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This paper explores different mechanisms that induce thermal rectification in the nanoscale. The presence of
interacting energy channels combined with simple asymmetries is sufficient for promoting the desired behavior.
We use simple quantum dot configurations, identifying the basic properties that enhance rectification for each
case: the size of a quantum dot state space (which suggests the use of scaled up systems with many interacting
channels), tunneling asymmetries due to coherent tunneling in a double quantum dot, or quantum interference in
a triangular triple quantum dot. An efficient and tunable thermal diode is proposed using a channel capacitively
coupled to a mesoscopic switch.
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I. INTRODUCTION

Conventional electronics is constantly increasing computa-
tional power through the miniaturization of its basic compo-
nents. The operation of a circuit can be seriously harmed by
the heat dissipated in its working components. Gaining control
over nanoscopic heat currents is hence vital for improving the
operation of electronic devices.

There are different approaches to alleviate or even take
advantage of the dissipated heat in electronic devices. One
possibility is to convert it into power by thermoelectric engines
[1,2]. One can also think of doing useful operations which
are only driven by heat [3,4], for which one needs to find
thermal analogs of electrical components like a transistor or a
diode which work at the nanoscale. Research in this direction
has been boosted by the recent advances in the detection of
mesoscopic heat currents [5–9].

Any diode, including thermal ones, require a spacial
asymmetry that affects the current propagation between two
terminals [10]. This has led to proposals of thermal recti-
fiers based on broken mirror symmetry that use a series of
systems with different spectral densities. Recent examples
include linear lattices [11], superconducting junctions [12–15],
normal-superconducting junctions [16], metallic islands [17],
quantum Hall tunnel barriers [18], metal-dielectric interfaces
[19], qubits [20,21], or resonators [22]. Other possiblities
include energy-dependent couplings [23] or the asymmetric
coupling to a third reservoir acting as an environment with
which the system exchanges energy [24–28].

One can also use the effect of electron-electron interactions.
In quantum dot systems with discrete spectral densities, they
are responsible for strong nonlinearities [29–36]. Several
quantum dots can be coherently coupled to form different
configurations, which enables one to locally control the density
of states. For instance, the symmetry of quantum superposi-
tions can be controlled by gate voltages in linearly coupled

double [37,38] or triple quantum dots [39]. More complicated
spacial arrangements [40–42] introduce different tunneling
paths which give rise to quantum interference effects [43–47]
under the appropriate symmetries [48].

In this paper, we will restrict ourselves to the study of
simple configurations of quantum dots, see Fig. 1. With this
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FIG. 1. Scheme of the different quantum dot configurations dis-
cussed in the paper. (a) A single quantum dot is coupled to two
terminals with asymmetric tunneling rates �l . There are two possible
states the electrons can tunnel to. (b) A double quantum dot in series.
Hybridization of the quantum dot orbitals due to coherent tunneling,
τLR, introduces L-R asymmetric and energy-dependent tunneling rates
even if the left and right barriers are identical. (c) A triple quantum
dot in a triangular configuration introduces directionality due to the
interference of trajectories coming from the left lead.
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minimalistic approach, we aim to reduce the number of degrees
of freedom helping us to identify the relevant processes. In all
the considered configurations, transport occurs via channels
that are correlated via strong Coulomb interactions. We assume
the Coulomb blockade regime, where the system can be
occupied by up to one electron due to strong electron-electron
interactions. The mechanism which breaks mirror symmetry
and enables rectification is different in each case.

In the simplest case, a single quantum dot is tunnel-coupled
to two terminals, the quantum dot levels need to be asymmet-
rically coupled to the left and right leads, but remarkably no
energy-dependent tunneling is needed, cf. Fig. 1(a). Indeed, we
find the surprising result that the multiplicity of the quantum
dot states increases the rectification. The left-right asymmetry
and energy-dependence of the tunneling rates can be manip-
ulated by controlling the tunneling hybridization in a double
quantum dot, cf. Fig. 1(b), which helps to increase the recti-
fication coefficient. More drastically, a spacially asymmetric
composition with two quantum dots coupled to the left lead and
only one coupled to the right can work as a rectifier even if the
tunnelig barriers are all identical, cf. Fig. 1(c). The effect is in
this case due to the formation of superpositions of the quantum
dots coupled to the left which avoid the occupation of the
remaining quantum dot [49–52]. They form a blocking channel
in parallel to those that support the current. This property can
be then applied to simpler configurations with two capacitively
coupled quantum dots in parallel [53,54], where fluctuations
in one quantum dot affect the current through the other one
[55,56]. This process is reminiscent of dynamical channel
blockade [57,58] and achieves huge rectification coefficients
at configurations with maximal heat currents.

The paper is organized as follows. In Sec. II, we present
the general formalism which is applied to the different con-
figurations. The effect of the dimensionality of the state space
is analyzed in Sec. III, and asymmetries arising from coherent
tunneling are introduced in Sec. IV. A triple quantum dot where
a superposition of states is only coupled to one of the terminals
is presented in Sec. V, whereas a similar effect is used in
a simpler configuration with two quantum dots in Sec. VI.
Conclusions are discussed in Sec. VII.

