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We analyze coherent spin rotations in a dc biased double quantum dot driven by crossed dc and ac magnetic
fields. In this configuration, spatial delocalization due to interdot tunneling competes with intradot spin rota-
tions induced by the time dependent magnetic field, giving rise to a complicated time dependent behavior of
the tunneling current. When the Zeeman splitting has the same value in both dots and spin flip is negligible, the
electrons remain in the triplet subspace performing coherent spin rotations and current does not flow. This
electronic trapping is removed either by finite spin relaxation or when the Zeeman splitting is different in each
quantum dot. In the last case, we will show that by applying a resonant bichromatic magnetic field, the
electrons become trapped in a coherent superposition of states and electronic transport is blocked. Then,
manipulating ac magnetic fields allows one to drive electrons to perform coherent spin rotations which can be
unambiguously detected by direct measurement of the tunneling current.
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I. INTRODUCTION

The accurate tunability of time dependent fields has al-
lowed the access and manipulation of quantum systems by
the resonant illumination of atoms, finding interesting effects
such as the possibility of trapping the atom in a nonabsorb-
ing coherent superposition �dark state� which is known as
coherent population trapping.1–3 This effect has been applied
to nonconducting states in quantum dots �QDs�—also known
as artificial atoms—for spinless electrons,4,5 having revealed
several advantages for practical issues such as electronic cur-
rent switching4 or decoherence probing.6

Great interest has recently focused on the coherent control
of electron spin states in the search of candidates for qubits.
Within this scope, optical trapping of localized spins has
been treated in self-assembled quantum dots7 and achieved
in diamond defects.8 Electron spin states in QDs have been
proposed as qubits because of their long spin decoherence
and relaxation times.9,10 The controlled rotation of a single
electron spin is one of the challenges for quantum computa-
tion purposes. In combination with the recently measured
controlled exchange gate between two neighboring spins,
driven coherent spin rotations would permit universal quan-
tum operations. Recently, experimental and theoretical ef-
forts have been devoted to describe electron spin resonance
�ESR� in single11 and double quantum dots �DQDs�.12,13

There, an ac magnetic field, Bac, with a frequency resonant
with the Zeeman splitting � induced by a dc magnetic field,
Bdc, drives electrons to perform spin coherent rotations
which can be perturbed by electron spin flip induced by scat-
tering processes such as spin orbit or hyperfine interactions.
These are manifested as a damping of the oscillations. In
particular, hyperfine interaction between electron and nuclei
spins induces flip-flop transitions and an effective Zeeman
splitting which adds to the one induced by Bdc.

12,14,15 The
ESR mechanism also allows one to access spin-orbit physics
in the presence of ac electric fields16,17 or vibrational degrees
of freedom in nanomechanical resonators.18

In the experiments of Ref. 12, fast electric field switching
was required in order to reach the Coulomb blockade regime

and to manipulate the spin electron system. In the present
work we analyze theoretically a simpler configuration, easier
to perform experimentally than the one proposed in Ref. 12,
which does not require one to bring the double occupied
electronic state in the right dot to the Coulomb blockade
configuration and which consists of conventional tunnel
spectroscopy in a DQD under crossed dc and ac magnetic
fields, without additional electric pulses.

The main purpose of this paper is to analyze the spin
dynamics and the tunneling current and to propose how to
trap electrons in a DQD performing coherent spin rotations
by a resonant ac magnetic field which can be unambiguously
detected by conventional tunneling spectroscopy measure-
ments. We also show how to trap electrons by means of
resonant bichromatic magnetic fields in the case where the
Zeeman splitting is different in both QDs �as it usually hap-
pens in the presence of hyperfine interaction�.

