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Abstract – We consider a quantum dot system whose charge fluctuations are monitored by a
quantum point contact allowing for the detection of both charge and transferred heat statistics.
Our system consists of two nearby conductors that exchange energy via Coulomb interaction. In
interfaces consisting of capacitively coupled quantum dots, energy transfer is discrete and can
be measured by charge counting statistics. We investigate gate-dependent deviations away from
a charge fluctuation theorem in the presence of local temperature gradients (hot spots). Non-
universal relations are found for state-dependent charge counting. A fluctuation theorem holds for
coupled dot configurations with heat exchange and no net particle flow.

Copyright c© EPLA, 2012

Introduction. – Contrary to charge, heat currents are
difficult to measure on nanoscopic scales [1]. Seebeck-
Onsager coefficients relate heat flows to voltage drops [2]
allowing for the detection of mesoscopic heat currents in
the linear regime [3,4]. Recently multiterminal arrange-
ments have been used to inject current and as thermome-
ters in heat transistors [5]. However, a method for a direct
measurement of non-linear electronic heat currents and
their fluctuations has not been described. It would allow,
for instance, to investigate recent proposals of refrigera-
tors [6,7], efficient heat converters [8–11], rectifiers [12] or
diodes [13] based on single-electron transistors.
Measurements of the charge counting statistics have

become a standard way to access the noise properties of
the electric flows through quantum dot systems [14–16].
There, time-resolved charge fluctuations are detected by
current changes though a capacitively coupled quantum
point contact (QPC). Experimental precision makes possi-
ble to measure the behaviour of high-order cumulants or
finite frequency statistics [17,18]. For this reason, meso-
scopic conductors offer an ideal playground for exper-
imental verifications of non-linear fluctuation relations
as expressed for electric conduction [19–24]. Pioneering
experiments have been carried out recently to test work
fluctuation relations (Jarzynsky and Crooks) in driven
closed conductors [25,26] as well as in open conduc-
tors [27,28] of interest here. In experiments where the
detector is asymmetrically coupled to a double quantum
dot [15,28], different charge distributions are resolved as
different outputs in the QPC. This way, trajectories of
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Fig. 1: (Colour on-line) Proposed scheme for heat detection.
Two capacitively coupled quantum dots are connected to three
terminals. One quantum dot (s) supports charge transport
between two terminals. The other one (g) leads to heat
transfer from a hot reservoir. A quantum point contact is
asymmetrically coupled to both dots serving as a four-state
charge detector. Time-resolved cycles involving all the states,
1→ 2→ 3→ 4, represent the transfer of one quantum of heat,
EC , from the hot to the cold conductor. The reversed sequence,
1′→ 2′→ 3′→ 4′, takes heat from the cold to the hot reservoir.

charges flowing along and against an applied voltage can
be traced out. If the external force is thermal, so that
temperature is inhomogeneous, the fluctuation theorem
for charge currents does not hold. One must then consider
both charge and energy currents [29] or, alternatively,
heat. To test fluctuation relations, the ability to measure
heat currents is therefore also of fundamental importance.
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Here we show that charge counting statistics measure-
ments can give access to heat flows and their fluctuations
in quantum dot circuits. It allows for tests of non-linear
fluctuation relations for stationary transport in the pres-
ence of thermal and voltage gradients. To illustrate this
generally, we consider a model of capacitively coupled
conductors for which heat and charge flows are separated:
charge flows through the terminals of each conductor;
energy is exchanged via electron-electron interactions, as
sketched in fig. 1. Two quantum dots are close enough
such that their charge is mutually affected by Coulomb
interaction with a capacitance coupling, C. Experiments
have demonstrated a strong interdot coupling with no elec-
tron transfer through the capacitor [30,31]. Each quantum
dot is coupled by tunneling barriers to different elec-
tronic reservoirs considered at local equilibrium. One of
them, that we denote as s (for system), allows charge
transport between two terminals at the same temperature
but different voltages. The other one, g (for gate), which
is coupled only to one reservoir at a different tempera-
ture, supports no stationary charge but a heat current.
In previous work, we have shown that such a geometry
generates a charge current in the unbiased two-terminal
conductor by converting the heat flowing though the gate
quantum dot [9,32]. Energy-dependent tunneling barri-
ers provide the necessary symmetry breaking [33]. The
perpendicular directions of heat and charge currents is
an important issue for energy harvesting from an envi-
ronment. Related effects have been predicted in a vari-
ety of configurations, when the third hot terminal consists
of a phonon bath [34,35], the electromagnetic environ-
ment [36], incoherent radiation [37] or a spin insula-
tor [11]. Recently, current generation from absorption of
external radiation has been detected in periodic semicon-
ductor heterostructures [38,39], following ideas by one of
us [40,41] and van Kampen [42].
By placing a QPC close to the quantum dots one can

