system
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contains a single quantum dot which hosts a single energy
level and is tunnel-coupled to two superconducting leads.
Throughout the paper, these leads will be referred to as the
left and right reservoir. They are described by the common
temperature TS = T and possibly different chemical potentials
μL, μR, where we define

eV = μR − μL. (1)

For positive voltages, there is thus a tendency for electrons
to flow from the right to the left reservoir. Since no charge
transfer in the absence of the demon is desired, the energy
level of the dot, εS, is placed within the superconducting gap
of both leads; see Eq. (2) below. We assume the intradot
Coulomb interaction to be so strong that the quantum dot can
host at most one electron [140].

The demon consists of two quantum dots, each hosting a
single energy level (εC/H) and coupled to a normal conducting
lead. The temperatures of these leads are different TH � TC,
where the subscripts stand for hot and cold. In the following,
we will refer to the demon quantum dots as the cold dot
and hot dot, reflecting their respective reservoir. We assume
both the intradot Coulomb repulsion as well as the interdot
Coulomb repulsion within the demon to be so strong that at
most one electron can occupy the demon. It also suppresses
pair tunneling in the system.

Within the demon, there is a tendency of heat to flow from
hot to cold. As in conventional thermoelectrics, this tendency
will be used to drive a charge flow against the voltage bias in
the system. To this end, the demon and the system are coupled
to each other through the Coulomb interaction. Unlike in
conventional thermoelectrics, this capacitive coupling con-
nects the system to the (demon) heat sources while keeping
it electrically isolated [120]. We assume that the couplings
between the system dot and the two demon dots are identical
and captured by a charging energy U (deviations from this are
discussed in Sec. V). We then demand

μL/R − � < εS < μL/R + � < εS + U, (2)

where � denotes the superconducting gap assumed to be
equal for both leads. Then, tunneling in the system dot is
suppressed by the gap when the demon is empty. This ensures
that electrons can only enter or leave the system dot at en-
ergy εS + U , preventing any energy flow between the system
reservoirs and the demon [141]. To obtain an implementation
of Maxwell’s demon, we choose the chemical potential of the
cold reservoir such that

εC < μC < εC + U . (3)

At low temperatures, the cold dot will thus tend to be filled
if the system dot is empty and vice versa. This anticorrelation
provides the demon with information on the system state and
is illustrated by the demon’s eye in Fig. 1(a).

The final ingredient that is required is an effect of the
repulsive Coulomb interaction on the tunnel barriers between
the system dot and its reservoirs. In particular, we assume that
if the cold dot is occupied, tunneling between the system dot
and the right reservoir is suppressed. Similarly, an occupied
hot dot is assumed to result in a suppressed tunneling between
the system dot and the left reservoir. This effect is analogous
to the current suppression resulting from single electrons

which is exploited in charge-counting experiments [142–146].
Through this effect, the demon effectively opens and closes
the connections between the system dot and the corresponding
reservoirs. This is illustrated by the hands of the demon in
Fig. 1(a).

The desired effect of these ingredients is to move charges
against the voltage bias as illustrated in detail in Fig. 2: For an
empty system dot, the cold dot is occupied, blocking charge
transfer from the right reservoir. Once the system is filled from
the left, the cold dot will be emptied and the energy level
of the system dot will drop inside the superconducting gap,
preventing any charge transport. The hot dot has a chance of
becoming occupied even when the system dot is occupied. In
this case, charge transfer back to the left reservoir is blocked
and the system dot can only be emptied to the right. Emptying
the hot dot and filling the cold dot then closes the cycle. For
every cycle, one electron is moved against the voltage bias
and an amount of heat U flows from hot to cold. In this way,
the temperature gradient within the demon can drive a charge
current against the voltage bias within the system.

Before delving into a quantitative account of the dynamics,
we summarize the necessary ingredients:

(1) Coulomb repulsion between system and demon results
in an empty cold dot if the system dot is occupied and vice
versa. This anticorrelation constitutes the “eye” of the demon.

(2) Coulomb repulsion between the demon dots and the
barriers suppresses tunneling to the right or left reservoir if
the cold or hot dot is occupied. This constitutes the “hands”
of the demon.

(3) Superconducting gaps prevent charge transport
through the system when the demon is empty.

(4) Equal Coulomb interactions of strength U between
the system dot and the two demon dots prevent energy flow
between the demon and the system.

A. Master equation

The composite system is described by six different states
that are labeled (s, d ). The system can be empty (s = 0) or
occupied (s = 1); the demon can be empty (d = e), the cold
dot can be occupied (d = c), or the hot dot can be occupied
(d = h). In the limit of weak coupling between the quantum
dots and the reservoirs, the composite system can be described
by a Markovian rate equation [147,148]

∂t Psd =
∑

s′,d ′,α

[
�α

sd,s′d ′Ps′d ′ − �α
s′d ′,sd Psd

]
, (4)

where Psd denotes the probability to be in the state (s, d ) and
�α

sd,s′d ′ denotes the transition rate from state (s′, d ′) to state
(s, d ) induced by reservoir α ∈ {L, R, H, C}. The transition
rates can be found by Fermi’s golden rule and read (for all
nonvanishing transitions)

�sc,se = �C f s
C, �L

1c,0c = �L fL, �R
1c,0c = �Re−δR fR,

�sh,se = �H f s
H, �R

1h,0h = �R fR, �L
1h,0h = �Le−δL fL, (5)

with their reversed transitions obtained by replacing f = fα,

f s
α by 1 − f . Here �α denotes the tunneling rate associ-

ated with reservoir α and δL/R characterizes the suppression
of tunneling induced by the occupation of the demon dots
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FIG. 2. Working principle and graph representation. Inner part: Graph representation of Eq. (4). Each node corresponds to a state (s, d ) and
each line corresponds to possible transitions between states. The transitions illustrated in dashed red are suppressed by the demon while the
transitions illustrated in green are not. Outer part: Desired behavior of the composite system. Starting with three empty dots (left-hand side),
the system dot cannot be filled due to the superconducting gaps. The cold dot can be filled, lifting the energy level in the system above the
superconducting gaps. When the cold dot is filled, transitions involving the right reservoir are suppressed. The system dot can be filled from
the left. This raises the energy level of the cold dot above μC, such that the electron can leave. The electron in the system dot is now trapped
due to the superconducting gaps until the hot dot is being filled. When the hot dot is full, transitions involving the left reservoir are suppressed
and the system dot is emptied to the right. The cycle is closed when the hot dot is emptied. In one cycle, one electron is transported against the
voltage bias and one quantum of heat of size U is transported from hot to cold.