II. MODEL AND EQUATIONS

Along this paper we will show how different configurations
of quantum dots can be tuned to exhibit a thermal-diode
behavior. In particular, we will consider systems with one,
two, and three quantum dots connected to two reservoirs at
different temperatures, cf. Fig. 1. We furthermore assume that
the electrostatic charging energy of any of these systems is
sufficiently large that the total number of electrons does not
exceed one.

For the systems appearing in Fig. 1, we are only interested
on the stationary thermal currents. The information of the
occupation of every energy level, accounting also for coher-
ences between them, is contained in the density matrix ρ. Its
evolution follows a master equation

d

dt
ρ̂ = − i

h
[Ĥs,ρ̂] +

∑
l,X,α

D[L̂lXα,ρ̂], (1)

where the index l = L,R accounts for the left and right leads,
and α = ± refers to tunneling in/out of the system. The
first term on the right-hand side of Eq. (1) accounts for the
coherent evolution of the isolated system. The second term
introduces the tunneling between the system and the reservoirs,
which will be specified in terms of the relevant states X of
each configuration. We assume a Born-Markov approximation,
valid in the weak tunneling regime, �lX � kBT [59], see
below. The dissipator is given by the usual Lindblad form:

D[L̂,ρ̂] = L̂ρ̂L̂† − 1
2 {L̂†L̂,ρ̂}+. (2)

In particular,

L̂lX+ =
√

�+
lX|X〉〈0|, (3)

L̂lX− =
√

�−
lX|0〉〈X|, (4)

where the rates for tunneling in/out are: �+
lX =

�lXf (EX−μl,Tl), and �−
lX = �lX[1 − f (EX−μl,Tl)], with

the Fermi function f (E,T ) = [1 + exp(E/kBT )]−1 giving
the electronic distribution of a lead at temperature T . The
transparency of barrier l, �lX, may depend on the energy
level involved in the transition, X. We assume a wide band
approximation such that any X-dependence of the tunneling
transparency is only due to the internal spectrum of the
quantum dot system. Finally, the equilibrium Fermi energy
has been set to zero for convenience. In most cases, we
will assume that there is no electric potential applied to the
reservoirs, i.e., μl = 0, except when explicitly mentioned.

With the stationary solution of the master equation (1) for
the density matrix elements, ρ̇ij = 0, we obtain the dc charge
and heat currents:

Il = e
∑
X

(ρ00�
+
lX − ρXX�−

lX), (5)

Jl =
∑
X

(EX − μl)(ρ00�
+
lX − ρXX�−

lX), (6)

respectively. As we are interested in the rectification of heat
flows, we need to compute the heat current through the system
in response to opposite temperature gradients.

There are two possible configurations to be considered:
(i) short circuit, where eV = μL − μR = 0, and (ii) open
circuit, where a (thermo)voltage develops to the condition
Il = 0. This paper will mostly focus on case (i), although
case (ii) will be discussed for some configurations. In both
cases, no power is generated in the system, such that heat
is conserved: JL + JR = 0. There is hence no ambiguity in
defining the forward and backward responses in a single
terminal, e.g., J+ = JL(TL = T + �T,TR = T ) and J− =
−JL(TL = T ,TR = T + �T ), depending on what terminal has
a temperature increase �T .

With these, we define the rectification coefficient:

R =
∣∣∣∣J

+ − J−

J+ + J−

∣∣∣∣, (7)

which is bounded between 0 (no rectification) and 1 (an ideal
thermal diode).
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FIG. 2. Two-level quantum dot coupled to two terminals. Left-
right asymmetric and level-dependent tunneling lead to four different
tunneling rates, �li . The latest can be due to an energy splitting �E

in energy-dependent barriers, or to an additional degree of freedom
(e.g., spin).

III. DEGENERACY IN A QUANTUM DOT

Let us first consider the case of a single quantum dot [60,61],
see Fig. 1(a). It is important to emphasize that mirror symmetry
breaking is not sufficient to produce rectification. To show
this, it is useful to first explore a simple model with only one
available energy state ε in the quantum dot. This is the case if
one can neglect the effect of spin (for instance, if the leads are
fully spin-polarized). The coupling of this state to the left and
right leads is parametrized by the tunneling rates �l1. The heat
current (at the condition of no voltage bias) is given by

J1(ε) = ε
�L1�R1

�L1+�R1
[f (ε,TL) − f (ε,TR)], (8)

as shown in Appendix A. As the temperature dependence
only enters in the difference of Fermi functions, the current
is antisymmetric under the change TL ↔ TR, leading to J+ =
J−, i.e., no rectification. Note also that having additional states
does not change the situation provided that they do not interact
with each other, as discussed in Appendix B.

However, the behavior dramatically changes when consid-
ering several channels that are correlated via interactions. We
are interested here in the simplest case of two states that exclude
each other (due to strong Coulomb blockade), as depicted in
Fig. 2. We label them |X〉 = |1〉,|2〉 for simplicity. In our case,
they can correspond to the two possible spin states of the
electron that occupies a single-level quantum dot, which can be
split by �E, e.g., due to an applied magnetic field. We remark
here that the interplay of two states (a ground and an excited
state) was used to interpret the rectification of a quantum dot
in experiments [29].