We consider a DQD in the spin blockade regime,19 i.e.,
interdot tunneling is suppressed due to the Pauli exclusion
principle20 as the electrons in the DQD have parallel spins.
This effect may be lifted by the rotation of the electrons spin,
under certain conditions, by the introduction of crossed Bdc
and Bac. Then, when Bac is resonant with the Zeeman splitted
level, the electrons both rotate their spins within each QD
and tunnel, performing spatial oscillations between the left
and right QD. The electronic current through such a system
performs coherent oscillations which depend nontrivially on
both the ac intensity and the interdot coupling. We will see
that, when the effective Bdc is homogeneous through the
sample, current is quenched since the system is coherently
trapped in the triplet subspace �dark subspace� in spite of the
driving field. However, a finite current may flow as a conse-
quence of spin relaxation processes. If � is different within
each QD �it can be due to an inhomogeneous Bdc, different g
factors, or the presence of hyperfine interaction14 with differ-
ent intensity within each QD�, Bac is resonant only in one of
them and the trapping is lifted. Then, off-resonance dynam-
ics of the other electron should in principle affect the total
dynamics of the system and it should be included in a theo-
retical description not restricted to the rotating wave
approximation21 which is valid just at resonance. Finally we
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will show that it is possible to trap the electrons also in this
configuration, where � is different within each QD, by ap-
plying a bichromatic Bac, such that each frequency matches
the Zeeman splitting in each QD.

II. MODEL

Our system consists on two weakly coupled QDs con-
nected to two fermionic leads, described by the model
Hamiltonian:

Ĥ�t� = Ĥ0 + ĤLR + ĤT�t� + Ĥleads, �1�

where Ĥ0=�i��iĉi�
† ĉi�+�iUin̂i↑n̂i↓+Vn̂Ln̂R describes the un-

coupled DQD, ĤLR=−���tLRĉL�
† ĉR�+H.c.� is the interdot

coupling, and ĤT=�l��L,R�k���ld̂lk�
† ĉl�+H.c.� gives the tun-

neling between the DQD and the leads, described by Ĥleads

=�lk��lkd̂lk�
† d̂lk�, where �i is the energy of an electron located

in dot i and Ui �V� is the intradot �interdot� Coulomb repul-
sion. For simplicity, we disregard the Heisenberg exchange
interaction.15,20 Finite exchange would slightly split the in-
terdot singlet-triplet energy separation without modifying
qualitatively the results presented here. The chemical poten-
tials of the leads, �i, are such that only two electrons �one in
each dot� are allowed in the system: �i��i−V��i+Ui and
�i��i+2V. In this configuration, the spin blockade is mani-
fested when a bias voltage is applied such that the state with
two electrons in the right dot �the one which contributes to
the current� is in resonance with those with one electron in
each dot. The current is then quenched when the electrons in
each QD have the same spin polarization and Pauli exclusion
principle avoids the interdot tunneling.20 We now introduce a
magnetic field with a dc component along the Z axis �which
breaks the spin degeneration by a Zeeman splitting �i
=giBz,i� and a circularly polarized ac component in the per-
pendicular plane XY that rotates the Z component of the elec-
tron spin when its frequency satisfies the resonance condi-
tion, 	=�i:

ĤB�t� = �
i

��iSz
i + Bac�Sx

i cos 	t + Sy
i sin 	t�� , �2�

where Si= �1 /2�����ci�
† ����ci�� are the spin operators of

each dot �see Fig. 1�.
The dynamics of the system is given by the time evolution

of the reduced density matrix elements, whose equation of
motion, within the Born-Markov approximation,22 reads


̇ln�t� = − i�l	�H0 + HLR + HB�t�,
�	n


+ �
k�n

��nk
kk − �kn
nn��ln − ln
ln�1 − �ln� , �3�

where the first term in the right-hand side accounts for the
coherent dynamics within the double quantum dot. �ln are
the transition rates from state 	n
 to 	l
 including those in-
duced by the coupling to the leads—being �i=2� 	�i	2 when
they occur through lead i��L,R�—and the eventual spin scat-
tering processes �introduced phenomenologically by the spin
relaxation rate, T1