(i.e., δL/R → ∞ corresponds to complete suppression and
δL/R = 0 to no effect). For ease of notation, we omitted the
superscript α whenever there is only one reservoir which
can induce the corresponding transition. The different Fermi-
Dirac distributions read

f s
C/H = 1

eβC/H(ξC/H+sU ) + 1
(6)

and

fL/R = 1

eβ(ξL/R+U ) + 1
, (7)

with the inverse temperature βα = 1/Tα and ξα = εα − μα

(interpreting εL = εR = εS). We further included the (normal-
ized) superconducting density of states in the transition rates,
such that

�α = �N
α Nα, NC/H = 1,

NL/R =
∣∣∣∣∣Re

(
ξL/R + U + iγ√

(ξL/R + U + iγ )2 − �2

)∣∣∣∣∣, (8)

where the superscript N denotes the tunnel rate for a normal
conductor. We have considered a tiny but finite inverse quasi-
particle lifetime, γ , to avoid numerical discontinuities [149].
The transition rates in Eq. (5) fulfill detailed balance, ensuring
that, in equilibrium, each transition is compensated for by its
reverse [147,148]. We thus find

�R
1c,0c

�R
0c,1c

= e−β(ξR+U ), (9)

and a similar expression for all other transitions.

From Eq. (5), it can be seen that many transition rates
in Eq. (4) vanish. This becomes particularly apparent when
expressing Eq. (4) as a graph [150]; see the inner part of Fig. 2.
Every state (s, d ) corresponds to a node in the graph and all
nonvanishing transitions are denoted by a line connecting two
nodes.

B. Limiting cases

As discussed above, the desired behavior of the composite
system is described by the directed cycle shown in the outer
part of Fig. 2. In general, however, the behavior will deviate
from this because of two reasons. First, for finite δL/R, un-
desired tunneling events, illustrated by the red lines in the
inner part of Fig. 2, are not completely suppressed. Second,
the anticorrelation between the system dot and the cold dot
is in general not perfect. It is illustrative to consider the
limiting cases where these deviations from the ideal behavior
are suppressed one by one; cf. Ref. [99]. To this end, we first
consider the limit of a strong demon,

δL, δR → ∞. (10)

In this case, no tunneling to the right or left dot is allowed
whenever the cold or hot dot is occupied. In the graph rep-
resentation, this limit removes the two lines shown in red in
Fig. 2, resulting in a single loop. In the long-time limit, the
trajectories of the composite system are then characterized
by a single stochastic variable: the number of cycles along
the loop. Note that in contrast to the ideal behavior, cycles
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in the wrong direction may be completed. The strong-demon
limit thus significantly facilitates the analysis and, as shown
in more detail below, the heat and charge currents are tightly
coupled to each other as each electron that traverses the
system corresponds to a single quantum of heat that traverses
the demon.

The anticorrelation between the cold dot and the system
dot may be imperfect for two reasons. First, the demon can
only react to changes in the system state on the timescale of
1/�C/H. There is thus a delay in the measurement performed
by the demon. Second, a finite TC induces thermal fluctuations
in the cold dot which result in a noisy measurement. A
particularly illuminating limit is the limit of a fast demon,

�C, �H � �L, �R. (11)

In this limit, we can assume that the demon is at all times
described by a steady state which depends on the occupation
of the system dot. This steady state, denoted by τs, can
be calculated by setting �L/R = 0. In this case, the master
equation in Eq. (4) decouples into two blocks corresponding
to a filled and an empty system dot. The steady states of those
blocks read

τs =

⎛
⎜⎝

τ s
e

τ s
c

τ s
h

⎞
⎟⎠ = 1

Zs

⎛
⎜⎝

1

e−βC(ξC+sU )

e−βH(ξH+sU )

⎞
⎟⎠, (12)

where Zs looks like a partition function for the demon given
the system state and ensures the normalization of τs. Under
the assumption of a fast demon [cf. Eq. (11)], the separation
of timescales between system and demon ensures

Psd = PS
s τ s

d (13)

at all times. Here, PS
s = ∑

d Psd denotes the probability of the
system being in state s. From Eqs. (4) and (13), we derive a
rate equation for the transitions between τ0 ↔ τ1,

∂t P
S
0 = −(

�L
10 + �R

10

)
PS

0 + (
�L

01 + �R
01

)
PS

1 , (14)

and PS
0 + PS

1 = 1. Here we introduced the rates

�L
10 = �L

Z0
[e−βCξC + e−βHξH−δL ] fL,

�L
01 = �L

Z1
[e−βC(ξC+U ) + e−βH(ξH+U )−δL ](1 − fL),

�R
10 = �R

Z0
[e−βCξC−δR + e−βHξH ] fR,

�R
01 = �R

Z1
[e−βC(ξC+U )−δR + e−βH(ξH+U )](1 − fR) (15)

that account for charging and uncharging of the system
dot. These rates explicitly break detailed balance. Following
Ref. [91], we write

ln
�

L/R
10

�
L/R
01

= −β(ξL/R + U ) + rL/R, (16)

where rL/R quantifies the breaking of detailed balance.
Deriving a rate equation with broken detailed balance

allows for connecting to previous works which use such an
equation as a starting point [90,91]. For instance, upon a

redefinition of the parameters, Eq. (14) is equivalent to the
system discussed in Ref. [90], where a single quantum dot
is considered, with tunnel couplings to reservoirs that depend
on the occupation of the dot. The dependence of the tunnel
couplings is argued to result from an external measurement
and feedback loop. Here, we find how such a model emerges
from a completely autonomous implementation.

We note that in the fast-demon limit, the state of the demon
contains no memory of any previous state of the system. Trac-
ing out a memory-less part of a composite system generally
results in a Markovian master equation for the reduced system
[147,148]. However, in contrast to thermal environments, the
demon is not in thermal equilibrium; cf. Eq. (12). Therefore,
the transition rates between system states induced by the
demon do not fulfill detailed balance. This is in agreement
with Ref. [114], where an environment out of equilibrium is
shown to act as a demon. We note that the method outlined
here can be applied to any Markovian master equation where
a separation of timescales can be found.

As discussed above, the imperfect anticorrelation between
the system dot and the demon dot may result from a delay
of the demon as well as from thermal fluctuations of the cold
bath. It is thus illustrative to consider the limit of an error-free
demon,

�C, �H � �L, �R, TC → 0. (17)

In this case, we find from Eq. (12) τ s
c = δs,0, i.e., perfect

anticorrelation between the system dot and the cold dot. The
dynamics of the system is governed by Eq. (14) with the rates

�L,ef
10 = �L fL,

�L,ef
01 = e−δL�L(1 − fL) f 1

H,

�R,ef
10 = e−δR�R fR,

�R,ef
01 = �R(1 − fR) f 1

H. (18)

Note that the transition rates for emptying the system are
reduced by the occupation probability of the hot dot which is
below one. Only for a hot reservoir with a strong population
inversion (i.e., TH → −∞) could this reduction be removed.
In this case, the equivalence with Ref. [90] becomes particu-
larly transparent.