As there are no internal dynamics in the quantum dot, the
first term on the right-hand side of Eq. (1) does not contribute
to the evolution of the system. Hence, off-diagonal elements
of the density matrix are uncoupled from the occupations ρii

and need not be taken into account. The master equation then
simply reads

ρ̇ii = �+
�iρ00 − �−

�iρii , i=1,2, (9)

and is complemented with the normalization condition ρ00 +
ρ11 + ρ22 = 1. Here we use the notation �±

�i = ∑
l �

±
li , with

l = L,R.
The steady-state solution of Eq. (9) reads ρ00 = �−

�1�
−
�2/	,

ρ11 = �+
�1�

−
�2/	, and ρ22 = �−

�1�
+
�2/	. The common
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FIG. 3. Rectification of a single quantum dot whose spin states
are split by a magnetic field: ε1 = ε − �E/2, ε2 = ε + �E/2, with
�E = gμBz. (a) Heat current for �T = T/2, V = 0, �L = 2�R =
0.2kBT , with � = �L�R/�� . (b) Forward and backward currents for
Bz = 0. (c) Rectification coefficient with (d) cuts at zero and finite
magnetic field. The inset in (b) zooms in the difference of the two
currents around ε = 3kBT . Note that rectification is present even if
Bz = 0.

parameter in the denominator accounts for normalization:

	 = �−
�1�

−
�2 + �+

�1�
−
�2 + �−

�1�
+
�2. (10)

Importantly, it introduces a temperature-dependent prefactor
in the expression for the current, see Eq. (6):

JL = 	−1
∑

i

εi(�
+
Li�

−
�1�

−
�2 − �−

Li�
+
�i�

−
�ī

), (11)

where ī = 2 for i=1, and vice versa.
With this expression, we can check what the necessary

asymmetries are to find a finite rectification. For instance, it
is easy to verify that mirror symmetry needs to be broken: if
otherwise �li = �i , i.e., if tunneling rates only depend on the
quantum dot level, we find J+ = J−.

Let us consider the simplest case with energy-independent
rates, �li = �l , ∀i. It is maybe the most accessible case for
experiments. One way to tune the energy difference of two
levels is to introduce a magnetic field Bz that induces a Zeeman
splitting between the states with opposite z-component, �E =
gμBBz, where g is the gyromagnetic factor, and μB is the
Bohr magneton. In this case, ε1 = ε − �E/2, and ε2 = ε +
�E/2. The bare position of the level, ε, can be tuned with a
plunger gate. We can clearly distinguish two regimes in Fig. 3,
depending on whether the Zeeman splitting is smaller or larger
than kBT : For �E < kBT , both levels are within the window
of thermal excitations and the heat current vanishes close to
the symmetric point ε = 0. Additionally, at ε/�E ≈ 1/2 and
−3/2, we find that J+ = J−. Otherwise, a small but finite
rectification appears.

In the regime �E � kBT , charge fluctuations affect only
one state (at most). When ε > 0, the upper state is empty and
the system behaves as a single-state quantum dot (discussed at
the beginning of this section). In this region, we find a sizable

035414-3



ALEJANDRO MARCOS-VICIOSO et al. PHYSICAL REVIEW B 98, 035414 (2018)

heat current with suppresed rectification (as expected). For
ε < 0, the lower state is occupied and blocks any transport
through the other one, a mechanism related to dynamical chan-
nel blockade [57,58]. It leads to the suppression of transport, so
we find a maximal rectification coefficient of tiny heat currents.

Higher rectification coefficients are obtained for the open-
circuit case, discussed in Appendix C.

A. Degenerate levels

A particularly interesting case of discussion is when the
two states have the same energy, ε1 = ε2 = ε. One could
naïvely expect that this configuration presents no rectification,
in analogy with the single state case, Eq. (8). However, due
to the Coulomb blockade events at different energy levels are
correlated, as tunneling into each isolated state is conditioned
on the other one being empty. The occupation of each state,
in turn, depends on both tunneling transparencies and on
temperature, and hence are different depending on which lead
is hot, in general.

If the tunneling rates are state-independent, �li = �l , this
configuration can be mapped to the single-state one by re-
placing �+

l → 2�+
l . We emphasize that this only affects the

tunneling-in rates: while the empty quantum dot has two states
that can be occupied, there is only one possible final state when
the quantum dot is occupied. The resulting heat current (for
V = 0) reads

J2 = 2ε�L�R∑
l �l[1 + f (ε,Tl)]

[f (ε,TL) − f (ε,TR)]. (12)

Note that the denominator of the prefactor now depends on
the temperature of the leads. This leads to a finite thermal
rectification, which for small temperature gradients can be
written as

J+
2 − J−

2 = 2�αx3kB�T 2

T (3 + 3 cosh x − sinh x)2 + O
(

�T

T

)3

, (13)

with x = ε/kBT and � = �L�R/�� . Note that it relies on a
finite tunneling asymmetry α = (�L − �R)/�� . With this re-
sult, one immediately finds that the leading order contribution
of the rectification coefficient increases linearly with �T :

R2 =
∣∣∣∣∣∣

εα�T

2kBT 2
(

3 + 3 cosh ε
kBT

− sinh ε
kBT

)
∣∣∣∣∣∣, (14)

for small gradients.
The effect of the degeneracy of a quantum dot due to spin on

the tunneling rates can be explicitly detected in an experiment
[62]. It can be modulated by additionally selecting the spin
of the injected currents, e.g., with ferromagnetic contacts. A
quantum dot coupled to fully polarized ferromagnetic contacts
would recover the results of a single state in Eq. (8), see
Appendix A. Controlling the polarization of the leads would
then switch the rectification on.