−1 �Ref. 23��. Decoherence appears due to
the term ln= 1

2�k��kl+�kn�+T2
−1, T2=0.1T1 being the intrin-

sic spin decoherence time. The evolution of the occupation
probabilities is given by the diagonal elements of the density
matrix. In our configuration, the states relevant to the dynam-
ics are 	0, ↑ 
, 	0, ↓ 
, 	T+
= 	↑ , ↑ 
, 	T−
= 	↓ , ↓ 
, 	↑ , ↓ 
, 	↓ , ↑ 
,
	SR
= 	0, ↑ ↓ 
. This latest state is the only one that contributes
to tunneling to the right lead, so the current is given by

I�t� = 2e�R
SR,SR
�t� . �4�

Each coherent process is described by a Rabi-like fre-
quency. For instance, in the case of two isolated spins, one in
each QD, which are in resonance with Bac ��L=�R�, the
oscillation frequency is �ac=2Bac, see Appendix A 1. On the
other hand, the interdot tunneling events can be described by
the resonance transitions between the states 	↑ , ↓ 
, 	↓ , ↑ 
,
and 	SR
, whose populations oscillate with a frequency �T
=2�2tLR, as shown in Appendix A 2.

A. �L=�R

We consider initially the case where Bdc is homogeneous,
so that �R=�L and both spins rotate simultaneously. Then,
the dynamics of the system is properly described in terms of
the dynamics of the total spin of the DQD. Bac acts only on
the states with a finite total magnetic moment: 	T�
 and
	T0
= 1

�2
�	↑ , ↓ 
+ 	↓ , ↑ 
�, while the interdot tunneling, that

does not change the spin, is only possible between 	SR
 and
	S0
= 1

�2
�	↑ , ↓ 
− 	↓ , ↑ 
�. Therefore in the absence of spin re-

laxation, spin rotation and interdot hopping are independent
processes so any eventual singlet component will decay by
tunneling to the contacts. This produces a finite current in the
transitory regime which drops to zero for longer times. This
process is independent of Bac, which is manifested in the
frequency of the current oscillations, �T, cf. Fig. 2�a�. Thus
for large enough times�t��i

−1�, transport is canceled and one
electron will be confined in each QD. The electrons will be
coherently trapped in the interdot triplet subspace, T�, T0
�dark subspace� and behave as an isolated single particle of
angular momentum S=1 performing coherent spin rotations
with a frequency �ac �Fig. 2�b��.

A finite spin relaxation time mixes the dynamics of the
singlet and the triplet subspaces, so that interdot tunneling is
allowed and finite current appears, cf. Fig. 3�a�. The shorter
the spin relaxation time, the larger is the singlet-triplet mix-
ing and therefore, the higher is the current, cf. Fig. 4�a�, up to
relaxation times fast enough to dominate the electron dynam-
ics �T1

−1��ac�. In this case, ESR is not effective in order to

FIG. 1. Schematic diagram of the DQD in the presence of
crossed dc and ac magnetic fields.
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rotate the spins and spin blockade is recovered, cf. Fig. 4�b�.
Since both spin rotations and spatial delocalization are reso-
nant processes, this singlet-triplet mixing produces compli-
cated dynamics in the current that shows oscillations with a
frequency that depends both on the interdot coupling and the
ac field intensity, cf. Fig. 4�c�. When Bac increases, the fre-
quency of the current oscillations increases but not linearly
due to the interplay with the hopping. This effect is small for
long spin relaxation times.

B. �LÅ�R

However, if one introduces an inhomogeneous Bdc, so that
only one of the electrons is in resonance with Bac �for in-
stance, 	=�R��L�, the total spin symmetry is broken and
then the electron in each QD behaves differently. In fact, the
states 	↓ , ↑ 
 and 	↑ , ↓ 
 have different occupation probabili-