Finally, we consider the limit of a perfect demon,

δL, δR → ∞, �C, �H � �L, �R, TC → 0. (19)

In this case, Eq. (14) reduces to

∂t P
S
0 = −�L,ef

10 PS
0 + �R,ef

01 PS
1 , (20)

with rates given in Eq. (18). We thus obtain the desired behav-
ior where the system dot can only be filled from the left and
emptied to the right. The composite system thus moves along
the cycle illustrated in Fig. 2 (along the desired direction),
where transitions involving the demon happen infinitely fast.

The limiting cases introduced in this section will serve as
benchmarks and allow for analytic progress. In particular, we
will find a trade-off between the performance of the demon
and its entropy production. We summarize the considered
limiting cases in Table I.
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TABLE I. Limiting cases and corresponding stall voltages.

Strong demon δL, δR → ∞ βeVs = U (βC − βH)
Fast demon �C, �H � �L, �R βeVs = rL − rR

Error-free demon Fast and TC → 0 βeVs = δL + δR

Perfect demon Strong and error-free βeVs → ∞

III. THE DEMON AS A HEAT ENGINE

Let us now consider the general case described by Eqs. (4)
and (5). In the long-time limit, the system reaches a stationary
regime where the currents are given by the following expres-
sions:

Il = −e
∑
d �=e

(
�l

0d,1d P1d − �l
1d,0d P0d

)
, (21)

Jl =
∑
d �=e

(ξl + U )
(
�l

0d,1d P1d − �l
1d,0d P0d

)
, (22)

for the charge and heat currents through terminal l ∈ {L, R}
of the system (IL = −IR, due to charge conservation), and

JH = U
∑

s

(�se,shPsh − �sh,sePse), (23)

JC = U
∑

s

(�se,scPsc − �sc,sePse), (24)

for heat flowing into the hot and cold terminals, respectively.
In the demon dots, IH = IC = 0. We use a convention with
charge (heat) currents defined as positive when flowing out of
(into) the reservoirs. An interesting aspect of our system is that
the transport of heat through the demon is fully determined by
charge fluctuations (i.e., the time-dependent occupation of the
quantum dots) [120]. The demon heat currents and their fluc-
tuations can therefore be measured by time-resolved charge
detection using, e.g., two quantum point contacts [151]. This
scheme has recently been implemented to detect entropy flows
in related configurations [72].

For the parameters of interest, the gap forbids transitions
(0, e) ↔ (1, e). In that case, electrons enter and leave the
system dot at the same energy, implying that the system does
not absorb energy from the demon. Energy is thus conserved
both in the system and in the demon. As there are no charge
currents in the demon, this implies

JC + JH = 0. (25)

The fact that the system does not absorb any heat from
the demon is useful for heat management [141,152] and it
allows us to define the heat current flowing in the demon as
Jd = JC = −JH. We find that a charge current can be gener-
ated in the system at zero applied voltage,

IR(V = 0) = − e

U

�L�R[1 − e−(δL+δR )]

(�R + e−δL�L)(�L + e−δR�R)
Jd, (26)

which depends on the heat flow through the demon and the de-
mon’s ability to act on the system. From energy conservation
we also find

JL + JR = P, (27)

with the power P = −IRV . When P > 0 power is generated
in the system due to a charge current flowing against a voltage
bias. Equations (25) and (27) express the separation of the first
law in the two partitions, as sketched in Fig. 1(a).

Using Clausius’ expression for the steady-state entropy
production in reservoirs in local equilibrium, Ṡα = −Jα/Tα ,
we define the entropy production associated with the system,

Ṡs = −(JL + JR)
1

T
= − P

T
, (28)

and the demon,

Ṡd = −Jd

(
1

TC
− 1

TH

)
. (29)

Note that the entropy production associated with the demon
diverges for TC → 0. This implies that an error-free demon
(where the cold dot is perfectly anticorrelated with the sys-
tem dot) necessarily produces an infinite amount of entropy.
From Eqs. (27) and (28), we find that the second law of
thermodynamics allows for a positive power generated in the
system provided that the entropy reduction in the system is
compensated by the entropy produced in the demon [114],

Ṡs + Ṡd � 0 ⇔ Ṡd � P

T
. (30)

This motivates us to define the efficiency of the demon
similarly to what is done for a heat engine [153],

η = P

Jd
. (31)

The interpretation is clear as Jd = −JH is the heat current
emitted by the hot reservoir, which is used as a resource.
We stress that, differently from usual heat engines, the heat
current is not absorbed by the system but flows into the cold
demon reservoir which is spatially separated from the system.
In the limit where the demon works reversibly, i.e., where the
inequality in Eq. (30) becomes an equality, the efficiency is
maximal and equal to

η0 = T

TC

(
1 − TC

TH

)
. (32)

This generalizes the expression for the efficiency bound of
a heat engine coupled to a heat source and dissipating heat
into a cold bath. When the system is thermalized with the
cold bath (the typical situation for a thermocouple), i.e., when
TC = T , η0 reduces to the Carnot efficiency. We note that
for T > TC, η0 is not bounded by one. The reason for this
is that the temperature bias between the system and the cold
bath then acts as an additional resource, allowing for power
production without consuming heat from the hot bath. Indeed,
for an error-free demon, where TC → 0, η0 diverges.

A. Limiting cases

Let us first discuss the currents expected in the limiting
cases listed in Table I. Of particular interest is the strong
demon, for which the demon heat flow and system charge
current are maximally correlated (sometimes denoted by tight
coupling),

IR = − e

U
Jd. (33)
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Note that similar cross-correlations occur in Carnot-efficient
heat engines [154,155]. In this regime, we furthermore get that

Jd ∝ U (1 − e−U (βC−βH )+eV β ). (34)

In this case, both IR and Jd are stalled at a voltage

βeVs = U (βC − βH), (35)

where the demon stops producing power. The efficiency in-
creases linearly in voltage, η = eV/U until the stall voltage,
where it reaches the maximal efficiency η = η0.

For the fast demon, we can write

IR = −eC[ fL(1 − fR) − e−βeVs fR(1 − fL)], (36)

where C � 0 and the stall voltage is related to the breaking of
detailed balance,

βeVs = rL − rR. (37)

In the limiting case of an error-free demon, where TC → 0,
the stall voltage simplifies to

βeVs = δL + δR. (38)

Evidently, in the perfect-demon limit, the stall voltage di-
verges. In this case, the current is given by the simple expres-
sion

IR = −e
�L,ef

01 �R,ef
10

�L,ef
01 + �R,ef

10

. (39)

As IR < 0, electrons are always driven from the left to the
right reservoir, as expected in the limit of a perfect demon.
Note however that this expression is only valid as long as
Eq. (2) holds. The stall voltages in the limiting cases are
summarized in Table I.