determine the charge occupation of the system. The trans-
parency of the constriction is affected by the electrostatic
coupling to the charge of the quantum dots. In general, the
coupling of the QPC to each quantum dot will be differ-
ent, strongly depending on their distance. This makes the
current flowing through the QPC sensitive to the differ-
ent charging states. We emphasize that similar arrange-
ments have allowed directional charge counting [15,28] or
the detection of quantum operations [43] in double quan-
tum dot systems. Alternatively, more complex setups of
two QPCs, each one coupled to one quantum dot, can be
used [44]. The back action of the detector on the system
charge states can be tuned to be negligible.
We propose detection of energy flows based on a state-
resolved charge counting as described in the previous
paragraph. We consider a QPC detector with no back
action on the system. In our case, we will focus on a
Coulomb blockade regime where each quantum dot is
described by a single discrete level that can be occupied
by up to one electron. That reduces our configuration to a

four-state basis: (ns, ng) = {(0, 0), (1, 0), (0, 1), (1, 1)}. The
generalization to cases with several levels is straightfor-
ward. Up to sequential tunneling, three states only are
not enough to induce correlations between the two conduc-
tors that give rise to a noise-induced current [33]. Due to
level discretization, interdot energy flows occur in quanta,
EC = 2q

2/C̃, defined in terms of the geometrical capac-
itance of the coupled system, C̃ [9]. Sequences can be
identified in the time trace of the current through the
QPC, (0, 0)→(1, 0)→(1, 1)→(0, 1)→(0, 0), that represent
the transfer of a quantum of energy EC from the hot gate
to the conductor, as sketched in fig. 1. The reversed trajec-
tory transfers energy from the cold to the hot system. Due
to the quantization of transferred energy one can connect
its fluctuations to those of the charge occupation of the
system.

Model. – We are interested in a system where the
heat absorption affects the statistics of a charge current
which is measured. For this reason, we investigate a
system supporting non-parallel electronic charge and heat
currents. The three-terminal device described above is the
minimal model of this characteristics. Heat is transferred
between the two dots by electron-electron interaction only.
A two-terminal configuration with heat transfer only is
also discussed.
Coulomb interaction is modeled by the capacitances

associated to the tunneling barriers, Cl and the interdot
coupling, C. In a self-consistent treatment, they define
the charging energies, Uα,n({Vl}), of quantum dot α
when the occupation of the other dot is n= 0, 1 [9]. The
quantum of transferred energy is given by the interdot
charging energy, EC =Uα,1−Uα,0 = 2q2/C̃, with the effec-
tive capacitance C̃ = (CΣsCΣg −C2)/C, CΣs =C1+C2+
C, and CΣg =Cg +C. Every terminal is assumed to be at
thermal equilibrium with voltage Vl and temperature Tl.
At sufficiently low temperatures, phononic heat transport
can be neglected. We will focus on the case that the two
terminals of the conductor are at the same temperature,
T1 = T2 = Ts, but can be at different voltages.