ties and interdot hopping induces the delocalization of the
individual spins. This populates the state 	SR
 and a finite
current appears showing a double peak whose position shifts
following the inhomogenity, cf. Fig. 3�b�. This double peak
may be the origin of the under-resolved structure measured
in Ref. 12. By tuning the Zeeman splittings difference, the
current presents an antiresonance of depth �0.1 nA near
�L=�R, cf. Fig. 5�a�, pretty similar to the coherently trapped
atom spectrum in quantum optics.3 As expected, taking one
electron slightly out of resonance, the frequency of the cur-
rent oscillation is modified in comparison with the double
resonance situation. If one electron is far enough from reso-
nance, the frequency of the current oscillation becomes
roughly half of the value as it would be the case for the
rotation of one electron spin, cf. Fig. 5�b�. Otherwise, the
off-resonant electron modifies the Rabi frequency for spin
rotations in a more complicated way depending on Bac, tLR,
and how much both dynamics are mixed �which is related to
�L−�R�, cf. Fig. 5�c�. The limiting case when �L and �R are
very different and only the electron in the right QD is af-
fected effectively by Bac is analyzed in Appendix A 3.

III. BICHROMATIC FIELD

There is a way for trapping the system in a dark state even
for different Zeeman splittings by introducing a bichromatic
Bac with a different frequency that also brings into resonance
the electron in the left QD:
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FIG. 2. �a� I�t� for initial state 	↑ , ↓ 
 in the absence of spin
relaxation for �L=�R=� and �ac=�T /2. �b� The corresponding
occupation probabilities: 	↑ , ↓ 
 �solid line�, 	↓ , ↑ 
 �dash-dotted
line�, 	0, ↑ ↓ 
 �dotted line�, and 	↑ , ↑ 
 and 	↓ , ↓ 
 �dashed line�.
Parameters �e=�=1�: �L=�R=�=10−3 meV, T1�2�

−1 =0, �T

=11.2 GHz and holding for the rest of the plots �in meV�: �L=1.5,
�R=0.45, �=0.026 �Bdc�1T�, UL=1, UR=1.45, V=0.4, �L=2,
and �R=1.1.
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FIG. 3. Effect of �a� finite spin relaxation rates, T1
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Zeeman inhomogenity, �L /�R, on the stationary current when tun-
ing the frequency of the magnetic field. In �a�, �L=�R; in �b�, T1

=0. �Same parameters as in Fig. 2 but �=10−2 meV�.
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FIG. 4. �a� I�t� for different spin-flip times �in �s�, with �ac

=�T=11.2 GHz and �L=�R=�. The initial state here is 	↑ , ↑ 
,
then, for T1

−1=0, there is no mixing of the triplet and singlet sub-
spaces and therefore no current flows through the system. Spin
relaxation processes contribute to populate the singlet, producing a
finite current. �b� Stationary current as a function of spin relaxation
time. For long T1, electrons remain in the dark space. As T1 de-
creases, I begins to flow, being again suppressed for short enough
T1, as discussed in the text. �c� I�t� for different ratios between the
ac field intensity and the interdot hopping, i.e., between �ac and
�T, with T1�0.1 �s. �Same parameters as in Fig. 3.�
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ĤB
�2��t� = �

i=L,R
j=1,2

��iŜz
i + Bac�Ŝx

i cos 	 jt + Ŝy
i sin 	 jt�� , �5�

with 	1=�L and 	2=�R. Then, each electron is resonant
with one of the field frequencies. In this case, as �i is differ-
ent in both QDs, 	T0
 mixes with 	S0
 and a finite current
flows until the electrons fall in the superposition: 	S2

= 1

�2
�	↑ , ↑ 
− 	↓ , ↓ 
� which is not affected by the magnetic

field but for off-resonant oscillations that can be
averaged out. In effect, if the nonresonant terms are

disregarded, Eq. �5� is reduced to H̃
ˆ

B,0
�2� �t�=�i��iŜz

i

+Bac�Ŝx
i cos �it+ Ŝy

i sin �it�� and H̃
ˆ

B,0
�2� 	S2
=0. Then the popu-

lation of the states 	↑ , ↓ 
, 	↓ , ↑ 
, and 	SR
 and, therefore, the
current drop to zero, see Fig. 6�a�. This transport quenching
also allows one to operate the system as a current switch by
tuning the frequencies of the ac fields �Fig. 6�b�� and the
preparation of the system in a concrete superposition to be
manipulated.