B. Performance

The performance of the demon is illustrated in Fig. 3,
showing that the demon must be out of equilibrium in order
to generate power. If TC = TH, even if different from T , the
demon dots form an environment which is in local equilibrium
and with which the system exchanges no energy. Therefore it
is not surprising that transport in the system is only due to
the applied voltage, the heat currents change sign at V = 0,
and hence P � 0, as shown in Figs. 3(a) and 3(b). This is the
behavior expected for an isolated two-terminal quantum dot
[156]: The demon sleeps.

The demon wakes up when TH > TC. In this case, a positive
power is generated for voltages 0 < V < Vs, where the stall
voltage depends on the parameters of the composite system.
In this region, the system generates power at the expense
of its own heat, resulting in terminal L being cooled down
(JL > 0), as shown in Fig. 3(d). The second law is illustrated
in Fig. 3(e), where the validity of Eq. (30) can clearly be
seen. Only at the stall voltage in the strong-demon limit, we
have Ṡd = P/T (the process is reversible). At that point, the
efficiency attains its bound η = η0; see Fig. 3(f). Demons
operating at finite δ produce an excess of entropy, less power,
and operate at smaller efficiencies.

The strong demon is dual: As shown in Fig. 3(e), for
voltages larger than Vs, the system dissipates power accom-
panied by the demon reducing its entropy. The roles are
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FIG. 3. Performance of the demon. The generated power and
the heat flow out of terminal L are compared for the cases where
the demon is (a), (b) in equilibrium (TC = TH = T ) and (c), (d) out
of equilibrium (TC < T < TH), as functions of the applied voltage
V and the tunneling asymmetry δ = δL = δR. For positive voltages,
the nonequilibrium demon generates power while cooling the left
reservoir at the same time. (e) The power generation reduces the
entropy of the system by P/T , which is always smaller than the
entropy production in the demon, Ṡd, except for the case at the
stall voltage with δ → ∞, where they are equal. At this point,
(f) the demon performs in the reversible limit and the maximal
efficiency η0 is achieved. Here we explicitly included the effect of
a finite superconducting gap, � = 0.8kBT , which does not influence
the shown plots. Parameters: TH = 1.2T , TC = 0.8T , U = 1.5kBT ,
εS = ξH = 0, ξC = −0.4kBT , μL = −eV/2, μR = eV/2, �α =
0.1kBT , and γ = 10−8kBT .

then exchanged, with the system acting as an electrically
driven demon that refrigerates the original demon. This is
due to the high correlation of charge fluctuations in the
composite system, which is maximal in the strong-demon
limit (δL, δR → ∞). Then, reversing the charge flow through
the system implies the reversal of the heat currents in the
demon. This becomes clear by considering the graph in Fig. 2.
The strong-demon limit avoids the inner (red) transitions so
the sign of the current determines whether the cycle runs
clockwise or anticlockwise.

Let us further explore the different limits of the strong-
demon configuration. These are shown in Fig. 4 by decreasing
TC and by increasing the ratio between the demon and system
tunneling rates (setting �H = �C = �d and �L = �R = �),
while keeping δL = δR = ∞. As discussed in Sec. III A, the
extracted power and the cooling power of terminal L, as
well as the stall voltage, increase when lowering TC; see
Figs. 4(a)–4(f). However P and JL are limited by the gap:
for large voltages such that μR > εS + U − �, the transitions
through the right barrier are suppressed, and transport through
the system drops to zero. At the same time, the heat current
in the demon is suppressed. Up to that voltage, the efficiency
grows linearly as η/η0 = V/Vs, as expected from Eq. (35); see
Fig. 4(d).

By additionally increasing the tunneling rates in the de-
mon, one approaches the perfect-demon limit. The increase of
the power is plotted in Fig. 4(e), which shows the saturation
of the maximal power for �d � �. Making the demon fast
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FIG. 4. Performance of the strong demon. (a) Generated power
and (b) heat flow out of terminal L as functions of the applied voltage
V and the temperature of the cold reservoir. P � 0 for TC = TH. The
stall voltage increases for lower TC, but is cut off by the gap. (c)
The generated power also increases when lowering TC. (d) The su-
perconducting gap however avoids reaching the highest efficiencies.
(e) By increasing the ratio �d/� for the case TC = 0.5T , the power
increases toward the fast-demon limit, (f) but the efficiency is not
affected. Close to the gap, a small peak appears in P reflecting the
superconducting density of states (8). Same parameters as in Fig. 3
except for those explicitly indicated.

does not change the stall voltage. Hence, the efficiency is
unaffected by changing the ratio �d/�; see Fig. 4(f).

IV. THE DEMON AS AN INFORMATION ENGINE

In this section, we investigate descriptions of the composite
system in terms of information. We consider two descriptions
introduced in Refs. [13] and [91]. Following Ref. [13], we find
the generalized second law (in the steady state)

Ṡs + I � 0, Ṡd − I � 0, (40)

where the information flow I quantifies the average infor-
mation that the demon obtains on the system. This can be
understood by inspecting the time derivative of the mutual
information between the system and the demon [13]. Here
the information flow can be written as the product of an
information current JI times an information affinity FI. These
quantities explicitly read

I = JIFI, JI = Jd

U
, FI = kB ln

P0cP1h

P1cP0h
. (41)

Interestingly, the information current is determined by the heat
quanta that traverse the demon, making it detectable in an
experiment. For every quantum of heat, the demon obtains
information about the system. The amount of information
is determined by the information affinity which provides a
measure for the anticorrelation between the system dot and
the cold dot.

In the limit of a fast demon, we find

FI = U

(
1

TC
− 1

TH

)
. (42)

This implies that I = Ṡd and Eqs. (40) reduce to the standard
second law and a trivial equality, respectively. In this limit, the
information description given in Ref. [13] does not provide
any bounds that differ from the standard second law. Note
that in the error-free (and in the perfect) demon limit, the
information affinity diverges together with Ṡd [99].

