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When a biased conductor is put in proximity with an unbiased conductor a drag current can be induced

in the absence of detailed balance. This is known as the Coulomb drag effect. However, even in this

situation far away from equilibrium where detailed balance is explicitly broken, theory predicts that

fluctuation relations are satisfied. This surprising effect has, to date, not been confirmed experimentally.

Here we propose a system consisting of a capacitively coupled double quantum dot where the nonlinear

fluctuation relations are verified in the absence of detailed balance.
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Introduction.—Mesoscopic physics offers a unique labo-
ratory to investigate the extension of equilibrium
fluctuation-dissipation theorems into the nonlinear non-
equilibrium regime [1]. The equilibrium fluctuation-
dissipation theorem and its closely related Onsager sym-
metry relations [2] are a corner stone of linear transport. It
has therefore been natural to ask whether such relations
exist also if the system is driven out of the linear transport
regime. For steady state transport, fluctuation relations
have been developed which relate higher order response
functions to fluctuation properties of the system [1,3–6].
For example, the current response to second order in the
voltage (the second order conductance) is related to the
voltage derivative of the noise of the system and, in the
presence of a magnetic field, to the third cumulant of the
current fluctuations at equilibrium [1,5].

Clearly, tests of nonequilibrium fluctuation relations are
of fundamental interest. From a theoretical point of view,
the task is to propose tests in which crucial relations valid
at equilibrium fail in the nonlinear regime and to demon-
strate that, despite such a failure, fluctuation relations hold.
For instance, we have suggested experiments which test
fluctuation relations for systems in the presence of a mag-
netic field and in a regime where the Onsager relations are
already known to fail [1,7]. Such experimental tests are
currently under way [8]. Here we propose to test fluctua-
tion relations in a system where away from equilibrium we
have no detailed balance. We consider two quantum dots in
close proximity to each other such that they interact via
long-range Coulomb forces, as shown in Fig. 1. The ab-
sence of detailed balance is manifest in a Coulomb drag
[9]: the charge noise of one of the systems (the driver)
drives a current through the other unbiased system [10].
Therefore, the drag current is a direct indication that this
fundamental symmetry is absent. Nevertheless, we dem-
onstrate below that there exist fluctuation relations.

The interaction of two systems in close proximity to
each other plays a role in many important setups in physics.
We recall here only the interaction of a detector with a
system to be measured [11], which also provides a test of

fluctuation relations [12]. The shot noise current-current
correlation in nearby quantum dots which do not exchange
particles has been measured by McClure et al. [13] and
discussed theoretically [14,15]. Recently, reciprocity rela-
tions of two coupled conductors were proposed by
Astumian [16]. Here we emphasize that one conductor,
even if unbiased, can act as a gate to the other conductor.
As a consequence, the currents are not a function only of
voltage differences applied to each conductor but also
depend on potential differences of one conductor to the
other one. In an instructive work, Levchenko and Kamenev
discuss the mesoscopic Coulomb drag for two quantum
point contacts in close proximity [17]. In this geometry,
charging of the point contacts can be neglected and the
coupling of the two conductors is extrinsic via the capaci-
tance of the leads.
General theory.—The probability PðN; tÞ that N ¼

ðN1; . . . ; NMÞ particles are transmitted through M leads
during time t characterizes the statistical properties of

FIG. 1 (color online). Sketch of two capacitively coupled
quantum dots, each one attached to two different terminals.
For very large intradot charging energy, only four charge states
are allowed, as depicted. Their dynamics is governed by the
tunneling rates ��

l and ��
l .
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our system. It is useful to consider the generating function
which is the logarithm of the ‘‘Fourier transform’’F ð�Þ ¼
ln
P

NPðN; tÞei�N of the distribution function. Here � is the
vector of the counting fields. From the generating function
all cumulants can be obtained by simple differentiation.
The fluctuation relations are a consequence of symmetries
of the generating function [3,4]. In particular (in the ab-
sence of a magnetic field), it holds that F ði�Þ ¼
F ð�i�þ qV=kTÞ, which is equivalent to PðNÞ ¼
eNqV=kTPð�NÞ. Here qV=kT is the affinity vector with
components given by the applied voltages Vi. By expand-

ing the current through lead i, Ii ¼ hÎii, where Îi is the
current operator, and the current correlations Sij ¼
h�Ii�Iji, where �Ii ¼ Îi � Ii,

Ii ¼
X

j

Gi;jVj þ 1

2

X

jk

Gi;jkVjVk þ � � � ; (1)

Sij ¼ Seqij þ
X

k

Sij;kVk þ � � � ; (2)

we can relate linear response current and equilibrium
fluctuations by means of the fluctuation-dissipation theo-
rem, Seqij ¼ 2kTGi;j. The generalization to the weakly non-

linear regime reads [1,4–6,18]

S��;�þS��;�þS��;�¼kTðG�;��þG�;��þG�;��Þ: (3)

Notably, we find that these nonlinear fluctuation relations
are valid even in the absence of detailed balance.