B. Scaling the rectification up

This approach opens the possibility of enhancing the rec-
tification by using a larger number of quantum dots. In this
way, the number of accessible states increases, and so does
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FIG. 4. Interacting channels in parallel realized in (a) two capaci-
tively coupled quantum dots, and (b) a system of self-assembled quan-
tum dots. (c) Rectification coefficient for a system of N capacitively
coupled quantum dots in parallel, with �T = T/2.

magnitude of the total heat current. Consider for instance
an array of N capacitively-coupled quantum dots which are
connected to the same two terminals (see Figs. 4(a) and 4(b)
for possible setups with N=2, or larger). The occupation of
one of them increases the charging energy of its neighbors by
the Coulomb interaction. Assuming that this energy is large
(compared to the energy of thermal fluctuations, kBTl), the
equations for the new system can also be obtained from the
single-state case by replacing �+

l → 2N�+
l (2 is for spin).

This is the opposite case to the one with many noninteracting
channels discussed in Appendix B.

The rectification in this case reads

RN =
∣∣∣∣ α(2N−1)[f (ε,T +�T )−f (ε,T )]

{2 + (2N−1)[f (ε,T +�T )+f (ε,T )]}
∣∣∣∣, (15)

which is plotted in Fig. 4(c). For every given configuration
(fixed rates, temperatures, and level position), RN increases
with N . Of course, a configuration with a large number of
quantum dots which are all so strongly coupled that there
can only be one electron in all of them is quite unrealistic.
It, however, motivates the investigation of thermal effects
in densely self-assembled quantum dot layers (which by
construction include left-right asymmetries quite naturally) or
related multiplexed devices.

IV. COHERENT TUNNELING IN A DOUBLE
QUANTUM DOT

Some room for improvement is expected for systems with
combined mirror asymmetry and energy-resolved tunneling
rates. Energy-dependent asymmetries of the tunneling rates
in a single quantum dot can be tuned to some extent [56],
but they are usually small and difficult to control. To find
the desired asymmetry, we consider a double quantum dot
coupled in series to the two terminals, as sketched in Fig. 1(b).
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FIG. 5. Double quantum dot in series. Electron delocalization
due to coherent interdot tunneling, τLR, leads to hybridization of the
quantum dot states. The relative weight of the orbitals in each quantum
dot affects the tunneling rates.

Thermoelectric properties of this system have been measured
[38,63]. For the sake of simplicity, and to isolate the particular
effect of this geometry, we will neglect the spin degree of
freedom, even when it helps to increase the rectification, as
shown in the previous section. The case with spin degeneracy
can be recovered again by doubling the tunneling-in rates.

The Hamiltonian of the system takes the form [37]

ĤDQD =
∑

l=L,R

εln̂l − τLR(ĉ†RĉL + H.c.), (16)

where εl is the energy of the level of each quantum dot, l = L,R,
and n̂l its occupation operator. Coherent interdot tunneling,
τLR, produces the hybridization of the states |L〉 and |R〉, which
leads to the formation of molecularlike orbitals:

|±〉 = α±|L〉 − β±|R〉. (17)

The coefficients α± = g(2τLR/[εL − εR ± �E]) and β± =
g([εL − εR ± �E]/2τLR), with g(x) = (1 + x2)−1/2 and
�E =

√
(εL − εR)2 + 4τ 2

LR come out of the diagonalization
of the Hamiltonian in Eq. (16), also giving the eigenenergies:
E± = (εL + εR ± �E)/2. When εL 
= εR, the distribution of
an electron in one of the eigenstates is not homogeneous for
the two dots, as sketched in Fig. 5.

In the regime τLR � �, the dynamics is dominated by the
eigenstates. In the basis |X〉 = |0〉,|±〉, the master equation
is equivalent to Eq. (9) with i = ±. The tunneling rates
from the reservoirs to the eigenstates are determined by the
projection of the eigenstates on the localized basis, �L± =
|α±|2�L and �R± = |β±|2�R. This way, hybridization effec-
tively introduces mirror-asymmetric and energy-dependent
tunneling rates, even if the barriers are energy-independent
and left-right symmetric (�L = �R). Note that, in this case,
the rates are symmetric by pairs: �L± = �R∓. Furthermore,
these asymmetries can be experimentally tuned by controlling
the splitting εL − εR with gate voltages [37,38].

In the limit when the detuning between the two dots is large,
each eigenstate recovers the state of a different quantum dot,
which is coupled to a single reservoir. If, for instance, εR �
εL + τLR, we have �L− ≈ �L and �R+ ≈ �R, with vanishing
�L+, and �R−. Hence, transport is suppressed, as shown in
Fig. 6(a).