The second description in terms of information that we
consider is based on a Markovian master equation with broken
detailed balance to account for a measurement and feedback
scheme [91]. In our case, this description only works in the
fast-demon limit, which is exactly the limit where the previous
information description does not provide any additional con-
straint. Following Ref. [91], we find the generalized second
law

Ṡs + If � 0, (43)

where the subscript should remind the reader that this ap-
proach only works for the fast demon. The information flow
is determined by the breaking of local detailed balance and
reads

If = kB

∑
l=L,R

rl
(
PS

0 �l
10 − PS

1 �l
01

)

= kB

−e
(rL − rR)IR = P

T

Vs

V
. (44)

The quantities related to the Markovian master equation with
broken detailed balance are defined in Eqs. (14)–(16). Fur-
thermore, we made use of eVs = rL − rR which holds in the
fast-demon limit. Equation (43) then reduces to the inequality

P

T

Vs − V

V
� 0. (45)

Because the power is only positive for voltages that fulfill 0 <

V < Vs, this inequality is always fulfilled, not only in the fast-
demon limit. Taking the strong-demon limit in addition to the
fast-demon limit, we find If = Ṡd and Eq. (43) reduces to the
standard second law.

In the error-free-demon limit, the information flow reduces
to

If = kB(δL + δR)
Jd

U
. (46)

As for the last description, the information flow thus diverges
in the limit of a perfect demon. The inequalities in Eqs. (40)
and (45) are illustrated in Fig. 5.

We thus find that a description in terms of information
flows can complement a thermodynamic analysis and result
in additional constraints. However, each information flow
reduces to the entropy production of the demon, and the
corresponding constraint to the second law, in a (different)
limiting case.

V. FLUCTUATION RELATIONS

In this section, we go beyond mean values and investigate
fluctuations in the steady-state heat and charge currents. We
first consider a fluctuation relation that is related to time-
reversing the composite system and provides the standard
extension to the second law [157]. We then consider time
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Ṡs + Ṡd
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Ṡs + If

FIG. 5. Second-law-like inequalities relating the rates for system
and demon entropy change Ṡs and Ṡd, the information flow I, and
the fast information flow If for different strengths of the demon:
(a) δL = δR = 2 and (b) δL = δR = 10. In the strong-demon limit,
Ṡd = If , and all inequalities are saturated at the stall voltage. Away
from the fast-demon limit, If is defined as the right-hand side of
Eq. (44). Other parameters are as in Fig. 3.

reversal of the system only, which results in a fluctuation rela-
tion that applies even when the entropy production associated
with the demon diverges.

Let us denote by X a trajectory of the composite system,
which specifies the state (s, d ) at each point in time during the
time interval [0, t]. We denote the entropy that is produced
during the trajectory by S(X ). In the long-time limit, the
entropy is fully determined by the number of charges that
traversed the system (w) and the number of heat quanta that
traversed the demon (q). We can thus write

S(X ) = −w
eV

T
+ q

(
1

TC
− 1

TH

)
. (47)

Since the transitions in the composite system fulfill detailed
balance, we find

P(X †)

P(X )
= e−S(X )/kB , (48)

where P(X ) denotes the probability that the composite system
follows trajectory X and X † denotes the time-reversed of X .
Summing over all trajectories that have the same values for w

and q, we find

P(−w,−q)

P(w, q)
= ewβeV −qU (βC−βH ). (49)

Alternatively, this fluctuation relation can be obtained by
considering the symmetry of the cumulant generating function
that characterizes the charge and heat transport through the
composite system [151].

From Eq. (49), one can recover the second law using
Jensen’s inequality which results in

〈w〉βeV � 〈q〉U (βC − βH), (50)

FIG. 6. Illustration of time-reversed trajectories. Left panel: De-
sired trajectory, where an electron enters the system dot from the left
through an open (green) barrier and leaves the system dot to the right
through an open barrier. Completing this loop once results in a single
charge transported against the voltage bias w = 1, a single quantum
of heat transported from hot to cold q = 1, and a single electron
contributing positively to the feedback-assisted current n. Middle
panel: Time-reversing the composite system results in changing the
direction of all arrows. While w and q change sign, the contribution
to the feedback-assisted current remains positive because the electron
passes through two open barriers. Right panel: Time-reversing only
the system exchanges origin and destination of the electron that
passes through the system dot. This inverts w and n while q remains
invariant since the demon is not affected by the transformation.

where the averages are taken over the distribution P(w, q).
The second law is recovered by identifying P = ∂t 〈w〉eV and
Jd = ∂t 〈q〉U .

In the strong-demon limit, charge and heat transport are
tightly coupled, enforcing w = q on each trajectory. The
fluctuation relation then reduces to

P(−w)

P(w)
= ewβe(V −Vs ), (51)

with βeVs = U (βC − βH). In the limit where TC → 0, heat
can only flow into the cold bath enforcing q � 0 in every
trajectory. The fluctuation relation in Eq. (49) is then reduced
to the trivial equality 0 = 0 for all terms where q �= 0.

We now consider a fluctuation relation which is based on
time reversal of the system only. A naive time reversal of
only the system state will in general result in trajectories that
cannot occur in the composite system. To circumvent this
problem, we consider a time reversal on the single-electron
level. To this end, we note that a trajectory X describes elec-
trons that enter and leave the system dot one after the other.
Time-reversing only the system is now defined by reversing
the path of each electron that traverses the system: An electron
that enters the system from the left bath and leaves it to the
right bath is replaced by an electron that enters the system
from the right bath and leaves it to the left bath. Electrons that
leave the system to the same bath they originate from are not
affected. Therefore, only electrons that contribute to transport
are affected. The trajectory that is obtained from X in this way
is denoted X +. The different forms of time reversal considered
here are illustrated in Fig. 6.

We now introduce the number n which counts the electrons
that contribute to transport, weighted by the amount of open
barriers they traverse. An electron that contributes to transport
by traversing two open barriers increases n by one, irrespec-
tive of the sign with which it contributes to the charge current.
An electron that contributes to transport by traversing two
closed barriers reduces n by one. All other electrons do not
contribute to n. As n counts electrons that behave according to
the feedback effected by the demon, we call the corresponding
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current F = ∂t 〈n〉 the feedback-assisted current. As illustrated
in Fig. 6, the transformation X → X + inverses the feedback-
assisted current as well as the charge current but leaves the
demon heat current invariant. This is in contrast to complete
time reversal, X → X †, which inverses charge and heat cur-
rents but leaves the feedback-assisted current invariant.

With these definitions, we find the fluctuation relation

P(X +)

P(X )
= P(−w,−n)

P(w, n)
= ewβeV −n(δL+δR ). (52)

Using Jensen’s inequality, we find the constraint on the pro-
duced work

〈w〉βeV � 〈n〉(δL + δR). (53)

In contrast to Eq. (49), this fluctuation relation provides a
constraint even when the entropy production associated with
the demon diverges. Indeed, in the limit of an error-free
demon, all electrons that flow against the voltage bias traverse
open barriers and all electrons that flow with the bias traverse
closed barriers. This enforces n = w on all trajectories and
Eq. (52) reduces to Eq. (51) with βeVs = δL + δR, in agree-
ment with Ref. [90], where the same fluctuation relation was
found for a nonautonomous demon which does not make any
measurement errors. We further remark that Eq. (52) breaks
down in the strong-demon limit, where it reduces to the trivial
equality 0 = 0 for all terms with n �= 0.