To determine the general current-voltage characteristics
and the nonlinear fluctuations relations for two interacting
conductors, we employ the classical treatment of the
Coulomb interaction that respects charge conservation
(gauge invariance). We take the interaction to be intrinsic,
determined by the charges on the mesoscopic conductors,
and assume the leads to be metals with perfect screening.
Then, the dynamics of the system is determined by the
sequential tunneling between states with a well defined
charge occupation which obeys the master equation _�ðtÞ ¼
M�ðtÞ for the occupation probabilities [19]. Analogously,
one can write the equation of motion for the generating

function, �ðtÞ ¼ P
NPðN; tÞeiN�, given by _�ðtÞ ¼

Mð�Þ�ðtÞ. The cumulant generating function F is given
by the eigenvalue of Mð�Þ that develops adiabatically
from zero with small � [20]. Generally, the explicit ex-
pression for F is difficult to handle, so in practice it is
more convenient to calculate the cumulants recursively
order by order [21,22]. Thus, from coefficients cflkg of the
expansion F ¼ P

flkgcflkgðei�1 � 1Þl1 . . . ðei�M � 1ÞlM , we

obtain the current-current correlations up to any order
[21]: e.g., the current, Ii ¼ q

P
flkgcflkg�li;1��lk;1, the zero

frequency noise, Sii ¼ qIi þ 2q2
P

flkgcflkg�li;2��lk;2, and

the cross correlations Sij ¼ q2
P

flkgcflkg�li;1�lj;1��lk;2,

where flkg ¼ fl1 . . . lMg and q is the electron charge.
Drag current and fluctuation relations.—In the follow-

ing we explicitly show, using the previous formalism, the
fulfillment of the fluctuation relations in a nonequilibrium

system where detailed balance is broken. We consider two
capacitively coupled two-terminal quantum dots (see
Fig. 1) with large intradot charging energy. The interdot
coupling is described with a capacitance C. Hence, the
dynamics is characterized by four charge states: the empty
state j0i ¼ j00i, the singly occupied states jui ¼ j10i and
jdi ¼ j01i, and the doubly occupied state j2i ¼ j11i. Quite
generally, the tunneling amplitudes are energy dependent.
Therefore, we distinguish �l, which denotes a tunneling
process through barrier l ¼ 1; . . . ; 4 when the system is
empty, and �l, which corresponds to tunneling when the
coupled dot is already occupied. This is theminimal charge
model that manifests violation of detailed balance leading
to drag currents. Detailed balance is broken when the
probability to transfer one charge from left to right differs
from the reverse process (from right to left). For instance,
an electron is transported from left to right in the drag
system by the sequence j0i ! jui ! j2i ! jdi ! j0i with
a probability / �1�2, whereas the probability to transport
it from right to left is / �1�2. Clearly, both probabilities
differ and a nontrivial current, the drag current Idrag /
�1�2 � �1�2, will be generated. We need that (i) both
empty and doubly occupied states are taken into account
and (ii) the tunneling rates depend on the charge state.
Thus, a model with three charge states only (jui, jdi, and
j0i or j2i) cannot break the detailed balance and the drag
effect is absent. The biased dot then acts merely as a
fluctuating gate on the other dot.
For the system depicted in Fig. 1, with kT � @�i; @�i,

writing � ¼ ð�0; �u; �d; �2Þ, the equation _� ¼ Mð�Þ� be-
comes

M ¼
���

u ���
d

~�þ
u

~�þ
d 0

~��
u ��þ

u ���
d 0 ~�þ

d
~��
d 0 ���

u ��þ
d ~�þ

u

0 ~��
d ~��

u ��þ
u ��þ

d

0

BBBB@

1

CCCCA
;