Master equation. The dynamics of our system can
be described by a master equation for the probabilities of
the combined system states, ρ. We consider the sequen-
tial regime, where only diagonal elements of the density
matrix are important [45,46]. Processes in which an elec-
tron tunnels out (+) or into (−) a quantum dot through
junction l with n= 0, 1 electrons in the other quantum dot
are described by the tunneling rates Γ±ln. They are calcu-
lated by Fermi’s golden rule, giving: Γ−ln =Γlnf [(Eαn−
qVl)βl], Γ

+
ln =Γln−Γ−ln, with βl = (kTl)−1, Eαn = εα+

Uαn, f(x) = (1+ e
x)−1 being the Fermi function. εα is

the bare energy of the discrete level in quantum dot α.
Tunneling rates are in general energy dependent [47–49].
In particular, they depend on the charge occupation of the
coupled dot, n= ns, ng. In the regime kTl� Γln, broad-
ening of the energy levels can be neglected. Written in
matrix form, such that ρ= (ρ00, ρ10, ρ01, ρ11)

T , the master
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equation reads ρ̇=Mρ, with

M=



−Γ−s0−Γ−g0 Γ+s0 Γ+g0 0

Γ−s0 −Γ+s0−Γ−g1 0 Γ+g1
Γ−g0 0 −Γ−s1−Γ+g0 Γ+s1
0 Γ−g1 Γ−s1 −Γ+s1−Γ+g1




(1)

and Γ±sn =Γ
±
1n+Γ

±
2n. It is convenient to separate M

into its diagonal and non-diagonal terms: M=MD +∑
l,n,k J kln. The matrices J kln correspond to those jumps

described by tunneling rates Γkln. They allow one to
express the charge, energy and heat stationary currents,
IC,l, IE,l and IH,l, respectively, in a compact form:

〈Ia,l〉=
∑
n

tr[Θaln
(J +ln−J −ln) ρ̄], (2)

where Θal,n represents the transported amount in each

tunneling event: ΘCln = q (for charge), Θ
E
ln =Eαn (for

energy) and ΘHln =Eαn− qVl (for heat). Note that they
are related by: IH,l = IE,l− IC,lVl. We obtain ρ̄ from
the steady-state solution given byMρ̄= 0. From charge
conservation, we know that IC,g = 0 and IC,2 =−IC,1.
Thus, we define IC = IC,2 as the total charge current
flowing through the conductor. The state-resolved charge
currents, 〈Iln〉, are given by the terms inside the sum in
eq. (2).
With this notation, local detailed balance of each

reservoir can be expressed as

J +ln = eΘ
H
lnβl(J −ln)T , (3)

in terms of heat quantities.

Counting statistics and fluctuation theorems. –
Briefly, the counting statistics of a vector variable Q is
determined by the probability distribution, P (Q, t). It
is equivalent to consider its cumulant generating func-
tion, F(iξ) = ln∑Q P (Q, t)e−iQξ, with counting fields ξ.
Applied to our system, one can introduce different count-
ing fields ξa = {ξa,l} (with a=C,E,H) for charge, energy
and heat transferred through terminal l. Our master equa-
tion is modified by introducing the counting fields to multi-
ply the jump operators [50]:

Mξ,a =MD +
∑
l,n,k

eikΘ
a
l,nξa,lJ kln. (4)

The cumulant generating function is obtained from the
eigenvalue closest to zero ofMξ. Using (3), one can easily
verify the symmetries of the characteristic polynomials
det|Mξ,a−λ�|= 0, which translate to different fluctua-
tion theorems. For charge transport and uniform temper-
atures, Tl = T,∀l, one gets

F(iξC) =F(−iξC+AC), (5)

with the affinities AC,l = Vlβl [19]. At zero applied voltage,
one expects that detailed balance restores equilibrium.

IQPC

Vs, Ts Vg, Tg

C
s g

C1

23

4
EC

Fig. 2: (Colour on-line) Heat diode in a two-terminal configura-
tion. Here, no charge but only heat flows through the capacitor.