We note that Eq. (52), as well as the feedback-assisted
current, cannot generally be obtained by considering the
symmetries of the cumulant generating function of heat and
charge currents. The reason for this is that in contrast to
the heat and charge currents, the feedback-assisted current
of a trajectory depends on the order of the transition rates.
The order is necessary to determine both the origin as well
as the destination of each electron. One can however derive
Eq. (52) from the cumulant generating function obtained from
an extended master equation, where one explicitly keeps track
of the origin of the electrons that occupy the system dot; see
Appendix A.

We close this section by considering the fast-demon limit
which is described by a Markovian master equation for the
system alone. In this case, a standard time reversal of the sys-
tem trajectories is possible. This results in the fluctuation re-
lation given in Eq. (51) with the stall voltage βeVs = rL − rR.
Therefore, in all limiting cases, except in the perfect-demon
limit where the stall voltage diverges, the fluctuation relation
in Eq. (51) holds. In addition, the fluctuations are constrained
by the relations given in Eqs. (49) and (52). Equation (49)
differs from Eq. (51) for finite δl and breaks down in the limit
TC → 0. Equation (52) differs from Eq. (51) as long as the
demon is not error-free and breaks down in the strong-demon
limit.

VI. EFFICIENCIES: COMPARING HEAT
AND INFORMATION ENGINES

In the sections above, we found a number of second-law-
like inequalities, each of which motivates the introduction of
an efficiency. Here we discuss and compare these efficien-
cies, focusing on the regime where P � 0. We first consider
the (normalized) thermal efficiency introduced above which

follows from the standard second law:

ηT = −Ṡs

Ṡd
= η

η0
= βP

Jd(βC − βH)
� 1. (54)

This efficiency quantifies how well heat is converted into
work. In the strong-demon limit, it reduces to ηT = V/Vs,
reaching its maximum value at the stall voltage. The thermal
efficiency vanishes in the limit TC → 0 because Ṡd diverges
in this case. The second efficiency we consider is based on
Eq. (40) and reads

ηI = −Ṡs

I = βP

JIFI
� 1, (55)

where the information quantities are defined in Eq. (41).
This efficiency can be understood as quantifying how the
information flow is converted into power. It reduces to ηT

in the fast-demon limit. In this limit, we can use Eq. (43) to
introduce a second information efficiency,

ηf = −Ṡs

If
= V

Vs
� 1. (56)

This efficiency reaches its maximum value at the stall voltage
and reduces to the thermal efficiency in the strong-demon
limit. Finally, we introduce an efficiency based on Eq. (53),

ηF = βP

F (δL + δR)
� 1. (57)

We recall that F = ∂t 〈n〉 denotes the feedback-assisted cur-
rent. This efficiency can be understood as how well the
demon uses feedback, determined by the asymmetry in the
tunnel barriers, to produce work. For an error-free demon, the
efficiency reduces to V/Vs and thus to ηf .

The conversion of thermal resources and information can
thus be characterized with different efficiencies. In the limit-
ing cases, where these efficiencies can reach their maximum
value, they reduce to the simple expression V/Vs. A perfect
demon thus works very inefficiently with respect to all those
efficiencies because the stall voltage diverges in this limit.
This reflects the fact that the perfect demon cannot work in
a reversible manner. Furthermore, the maximal efficiency will
in this case be limited by the gap. Hence counterintuitively,
demons that make errors are in general more efficient. The
different efficiencies are compared in Fig. 7. For strong and
fast demons ηT, ηI, and ηf coincide for voltages below the
gap; see Figs. 7(c) and 7(d).

VII. EXPERIMENTAL CONSIDERATIONS

In this section, we briefly consider the consequences of
unequal charging energies and we discuss an alternative
implementation of the device using metallic islands instead
of quantum dots.

A. Unequal charging energies

We have so far considered the case UC = UH which ensures
the energy conservation in the demon and in the system. In an
experimental realization, the charging energies UC, UH depend
on the geometrical capacitance of the two demon dots as well
as on their respective capacitive coupling to the system dot.
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FIG. 7. Information-related efficiencies, η j , with j = {T, I, f,
F}, calculated from the right-hand side of Eqs. (54)–(57), for (a) a
weak, (b) a weak and fast, (c) a strong, and (d) a strong and
fast demon. The cases with TC = 0.5T (black) and TC = 0.3T (red
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strong, �d = 50� for fast, and �d = � otherwise. For the fast demon
(b) and (d), ηT and ηI overlap. For a strong demon, ηT coincides with
ηf , panels (c) and (d), except for being limited by the gap.

They are in principle different, which affects the demon heat
currents: in the desired cycle illustrated in Fig. 2, the energy
UH is extracted from the hot terminal and UC is absorbed by
the cold one. The difference UH − UC flows into the system:
The electron tunnels from the left reservoir with an energy
εS + UC and tunnels out to the right one with εS + UH. Hence,
the system alone does no longer satisfy the first law.

In this case, we have a more general relation for the heat
currents in the demon,

JC

UC
+ JH

UH
= 0, (58)

showing a tight coupling which is mediated by the charge
fluctuations in the system. From conservation of energy in the
composite system, JL + JR = (UH−UC)JC/UC − P, we find
that heat leaks into the system, even when P = 0. However
this does not have a fundamental impact on the demon oper-
ation. At V = 0 (no Joule heating), the current has the same
expression as in Eq. (26) replacing Jd/U by JC/UC.

This is clearly demonstrated in Fig. 8, parametrizing the
difference of charging energies in terms of the parameter

θ = UC − UH

UH
× 100. (59)

It shows that the generated power is not affected by a finite
JC + JH, even when it is of the same order as P. Indeed, we see
in Fig. 8(a) that having UC > UH is beneficial for increasing
the power and the stall voltage. This is understood as it helps
the demon mechanisms: larger UC reduces the errors in the
same way as lowering TC would do. At the same time, smaller
UH helps the hot dot to react better, requiring lower TH to
be effective. Note furthermore that in this case JC + JH > 0;
i.e., heat is flowing into the demon and out of the system. In
the opposite case, UC < UH, the demon injects heat into the
system and power is reduced; see Fig. 8(b). This is exactly
the opposite behavior that one expects from a conventional
heat engine, marking the unique operation of our system being
driven by information. Fluctuation theorems for UC �= UH are
discussed in Appendix B.
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FIG. 8. Effect of unequal charging energies. Generated power
(black lines) and heat current absorbed by the demon (red lines)
for different factors of asymmetry, θ , having (a) UC > UH and (b)
UC < UH (in both cases fixing UH = 1.5kBT ). Same parameters as
in Fig. 3 for the strong-demon limit with δL = δR = ∞, except for
those explicitly indicated.