The application of a bichromatic magnetic field provides a
direct measurement of the Zeeman splittings of the dots by
tuning the frequencies until the current is brought to a mini-
mum as in Fig. 6�b�. Then, by switching one of the frequen-
cies off and tuning the Zeeman splitting by an additional Bdc
in one of the dots, the antiresonance configuration of Fig.
5�a� could be achieved. In this case, electrons in both QDs
perform coherent spin rotations, as shown in Fig. 2�b�.

IV. CONCLUSIONS

In summary, we present the complete electron spin dy-
namics in a DQD, in the spin blockade regime, with up to

two extra electrons, where crossed dc and ac magnetic fields
and a dc voltage are applied. In the experimental setup that
we propose, different Rabi oscillations �due to the ac mag-
netic field and the interdot tunneling� compete: The time de-
pendent magnetic field produces coherent spin rotations be-
tween spin up and down states while resonant interdot
hopping allows the spatial delocalization of the electrons. We
show how the interplay between coherent oscillations com-
ing from the interdot tunnel and those due to Bac gives rise to
a nontrivial electron dynamics which strongly depends on
the ratio between the different Rabi frequencies involved. We
show as well that if � has the same value for the left and the
right QD, electrons remain performing coherent spin rota-
tions in the S=1 subspace and current is quenched. This
electron trapping is removed by spin relaxation or inhomo-
geneous Bdc and finite current flows. Measuring the current
will allow one to control coherent spin rotations and also to
extract information on the spin relaxation time. We propose
as well how to block the current by a bichromatic magnetic
field in a DQD where the effective Zeeman splitting is dif-
ferent within each dot �and where current would otherwise
flow due to singlet-triplet mixing�. We demonstrate that the
bichromatic field induces spin blockade in this configuration
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quenching of the current for �L=�R is lifted by spin relaxation. �b�
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one electron spin resonance is observed by increasing the difference
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4.
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and that the system evolves to a stationary superposition of
states, thus serving for spin rectification and state prepara-
tion.

Then, our results show that tunneling spectroscopy ex-
periments in DQDs under tunable mono- and bichromatic
magnetic fields allow one to drive electrons to perform co-
herent spin rotations which can be unambiguously detected
by measuring the tunneling current. We also show how to
induce spin blockade in DQDs with different Zeeman split-
tings by means of a bichromatic magnetic field.
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APPENDIX: CLOSED SYSTEM

In this appendix, we present some simple cases that de-
scribe the purely coherent dynamics �i.e., for �L=�R=0 and
T1

−1=0� involved in the description presented above.

1. TWO ISOLATED ELECTRONS SPIN RESONANCE

We consider first the case where each electron is isolated
in one quantum dot. This system is described by the Hamil-

tonian Ĥ�t�= Ĥ0+ ĤB�t� �as written in Sec. II� and the basis
	1
= 	↑ , ↑ 
, 	2
= 	↓ , ↑ 
, 	3
= 	↑ , ↓ 
, and 	4
= 	↓ , ↓ 
. We ob-
tain the equations of motion for the reduced density matrix
elements from the Liouville equation 
̇�t�=−i�H�t� ,
�t��. Af-
ter a variable transformation: 
12,24,34� =e−i	t
12,24,34 and 
14�
=e−i2	t
14, they can be written as


̇1 = BacI�
21� + 
31� � ,


̇2 = BacI�
12� + 
42� � ,


̇3 = BacI�
43� + 
13� � ,


̇4 = BacI�
34� + 
24� � �A1�

for the diagonal terms, and


̇12� = −
i

2
Bac�
2 − 
1 + 
32 − 
14� � + i��L − 	�
12� ,


̇13� = −
i

2
Bac�
3 − 
1 + 
23 − 
14� � + i��R − 	�
13� ,


̇14� = −
i

2
Bac�
24� + 
34� − 
12� − 
13� � + i�� − 2	�
14� ,


̇23 = −
i

2
Bac�
43� − 
21� + 
13� − 
24� � − i�
23,


̇24� = −
i

2
Bac�
4 − 
2 − 
23 + 
14� � + i��R − 	�
24� ,


̇34� = −
i

2
Bac�
4 − 
3 − 
32 + 
14� � + i��L − 	�
34� �A2�

for the coherences, where �=�L+�R and �=�L−�R.
The set of equations �A1� and �A2� can be solved by