On the other hand, the heat current is maximal around the
resonance condition εL = εR, where |α±| = |β±|, cf. Fig. 6.
At this condition, the separation of the two levels is minimal
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FIG. 6. Rectification of a double quantum dot whose energy
levels, εL and εR are tuned by gate voltages. (a) Heat current
for �T = T/2, V = 0, τLR = kBT , �L = �R = 0.2kBT , with � =
�L�R/�� . White-dashed lines mark the zeros of the eigenenergies
E±. (b) Forward and backward currents for εR − εL = kBT . (c)
Rectification coefficient with (d) cuts at different level splittings. It
vanishes when the system is symmetric (εL = εR), and close to the
conditions E± ≈ 0.

and given by �E = E+ − E− = 2|τLR|. Note also that in this
case the system is completely symmetric, with: �L± = �R±,
resulting in R = 0.

The current becomes asymmetric as a function of energy
due to the Coulomb interaction. The occupation of the lowest
energy level suppresses transport through the other, and hence
current is reduced when E− < 0, see Figs. 6(a) and 6(b). If
both levels are over the Fermi energy, there is no effective
channel blockade. This asymmetry is clearer in the rectification
coefficient, which vanishes when the two levels are over the
Fermi energy. The rectification rapidly increases when the two
orbitals are well below the chemical potential, E± � 0, cf.
Figs. 6(c) and 6(d). It can, in principle, be arbitrarily close to
the optimal valueR = 1. Unfortunately, currents in this region
are strongly suppressed and difficult to detect.

A. Open circuit configuration

The open circuit configuration is interesting by analogy with
a purely thermal conductor. Only heat currents flow through the
system. The left and right terminals are floating such that a volt-
age Vth develops to satisfy the condition where charge current
is zero. This is the thermovoltage appearing in thermoelectric
engines [1]. It has to be obtained self-consistently for each
configuration by solving the equation I (Vth) = 0. We assume
for simplicity that the voltage is symmetrically developed in
the two leads, such that μL = −eVth/2 and μR = eVth/2.

In the open circuit configuration, the heat current shows
a single peak when both levels are around the Fermi energy,
see Fig. 7. The developed voltage suppresses the double-peak
structure visible in Fig. 6. Only at ε1 = ε2 = 0, the two orbitals
are symmetrically coupled to the leads at E± = ±�E/2, such
that I = 0 and the two cases (open-circuit and short-circuit)
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FIG. 7. Rectification of a double quantum dot in the open-circuit
configuration. (a) Heat current and (b) rectification coefficient as
functions of the position of the levels, ε1 and ε2. The same parameters
as in Fig. 6 are considered.

coincide. This surprising effect can be understood because
when the two channels are over the Fermi energy, only the
one with the lowest energy contributes to transport. The system
effectively behaves as a single-channel, whose charge and heat
currents become proportional. As charge current is zero, also
heat vanishes.

Notably, the rectification is maximal in the region where
the heat current peaks, except at the condition ε1 = ε2. As
discussed above, the tunneling rates are mirror-symmetric at
this condition and there is no rectification.

We emphasize the difference from the behavior of a two-
state quantum dot (as discussed in Sec. III), discussed in
open circuit conditions in Appendix C. There, the rectification
increases in the region where transport is strongly suppressed.

V. INTERFERENCE IN A TRIPLE QUANTUM DOT

In the previous section, we saw that tunneling asymmetries
can be introduced via the hybridization of quantum states
due to coherent tunneling. However, the largest rectification
coefficients occur at conditions where the forward and back-
ward currents are both small. In this section, we propose
how to enhance these currents further by exploiting the effect
of coherence, and introducing a setup where left to right
trajectories are affected by interference, while right to left ones
are not.

This is the case of a triple quantum dot in a triangular
geometry, as pictured in Fig. 1(c). Dots A and B are connected
to the left lead and tunnel-coupled to dot C, which is in turn
connected to the right lead. The Hamiltonian takes the form,

ĤTQD =
∑

l

εl n̂l −
∑

i=A,B

τiC(ĉ†Cĉi + H.c.). (18)

For simplicity, we assume that A and B are only capacitively
coupled, τAB = 0, and τAC = τBC = τ . As we are interested in
left-right asymmetries, we will further assume that εA = εB =
εAB, and that the tunneling barriers between the leads and all
the three dots are equal.

The eigenstates of this system are

|1〉 = (1 + x2
+)−1/2[x+(|A〉 + |B〉) + |C〉], (19)

|2〉 = 2−1/2(|A〉 − |B〉), (20)

|3〉 = (1 + x2
−)−1/2[x−(|A〉 + |B〉) + |C〉], (21)

A, B C

FIG. 8. Orbitals in a triple quantum dot. When the levels in dots A
and B are degenerate, a dark state is formed with forbidden tunneling
to the level in dot C. Therefore, it is uncoupled from the right lead.

where x± = (εAB − εC ± �E31)/2τ and �E31 = E3 − E1 =√
(εAB − εC)2 + 8τ 2. The eigenenergies read E1 = (εAB +

εC − �E31)/2, E2 = εAB, and E3 = (εAB + εC + �E31)/2.
Note that quantum dot C does not contribute to eigenstate

|2〉. Even if A and B are both coupled to C, tunneling is
canceled for this particular superposition due to destructive
quantum interference. We call it a dark state [44], in analogy
with quantum optics [64]. This is a crucial point: an electron
tunneling from the left lead can, in principle, enter any of
the three eigenstates. Being either in state |1〉 or in |3〉, the
electron has some finite probability to populate quantum dot
C, and therefore to subsequently tunnel out to the right lead
and contribute to transport. Differently, if the electron enters
state |2〉, it will block the current (by avoiding any other state
to be occupied) until it eventually tunnels back to the left lead.
Once this happens (and before it is occupied again), transport
is restored.