B. Hard gap

We have considered that the superconducting gap is hard,
except for a small inverse quasiparticle lifetime, γ . For a long
time, achieving a hard gap in superconductor-semiconductor
interfaces has been an experimental challenge. However, fast
improvements have been achieved recently in junctions form-
ing nanowires [158], 2D structures [159], and even quantum
point contacts [160].

Imperfections in the gap would result in leakage heat cur-
rents into the system. This effect is captured in our model by
increasing γ . It is nevertheless expected to be tiny in realistic
configurations as soon as εS is well within the gap. In the same
sense as in the previous subsection, these leakage currents can
be easily disentangled from the relevant information flows.

An alternative way to filter transitions without involving
superconducting leads involves the use of triple quantum dot
arrays [120,152]: the central one is coupled to the demon dots,
while the outermost ones serve as energy filters at εS + U .
This scheme has the advantage of reducing the effect of un-
equal charging energies by appropriately tuning the quantum
dot levels.

C. Metallic islands

We have so far discussed an implementation based on
single-level quantum dots. Recent experiments [64] motivate
configurations with the quantum dots replaced by metallic
islands, which are also affected by Coulomb blockade effects
[161]. We briefly discuss a plausible configuration here, a
more detailed analysis being beyond the aim of this article.
The main differences with respect to semiconductor quantum
dots are that (i) the tunneling barriers (formed by insulating
layers) are not affected by gate potentials and that (ii) they
have a dense spectrum. These two effects compromise the
exact cancellation of the energy currents in the system as well
as the action of the demon on the system dynamics.

These issues can be partially overcome by adding two
islands to the left and right of the system island, each of
them capacitively coupled to one of the demon islands; see
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FIG. 9. Sketch of an analog device formed by metallic islands.
(a) The pale gray islands are used to avoid or permit transport into
the system island (dark gray) depending on the occupation of the
demon islands. Labels indicate superconducting leads (S), insulating
tunneling barriers (I), and normal-metal islands (N). The transitions
in (b) and (c) picture the sequence of the demon action. Dashed
arrows mark the change in the electrochemical potentials due to a
tunneling transition in a different island (numbered full arrows).

Fig. 9(a). Note that the spatial arrangement of the hot and cold
terminals is opposite to the quantum dot case in Fig. 1(b). The
electrostatic energy of the composite system reads

U =
∑

i

Ei(ni − ngi )
2 +

∑
i,k �=i

Jik (ni − ngi )(nk − ngk ), (60)

where i = 1, 2, 3 label the system islands and i = A, B the
cold and hot islands, Ei is the on-site charging energy, and
Jik = Jki describes the Coulomb interaction between islands.
Let us define μi as the energy given by Eq. (60) when every
island is empty except for i having one electron. It depends on
the control parameters ng j which can be tuned by gate volt-
ages. Assuming JAB � JiA, JiB, with i �=A, B, only one of the
demon islands can be occupied at a time. We further consider
J1B and J3A to be negligible. By making μA + J1A < μC <

μA + J2A, the occupation of the cold island is sensitive only
to the state of island 2. The chemical potentials of islands 1
and 3 depend on the occupation of the demon through J1A

and J3B. Having μ1 > μ2 > μ3 prevents an electron from
tunneling from 3 to 1 when the demon islands are empty if
the respective differences are not small compared to kBT . In
order to suppress the contribution of undesired transitions,
one requires that the cold demon rate is much faster than the
system ones such that, e.g., the cold island is immediately
occupied when the system is empty. Once A is occupied, an
electron tunneling into 1 will be transferred to 2 if μ1 + J1A >

μ2 + J2A. Then, the cold island is emptied, see Fig. 9(b), the
system electron can tunnel to 3 and, upon the charging of B,
tunnel out to the right terminal. This is favored if μ2 + J2B >

μ3 + J3B; see Fig. 9(c).
Other processes are possible that contribute to the wrong

direction. Their contribution can be reduced if, e.g., the
tunneling rate from L to 1 is larger than that from R to 3,
but they cannot be totally suppressed. Hence, the range of
parameters where the action of the demon is effective is
reduced compared to the quantum dot setup, making it hard,
e.g., to achieve a strong demon.

The system energy can still be conserved on average by
gate-tuning the island chemical potentials. This is for example
the case for V = 0 if μ1 + J1A = μ3 + J3B. In any case, as
discussed above, a finite energy flow is easily disentangled
from the relevant information currents.

VIII. OUTLOOK AND CONCLUSIONS

We presented a detailed investigation of information-
to-work conversion in an autonomous implementation of
Maxwell’s demon based on three quantum dots coupled to
separate thermal reservoirs. Since only reservoirs in local
thermal equilibrium are used as resources, the entropy pro-
duction associated with each reservoir can be accounted for.
This allows for describing the information-to-work conver-
sion process as a conventional thermoelectric heat engine. In
addition, we investigated the process in terms of information
flows. Such a description can result in additional constraints,
depending on the regime of operation. From all descriptions,
we find that in order for the demon to perform an error-
free measurement, its associated entropy production must
diverge. This is in agreement with previous results which
found a diverging mutual information for error-free continu-
ous measurements [47,56]. Nevertheless, fluctuation relations
and second-law-like inequalities can be found in this regime;
cf. Eqs. (52) and (53).

Most of our results are illustrated using limiting cases, cf.
Table I, which result in analytically tractable and intuitive
results. A particularly useful limit is given by the fast-demon
limit, where we derive a master equation for the system alone
with explicitly broken detailed balance. Interestingly, this is
not necessarily accompanied by a diverging entropy produc-
tion associated with the demon. From the graph representation
of the original master equation (cf. Fig. 2) we find that any
heat flow from hot to cold requires transitions in the system
dot. Increasing the rates of the demon will thus not result
in a diverging heat flow. While a perfect measurement is
associated with a diverging entropic cost, breaking of detailed
balance is not.

Fluctuation relations provide particularly useful constraints
on the dynamics when operated far from equilibrium. To
describe the composite system, we derived two different fluc-
tuation relations. While the first is related to ordinary time
reversal and takes on the standard form [cf. Eq. (48)], the
second is obtained by a time-reversal that reverses the paths
of all the electrons which traverse the system. Interestingly,
this results in a fluctuation theorem which includes a current
variable that has no simple relation to either heat or charge
currents; see Eq. (52). This implies that this fluctuation re-
lation cannot be obtained from the heat and charge statistics
alone, except in the limit of an error-free demon where it
reduces to the fluctuation relation of Ref. [90]. It can however
be obtained from an extended master equation, where the
origin of the electrons is explicitly accounted for. We thus
provide an example where extending the master equation can
uncover hidden symmetries that result in useful fluctuation
relations. Using this approach to find novel fluctuation the-
orems in different systems provides a promising avenue for
future research. We have restricted ourselves to the weak-
coupling regime. Achieving the strong-coupling limit relaxes
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the conditions required for the fast-demon limit, and opens
interesting questions on the energy that the demon invests on
the operation of the system barriers [112].