doing the Laplace transform, L
̇=z
−
�0� and considering
the initial condition 
1�0�=1. If the effect of the magnetic
field is the same for both electrons, that is, they suffer the
same Zeeman splitting, �L=�R=�, the probability of finding
only one of the electrons flipped, Pf =
2+
3 is

Pf =
2Bac

2

�4 Bac
2

4
sin2 �t + �2 sin2 1

2
�t� , �A3�

where �2=Bac
2 +�2 and �=�−	. In the resonant case, �=0:

Pf =
1

2
sin2 Bact . �A4�

Therefore the Rabi frequency for this configuration is

�ac = 2Bac, �A5�

twice the one found for the single electron case.24

On the other hand, if �L��R, the resonance condition
holds only for one of them. Then, there is a superposition of
different oscillations which results in a complicated dynam-
ics when 	� 	 ��.25

2. ELECTRON DELOCALIZATION

Let us now consider the closed system in the absence of
magnetic field, which can be described by the Hamiltonian
H=H0+HLR. The interdot coupling term, HLR, induces elec-
tron tunneling between both dots, involving the states 	1

= 	↑ , ↓ 
, 	2
= 	↓ , ↑ 
, and 	3
= 	0, ↑ ↓ 
. Then, the Liouville
equation is given by


̇1 = − 2tLRI
31,


̇2 = 2tLRI
32,


̇3 = 2tLRI�
31 − 
32� ,


̇12 = itLR�
32 + 
13� ,


̇13 = itLR�
3 − 
1 + 
12� − i��L − �R + V − UR�
13,


̇23 = − itLR�
3 − 
2 + 
21� − i��L − �R + V − UR�
23.

�A6�

By solving the set of equations �A6� under the condition
�L−�R=UR−V, where interdot tunneling is resonant, we ob-
tain the occupation of the state 	0, ↑ ↓ 
, which is given by


3 =
1

2
sin2 �2tLRt . �A7�

Thus the Rabi frequency is modified with respect to the
single electron case ��1e=2tLR �Ref. 24��:
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�T = 2�2tLR. �A8�

3. MIXING OF SPATIAL DELOCALIZATION AND SPIN
ROTATION

As discussed in the text for the open system, if �L��R,
the current shows a coherent oscillation that depends on both
the intensity of the ac magnetic field and the interdot hop-
ping.

Here we consider a simple case that presents both coher-
ent processes—spin rotation and interdot delocalization—by
considering very different Zeeman splittings in each QD.
Then, only one of the electrons is in resonance with the ac
field: �L=	 and only three states contribute to the dynamics:
	1
= 	↑ , ↑ 
, 	2
= 	↓ , ↑ 
, and 	3
= 	0, ↑ ↓ 
, resulting in the set
of equations:


̇1 = BacI
21,


̇2 = BacI
12 + 2tLRI
32,


̇3 = − 2tLRI
32,


̇12 = −
i

2
Bac�
2 − 
1� + itLR
13 + i��L − 	�
12,


̇13 = −
i

2
Bac
23 + itLR
12 − i	+
13,


̇23 = −
i

2
Bac
13 − itLR�
3 − 
2� − i	−
23, �A9�

where 	�=�L−�R−
�R��L

2 +V−UR. If the gate voltages are
tuned in a way that 	−=0, so the left electron can tunnel to
the doubly occupied singlet state in the right dot �having
both electrons opposite spin polarization�, one finds that the
frequency of the oscillations depends on both the tunneling
coupling and the field intensity: ���Bac

2 +4tLR
2 .
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