On the other hand, electrons tunneling from the right lead
can only enter two states, |1〉 or |3〉, and then there is always
a finite probability that it contributes to transport to the left
lead. There is no such destructive interference for electrons
tunneling from the right. Hence, the asymmetry in the spacial
arrangement of quantum dots translates into left and right
moving electrons being affected by very different processes.

This is reflected in the tunneling rates: �Li = (|α̃iA|2 +
|α̃iB|2)�L, and �Ri = |β̃i |2�R, for i=1,3, with α̃ij = 〈i|j 〉 and
β̃i = 〈i|C〉. For the dark state, we have �L2 = �L and �R2 = 0.
They are illustrated in Fig. 8. In the limit τ � �l , the master
equation for the states |X〉 = |0〉,|1〉,|2〉,|3〉 reads

ρ̇ii = �+
�iρ00 − �−

�iρii , i=1,3, (22)

ρ̇22 = �+
L2ρ00 − �−

L2ρ22, (23)

now taking into account the normalization ρ00 + ρ11 + ρ22 +
ρ33 = 1.

The resulting currents are plotted in Fig. 9 as the position
of the levels εAB and εC are swept. For positive energies,
εAB,εC > 0, small differences between J+

TQD and J−
TQD are

mostly attributed to the asymmetries in the tunneling rates due
to coherent interdot tunneling, similarly to the effect discussed
in Sec. IV.

Most interestingly, we find a large difference when εAB < 0.
In this region, the dark state is below the chemical potential so it
can be populated from the left lead, thus blocking the transport.
If εAB < kBTL, the probability that an electron in state |2〉
tunnels back to the lead is exponentially suppressed. Hence,
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FIG. 9. Rectification of a triple quantum dot whose energy
levels, εAB and εC are tuned by gate voltages. (a) Forward and
(b) backward heat currents for �T = T , V = 0, τ = kBT , �L =
�R = 0.2kBT , with � = �L�R/�� . (c) Forward and backward cur-
rents for εAB − εC = 0. (d) Cut along εAB − εC = 0 of the rectification
coefficient plotted in (e) for different level positions. When εAB < 0,
the occupation of the dark state suppresses the backward current
and high rectification coefficients are attained. White-dashed lines in
(a) mark the zeros of the eigenenergies Ei .

the dynamical blockade cannot be lifted. Clearly, the crossover
to this situation occurs at smaller energies (in absolute value)
when the left lead is the cold one. This way, the backward
current vanishes, while the forward current can still increase
due to the onset of transport through state |3〉.

As the temperature gradient is increased, the contribution
of state |3〉 to the forward current, J+, increases. It appears as
an additional peak when E3 < 0, see Fig. 10. On the contrary,
this signal is not present in the backward current. The onset
of the dark state blocking is independent of the temperature
of the hot lead and avoids the occupation of |3〉. This is
indeed the desired diode effect: the forward current has a peak
where the backward current vanishes. The rectification coeffi-
cient is then R ≈ 1 for a measurable heat current.

VI. COUPLED QUANTUM DOTS

We can extend the effect shown in the last section, where
a high rectification coefficient was produced by the dynam-
ical channel blockade, to get large rectifications for sim-
pler systems. The strong Coulomb interaction converted the

0

1

-10 0 10

(a)

0

1

-10 0 10

(b) ΔT/T :

J
±

[k
B
T

Γ
]

εAB/kBT

J+

J− R

εAB/kBT

1
2
4

FIG. 10. Effect of temperature in a triple quantum dot. (a) Heat
currents and (b) rectification coefficient for increasing tempera-
ture gradients. We assume εAB = εC V = 0, τ = 2kBT , �L = �R =
0.04kBT , with � = �L�R/�� . Forward (backward) currents are
plotted with dashed (solid) lines.

charging/uncharging of the dark state in a switch for the
current through the rest of the system. In this section, we
present a minimal configuration in which this mechanism is
present. It consists of two quantum dots which are capacitively
coupled, as sketched in Fig. 11. The coupling is strong enough
to avoid two electrons in the system. This system can be
realized in semiconductor two-dimensional electron gases
[53–56,65,66], graphene heterostructures [67], metallic islands
[68], coupled nanowires [69], or corner states in nanowire
field-effect transistors [70,71].

We require that one of them is connected to the left and right
leads and supports the charge and heat current, whereas the
other one is only connected to the left lead. The occupation of
the latest dot blocks the current on the former one and therefore
works as a switch. Similar processes can be found in single
quantum dots with peculiar tunneling couplings [30]. A related
geometry (also with up to one electron), but in a three-terminal
configuration, has been proposed as a thermal transistor [28,72]
and realized experimentally in metallic Coulomb-blockade
islands [73].