In addition to providing fundamental insights, the proposed
device can be implemented with current-day technology.
While such an implementation might result in deviations from
the ideal behavior, where the first law is respected within the
system alone, the underlying information-to-work conversion
process should not be affected.
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APPENDIX A: EXTENDED SPACE MASTER EQUATION

In this Appendix we introduce a generalized master equa-
tion that accounts for feedback-assisted transitions by count-
ing the number of electrons that contribute to transport by
traversing the system only through open barriers, n. To this
end, the states with one electron in the system need to be
distinguished depending on through which barrier (l = L, R)
the electron tunneled in, and whether this barrier was open
(o) or closed (ν = o, c). This way, the configuration space
includes 15 states: (0, e), (1, e, νl ), (0, h), (0, C), (1, h, νl ),
(1, c, νl ). For example, the sequence

(0, c)
L−→ (1, c, oL) → (1, e, oL) → (1, h, oL)

R−→ (0, h)

(A1)

(where the labels over the arrows mark the barrier of the
system involved in the transition), corresponding to the X
cycle in Fig. 6, must count n = 1, while

(0, c)
R−→ (1, c, cR) → (1, e, cR) → (1, h, cR)

L−→ (0, h)

(A2)

counts n = −1; see cycle X + in Fig. 6.
This is done by introducing a counting variable zF = eiχF in

the appropriate transitions: It counts n = 1 at the occurrence

of transitions (1, c, oR)
L−→ (0, c) and (1, h, oL)

R−→ (0, h). On

the other hand, it counts n = −1 when (1, c, cL)
R−→ (0, c)

and (1, h, cR)
L−→ (0, h). A second variable, z = eiχ , counts

the number of transported particles, w. The resulting modified
master equation reads

ρ̇0,e = −�0d,0eρ0,e + �0e,0cρ0,c + �0e,0hρ0,h,

ρ̇0,h = �0h,0eρ0,e − (
�0e,0h + �s

1h,0h

)
ρ0,h

+
(

1

z
�L

0h,1h + �R
0h,1h

)
(ρ1,h,cL + ρ1,h,oR)

+
(

zF�
R
0h,1h + 1

z
�L

0h,1h

)
ρ1,h,oL

+
(

�R
0h,1h + 1

zzF
�L

0h,1h

)
ρ1,h,cR,

ρ̇0,c = �0c,0eρ0,e − (
�0e,0c + �s

1c,0c

)
ρ0,c

+
(

1

z
�L

0c,1c + �R
0c,1c

)
(ρ1,c,oL + ρ1,c,cR)

+
(

1

z
�L

0c,1c + 1

zF
�R

0c,1c

)
ρ1,c,cL

+
(

zF

z
�L

0c,1c + �R
0c,1c

)
ρ1,c,oR,

ρ̇1,e,νl = −�1d,1eρ1,e,αl + �1e,1cρ1,c,αl + �1e,1hρ1,h,νl , (A3)

for the probabilities where the composite system contains a
single electron, and

ρ̇1,h,oL = �1h,1eρ1,e,oL − (
�s

0h,1h + �1e,1h
)
ρ1,h,oL,

ρ̇1,h,cL = z�L
1h,0hρ0,h+�1h,1eρ1,e,cL−(

�s
0h,1h + �1e,1h

)
ρ1,h,cL,

ρ̇1,h,oR = �R
1h,0hρ0,h+�1h,1eρ1,e,oR−(

�s
0h,1h + �1e,1h

)
ρ1,h,oR,

ρ̇1,h,cR = �1h,1eρ1,e,cR − (
�s

0h,1h + �1e,1h
)
ρ1,h,cR,

ρ̇1,c,oL = z�L
1c,0cρ0,c+�1c,1eρ1,e,oL−(

�s
0c,1c + �1e,1c

)
ρ1,c,oL,

ρ̇1,c,cL = �1c,1eρ1,e,cL − (
�s

0c,1c + �1e,1c
)
ρ1,c,cL,

ρ̇1,c,oR = �1c,1eρ1,e,oR − (
�s

0c,1c + �1e,1c
)
ρ1,c,oR,

ρ̇1,c,cR = �R
1c,0cρ0,c + �1c,1eρ1,e,cR − (

�s
0c,1c + �1e,1c

)
ρ1,c,cR,

(A4)

for the probabilities where the composite system contains two
electrons. Here we have defined �s

m,p = �L
m,p + �R

m,p, �sd,se =
�sh,se + �sc,se, and �se,sd = �se,sh + �se,sc. The full counting
statistics for n and w is obtained from the lowest eigenvalue
of the matrix M associated with the previous set of equations
ρ̇̇ρ̇ρ = Mρρρ. For more details, see, e.g., Ref. [151]. With this,
one can verify the fluctuation theorem expressed in Eq. (52).

Setting z = zF = 1 one can also compute the feedback-
assisted current:

F = �R
0h,1hρ1,h,oL + �L

0c,1cρ1,c,oR

−�R
0c,1cρ1,c,cL − �L

0h,1hρ1,h,cR, (A5)

which cannot be obtained from knowing only the occupation
of the charge states.

APPENDIX B: FLUCTUATION THEOREM FOR UNEQUAL
CHARGING ENERGIES

For unequal charging energies, UC �= UH, the fluctuation
theorem in Eq. (49) is generalized to

P(−w,−q)

P(w, q)
= ewβeV −q(UCβC−UHβH ). (B1)
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In the strong-demon limit (where w = q), the stall voltage is

Vs = T

(
UC

TC
− UH

TH

)
. (B2)

The fluctuation relation in Eq. (52) is modified as

P(−w,−n)

P(w, n)
= ewβeV −n(δL+δR+g), (B3)

where

eg = cosh [β(UC+UH+ξL+ξR)]+cosh
[

β

2 (eV −UC+UH)
]

cosh [β(UC+UH+ξL+ξR)]+cosh
[

β

2 (eV + UC−UH)
] .

(B4)

The fluctuation relation in Eq. (B3) thus reduces to Eq. (52)
both for equal charging energies as well as for vanishing
voltages. We note that in the error-free-demon limit, where
w = n on each trajectory, Eq. (B3) implies that the stall
voltage is given by the solution of the transcendental equation
βeV = δL + δR + g.
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