(4)

where ~��
� ¼ P

l2�e
�i�l��

l , and ~��
� ¼ P

l2�e
�i�l��

l , u ¼
f1; 2g and d ¼ f3; 4g. The tunneling rates inð�Þ and outðþÞ
of the dot read ��

l ¼ �lf
�
l0 and ��

l ¼ �lf
�
l1 with f�ln ¼

f�ð�ln � qVlÞ (n ¼ 0; 1). Here, fþð"Þ ¼ 1� fð"Þ and
f�ð"Þ ¼ fð"Þ denote the hole and electron Fermi func-
tions, respectively. The effective level of dot � with bare

level "� when dot � � � is uncharged (n ¼ 0) is ��0 ¼
"� þ ½q2C��=2 þ qðC��

P
l2�ClVl þ C

P
l2�ClVlÞ�=C ~C,

where Cl is the capacitance of the lth barrier, C�� ¼
P

l2�Cl þ C, and ~C ¼ ðC�uC�d � C2Þ=C. In the charged

case (n ¼ 1), we find ��1 ¼ ��0 þ EC with EC ¼ 2q2= ~C
the energy needed to add a second electron. Note that the
tunneling rates through each dot do not depend on the
position of the level in the other dot, but by its charge
occupation.
We now investigate the drag current, for which we take

the upper subsystem as the drag circuit (V1 ¼ V2) and the
lower one as the driver. Then, I1 ¼ �I2 ¼ Idrag and we find
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Idrag ¼
qð�1�2 � �2�1Þ�d�d

P
	¼fþ;�g 	f	10f

�	
11 g�	

0 g	1
�u�dð�uh

þ þ �dk
þÞ þ �u�dð�uh

� þ �dk
�Þ ;

(5)

where �� ¼ P
l2��l, �� ¼ P

l2��l, h� ¼ f�11 �
g�0ð1Þðf�11 � f�10Þ, and k� ¼ g�1 � f�10ð11Þðg�1 � g�0 Þ. g�0 ¼
ð�3f

�
30 þ �4f

�
40Þ=�d and g�1 ¼ ð�3f

�
31 þ �4f

�
41Þ=�d are

nonequilibrium distribution functions.
When the drive voltage V3 � V4 is small, detailed bal-

ance must be broken also in the drive circuit in order to
have a linear Idrag: G2;4 / ð�1�2 � �2�1Þð�4�3 � �3�4Þ.
Therefore, asymmetry in both the drag and the drive sys-
tems is required for a nonzero linear drag current.
Moreover, we get G2;4 ¼ G4;2, satisfying the Onsager-

Casimir reciprocity relations [2]. Note that if the drive
conductor is also unbiased (V3 ¼ V4), equilibrium fluctua-
tions are expectedly not enough to induce a net current.
This can be seen in Fig. 2(a). For low voltages there is a
Coulomb gap where transport is not allowed. This result
also demonstrates that the voltage difference between the
two subsystems V1 � V3 plays a crucial role, affecting the
dynamics: In this case, one of the conductors acts as a gate
on the other one. The gate effect of the drag circuit onto the
driver is shown in Fig. 2(b), where we obtain a typical
Coulomb blockade stability diagram for the drive current
I3 ¼ �I4 ¼ Idrive. The linear drag current is exponentially
suppressed at low temperatures (compared to the charging
energy) and decays as 1=T for higher ones. This differs
from the most usual T2 behavior [9,17].

It is worth noticing that, at high enough drive bias, Idrag
is suppressed since the interdot capacitance brings the dot
states outside the transport window. Then, the drag current
peaks at an optimal value of V1 � V3 [10] and vanishes
away from it. On the other hand, at very low tempera-
ture Idrag is finite only within a voltage range defined by

�10 < qV1 <�11 and minfqV3; qV4g<�10; �11 <
maxfqV3; qV4g. As expected, the drag current increases
with C, but the voltage window where Idrag is observable

becomes narrower. Then, for large coupling the drag circuit
effectively induces dynamical channel blockade [23] in the
driver and, eventually, the drive current shows electron
bunching.
If the drive system is symmetric, the sign of Idrag de-

pends on the asymmetry factor (�1�2 � �1�2) due to the
competition of processes transferring an electron in each
direction, independently of the direction of Idrive. These
two contributions have been detected separately in coupled
double dot systems in the cotunneling regime giving rise to
bidirectional drag [24]. Note that the asymmetry of the
drag system can be enough to get a negative drag.
We now investigate the nonlinear fluctuation relations