The advantage of this system is that it is enough that
the switch dot is coupled to only one terminal to have the
necessary left-right asymmetry. The conducting quantum dot
can in principle be totally symmetric. The separation of the
conducting and switching states in different quantum dots
allows them to be tuned independently. Also, this mechanism
does not rely on interference and is hence robust against
decoherence and noise sources.

FIG. 11. Two capacitively coupled quantum dots, one of which
carries an electron transport, with the other one only supporting
fluctuations by being coupled to only one lead. If the capacitive
coupling is strong, the occupation of the later acts as a switch by
preventing a second electron to tunnel into the conducting dot.
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FIG. 12. Rectification of a system of capacitively quantum dots,
one of which is tunneled coupled to one lead only. (a) Forward
heat current for �T = T , V = 0, �li = 0.2kBT , except for �R2 = 0,
with � = �L�R/�� . (b) Forward and backward currents along the
maximum at ε1 = −0.36kBT . (d) Cut along the same condition of
the rectification coefficient plotted in (c) for different level positions.
When ε2 < 0, the occupation of the coupled dot suppresses the
backward current, resulting in high rectification coefficients.

Let us consider spinless electrons, so the rate equations can
be obtained as a particular case of the two-state configuration,
cf. Eq. (9), particularized to the case: �R2 = 0. In this case, the
states X = 1,2 denote the occupation of the conducting and
switch quantum dots, respectively.

The current through the system can be easily obtained, and
written in a simple form as

JCQD = J1(ε1)(1 − ρ22), (24)

in terms of the current through a single channel written in
Eq. (8). Remarkably, the current is conditioned to the switch
dot not being occupied. The steady-state occupation of the
latter,

ρ22 = 1 − f (ε2,TL)

1 + (�+
�1/��1)[1 − f (ε2,TL)],

(25)

does not depend on the rate of the switching process, which is
therefore determined by the state of the conductor dot and the
position of the level ε2 with respect to the chemical potential
of the left lead.

The cancellation of transport due to the occupation of
the second quantum dot can be observed in Fig. 12. The
double peak in the forward heat current vanishes as the energy
ε2 becomes negative. The switch dot is then occupied by
an electron, which avoids transitions through the conductor.
This effect is most effective when the left lead is cold (i.e.,
in the backward configuration), because the transition to a
state where ρ22 → 1 is more pronounced, cf. Fig. 12(b),
following the dependence in the Fermi function Eq. (25).
The blockade of the backward current depends exponentially
on ε2, so the rectification coefficient rapidly increases in
the region −kB(T +�T ) < ε2 < −kBT [see Figs. 12(c) and
12(d)], where J+ is not much affected.

As all transported electrons have a well-defined energy, ε1,
the system does not rectify in the open-circuit configuration,
recovering the behavior of a single-state: since charge and heat
currents are proportional to each other, thermal currents vanish
at the thermovoltage.

Here we have considered a system of two single-electron
quantum dots whose currents are small and hard to detect.
However, the same mechanism is, in principle, applicable to
systems that support larger currents (e.g., quantum wires) and
are strongly coupled to a switch, opening the way for the
definition of thermal diodes which rectify considerably big
currents. The switching process can be due to the Coulomb
interaction with charges in a quantum dot, as considered here,
or due to internal selection rules, e.g., spin blockade in double
quantum dots [74].

VII. CONCLUSIONS

We have investigated the thermal rectification of diverse
quantum dot systems in the Coulomb blockade regime. Single-
electron currents are expected to be small. However, the trans-
port characteristics of these systems can easily be controlled
and scaled up to account for greater currents. We also identify
different mechanisms that promote rectification and which can
in principle be translated to other systems.

A basic ingredient of our results is the strong Coulomb
interaction which introduces correlations between the different
conduction channels, although other interactions can also
enable the rectification. The details of every configuration
determine how the different channels couple to the left and
right reservoirs, introducing the necessary asymmetries.

For a single quantum dot, the presence of two accessible
states with broken mirror symmetry is enough to find a finite
rectification, even if the two states are degenerate. This can
be due, for example, to the spin degree of freedom, in which
case the degeneracy can be lifted by means of a magnetic
field. Notably, this finding introduces a way to enhance the
rectification simply by scaling up the number of interacting
channels that contribute to the current. We discuss this possi-
bility by considering a system of several quantum dots coupled
in parallel to the two leads.

The asymmetry of the tunneling rates can be additionally
controlled in a double quantum dot. Hybridization of the
localized states due to coherent tunneling introduces energy-
resolved and left-right asymmetric rates that can be tuned by
means of gate voltages applied to each quantum dot. As a
consequence, larger rectification effects are found, remarkably
even approaching R ≈ 1. Unfortunately, the huge rectification
coefficients correspond to configurations with very small
thermal currents.

Considering that the conducting channels interact with
an energy level that is only coupled to one of the leads,
the occupation of this level will act as a switch. This way,
the mirror symmetry of the conducting channels is broken,
and the current strongly depends on the switch state being
below the chemical potential of its lead. The blockade is
lifted by thermal fluctuations, which introduces a temperature-
dependent threshold. This introduces a huge rectification effect
as the presence of a current relies on whether the switch is
coupled to the hot or to the cold terminal.
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We use this effect in two different configurations: In a
triangular triple quantum dot, tunneling interferences lead to
the formation of a transport dark state in the two leftmost
quantum dots, which avoids tunneling to the right one. An
exponential suppression of the backward current is found for
configurations where the forward one shows a resonance.