for our system. We first analyze the occurrence of Idrag and

the current cross correlations Sij for different conductors

(e.g., i ¼ f1; 2g and j ¼ f3; 4g). The observation of drag
current in one conductor requires the occurrence of corre-
lated tunneling events between the two dots involving the
states j0i and j2i. These correlated events lead to finite
cross correlations. This would not be the case for a model
that includes only three charge states. Our minimal model
of four charge states does generate correlations between
the currents through the two dots. For example, at equilib-
rium, the fluctuation-dissipation theorem relates the linear
drag current to the equilibrium cross correlations for differ-
ent conductors, G2;4 ¼ S

eq
24=2kT. Similarly to Idrag, if both

conductors are symmetric, i.e., �1�2 ¼ �2�1 and �3�4 ¼
�4�3, Sij vanishes to first order in a voltage expansion.

Figure 2(d) shows that the cross correlation between the
drag and drive currents is finite only when there is a drag
current flowing in the upper conductor. In general, the sign
of the cross correlations is not determined by the direction
of the averaged currents [13]. However, in our case, the
cross correlations are positive whenever the two currents
flow in the same direction, and negative when they are
opposite. Interestingly, Idrag can present negative excess

noise; i.e., the noise S22 decreases in the presence of
drag, as shown in Fig. 2(c). S22 reaches its maximal value
when the effective upper dot level is aligned with the Fermi
level [25].
Finally, we explicitly check that these fluctuation rela-

tions [1,4–6] hold even for our system in which detailed
balance is violated. Charge conservation in each subsystem
implies I� ¼ �I �� and S�� ¼ S �� �� ¼ �S� �� for two differ-
ent terminals in the same conductor. Then, from Eq. (3) we
derive the nonlinear fluctuation relations involving termi-
nals of the same conductor, and rewrite them as

FIG. 2 (color online). Voltage dependence of (a) the drag
current Idrag through the upper dot (V1 ¼ V2), (b) the drive

current Idrive for the lower dot, (c) the current-current correla-
tions in the drive system, S22 ¼ h�I2�I2i, and (d) the cross
correlation between currents at different conductors, S24 ¼
h�I2�I4i, for the drag configuration, V1 ¼ V2. Parame-
ters: �i ¼ �i ¼ �, except �1 ¼ 0:1�, kT ¼ 5@�, q2=Ci ¼
20@�, q2=C ¼ 50@�, "u ¼ "d ¼ 0.
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S��;� ¼ kTG�;��;

S��; �� ¼ �kTG�; �� �� ¼ kTð2G�;� �� þG�;��Þ;
(6)

with G�;�� þG�; �� �� þ 2G�;� �� ¼ 0. In Figs. 3(a) and 3(b)

we explicitly check that these fluctuation relations hold
despite broken detailed balance. The relations including
derivatives of current cross correlations at different con-
ductors, � and �, read

2S��;�þS��;�¼kTðG�;��þ2G�;��Þ;
S��; ���S��;�þS ���;�¼kTðG�;� ��þG�; ����G�;��Þ;

(7)

with
P

�;�G�;�� ¼ 0. Equation (7) is verified in Figs. 3(c)–

3(f). It is important to realize here that full access to the
fluctuation relations is only possible in the presence of drag
current [see Figs. 2(a) and 2(c)]. In other words, only when
detailed balance is broken and a drag current appears are
all fluctuation relations nontrivially verified. In contrast,
the absence of drag, i.e., G�;�� ¼ G�;� �� ¼ 0, implies

S��;� ¼ 0, for any terminal �, in which case the fluctuation

relations (7) are simply reduced to the relation S��;� ¼
2kTG�;��, with G�;�� ¼ �G�; ���.

Conclusions.—In summary, we have proposed a geome-
try of two conductors put in proximity interacting via long-
range Coulomb forces to test fluctuation relations in the
nonlinear transport regime. This system exhibits a drag
current as a direct consequence of the absence of detailed
balance. Our main findings are (i) the general expression
for the current-voltage characteristic of two interacting
conductors and (ii) the verification of the fluctuation rela-
tions in a nonequilibrium system when detailed balance is

broken. Our proposal motivates new experiments to test the
fluctuation relations away from equilibrium when detailed
balance does not hold. The influence of coherent transport
is a challenging problem that we hope will be encouraged
by our work.
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