In a system of capacitively coupled quantum dots, one of
them serves as a conductor, while the other one is tunnel-
coupled to one lead, only. The rectification coefficient can
in this case be controlled with a single gate voltage coupled
to the single-terminal quantum dot. This configuration is of
experimental relevance [53,54,56,65–69,73] and can readily
be tested.

For typical experimental conditions in semiconductor quan-
tum dots with tunneling rates � ∼ 10 GHz and T ∼ 100 mK,
heat currents would be of the order of 1 fW, well within
present day resolution [9]. In quantum dots defined in two
dimensional electron gases, the regime of application of our
results is restricted to low temperatures (of the order of 0.1–1
K) where Coulomb blockade effects have been observed. The
application of large temperature gradients is an issue in two-
dimensional electron gases, but some advances in quantum
dots embedded into nanowires has been recently achieved
[36]. Also, recent room temperature detection of Coulomb
blockade in nanoparticles [75], and quantum inteference in
molecular junctions [76–80] are promising advances toward
the application of the effects discussed here in thermal devices.

Here we have restricted ourselves to the weak-coupling
regime. Exploring these interacting effects in full coherent
transport and accounting for the effect of possible sources of
dephasing [48] remain as issues for future work.
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APPENDIX A: SINGLE NONDEGENERATE
LEVEL MODEL

Let us consider the well-known model of a quantum dot
with a single nondegenerate level at energy ε1. It is usually
used when the spin degree of freedom does not play any role.
The two states of the system are defined by whether it is empty
or occupied: |X〉 = |0〉,|1〉. The rate equation simply reads

ρ̇11 = �+
�1ρ00 − �−

�1ρ11, (A1)

with �±
�1 = �±

L1 + �±
R1. In the stationary limit, it is easy to

obtain the steady state occupation: ρ00 = �−
�1/(�+

�1 + �−
�1),

and ρ11 = �+
�1/(�+

�1 + �−
�1). The denominator warranties the

conservation of probability, 1 = ρ00 + ρ11. It is independent
of the lead temperature, as �+

l1 + �−
l1 = �l1. With these, it is

immediate to obtain the charge current:

I1(ε) = e
�L1�R1

�L1+�R1
[f (ε,TL) − f (ε,TR)]. (A2)

The heat current is tightly coupled: J1/I1 = ε1/e, resulting in
Eq. (8).

The currents in Eqs. (A2) and (8) only depend on tem-
perature through the difference of Fermi functions. Hence, ex-
changing them results in a global change of sign, i.e., there is no
rectification in short-circuit even when the tunneling rates (�R1

and �L1) were not equal. Note that in the case of asymmetric
tunneling rates, the state occupation, ρ11, does change when
the temperature difference is reversed. This effect, combined
with interaction between levels is what enables rectification in
Sec. III.

The tight-coupling relation also avoids rectification in open-
circuit, as it involves I1 = 0.

APPENDIX B: MANY SINGLE NONDEGENERATE
LEVEL MODEL

The argument in Appendix A holds if one has several copies
of the same system which do not interact to each other:

J =
∑

i

Ji =
∑

i

εi

�Li�Ri

�Li+�Ri

[f (εi,TL) − f (εi,TR)]. (B1)

The prefactor in the previous expression depends only on the
couplings of each channel, and is temperature-independent,
again resulting in R = 0 for the short-circuit configuration.

The open circuit is in this case different: if not all channels
have the same energy, tight charge-energy coupling does not
hold and therefore rectification is finite.

APPENDIX C: QUANTUM DOT IN OPEN CIRCUIT

We consider the two-state quantum dot discussed in Sec. III
under the open-circuit conditions.

The heat current characteristics are strongly affected, as
shown in Fig. 13. First of all, there is no heat flow whatsoever
for the condition �E = 0: since the two states have the same
energy, charge and heat currents become proportional to each
other,

J2,o−c =
(

ε

e
+ V

2

)
I2,o−c. (C1)
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FIG. 13. Rectification of a two-state quantum dot in open-circuit.
(a) Heat current and (b) rectification coefficient as functions of
the position of the level and an applied magnetic field. The same
parameters as in Fig. 3 are considered.
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This is the so-called tight-coupling limit. It follows trivially
that the heat current will vanish as well.

The tight coupling is lifted under a finite level splitting,
�E 
= 0, e.g., again due to an applied magnetic field. The
cancellation of the charge current no longer implies that
heat flows vanish. Indeed, heat unavoidably flows from the
hot to the cold terminal, showing a single peak structure

confined in the region where ε2 > 0 and ε1 < 0. For positive
energies, ε2 > ε1 > 0, the upper level is rarely occupied,
so the system behaves a single level showing no current in
open-circuit. When both levels are negative, the rectification
increases linearly. A compromise between large rectification
and nonvanishing currents is found then for ε2 ≈ 0 and
�E ≈ 3kBT .
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