However, a finite charge current flows in the presence of
hot spots [9,32]. This apparent broken detailed balance
is restored when introducing the energy counting fields
as well [29]. Alternatively, a more compact form can be
written in terms of heat currents:

F(iξH) =F(−iξH−AH), (6)

with the energy affinities AH,l = βl. We recall that heat
currents are related to charge and energy currents. It
is therefore valid in the presence of both voltage and
temperature gradients.
We show below that heat current statistics are obtained

by state-resolved electron counting if the energies ΘEl,n are
known. If we are interested in the heat transferred between
the two conductors, only the difference ΘEl,1−ΘEl,0 =EC
becomes relevant, which can be accessed experimentally
in our configuration. A complete level resolved detection
including every terminal requires a more complicated
setup.

State-resolved fluctuation relations. For state-resolved
counting one introduces the number of transferred parti-
cles through terminal l and from state n, Nln, and the
vector of level resolved counting fields, ζ = {ζln}. Then the
jump operators in the master equation are multiplied by
exp[ikζln]. The explicit level dependence of local detailed
balance conditions in eq. (3) leads to the state-resolved
fluctuation relation:

F(iζ) =F(−iζ− Ã), (7)

where Ãl,n =Θ
H
l,nβl are the state-resolved affinities. In

contrast to eq. (5), the relation shown in eq. (7) is a fluc-
tuation relation for particles which is valid in the pres-
ence of voltage and temperature gradients, as is the case
for the heat fluctuation theorem (6). As a drawback, it
is no longer universal but depends on the internal config-
uration of the system —in particular, on gate voltages.
However, we stress that, in a self-consistent treatment,
ΘHl,n =Eα,n({Vm})− qVl depends only on differences of
voltages, so eq. (7) is gauge invariant.

Two terminals: pure heat transport. Let us first
investigate a simple configuration that illustrates the
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above result. We consider a two-terminal system where
no stationary charge current will flow [13]. A schematic
representation of such a system with the QPC detector
added is shown in fig. 2. Note that in this configuration,
heat and energy currents coincide, IH,l = IE,l =ECIl1/q,
and therefore are conserved:

∑
l IH,l =

∑
l IE,l = 0.

This configuration allows for complete state-resolved
counting. The quantity of interest is the heat flowing
through the gate. This is independent of the number of
levels of each dot and is determined solely by the charging
energy. The relevant index is therefore given by the charge
occupation. For quantum dots that permit up to one
electron, n= 1, 0 labels the charge occupation of the dot
that is not involved in the tunneling event. The gate g
releases a quantum of energy EC to the system s when a
cycle (depicted in fig. 2) is completed: an electron enters
dot g when dot s is occupied and leaves it only once the dot
s is empty. Thus, the amount of energy transferred to the
gate lead is proportional to the difference of the number
of electrons that have tunneled from the two states (1, 1)
and (0, 1):

Ẽg =EC(Ng1−Ng0). (8)

This equation relates the transferred heat statistics to the
charge fluctuations in the gate, which can be measured in
a state-dependent detector as the one shown in fig. 2.
In this case, the validity of the fluctuation theorem can

be verified by detecting the statistics of charge transferred
from a given energy. The constraints introduced by charge
conservation in each conductor (Nl0 =−Nl1) and energy
conservation (Ns1 =−Ng0) permits to write separate rela-
tions for particles emitted through any state or termi-
nal, Nln. For example, one can simply count the number
of electrons Nsn emitted to the cold system conditioned
on the hot dot containing n electrons. The correspond-
ing cumulant generating function obeys the universal
symmetry:

F(iζsn) =F(−iζsn+EC (βg −βs)). (9)

For particles emitted through the gate terminal, replace
s↔ g in the previous expression. No gate voltage depen-
dence enters eq. (9).

Three terminals: noise-induced transport. We are
mostly interested in the deviations of charge current statis-
tics in the presence of heat absorption. For that we
consider a three-terminal device, as the one described
above and shown in fig. 1. In a recent work, Krause
et al. [51] showed that state-resolved counting of electrons
allows fluctuation relations to be written when the statis-
tics of dissipated energy is also measurable. It is however
challenging to do so for phonons. In our setup, on the
contrary, the energy absorbed by a conductor is only due
to electron-electron interactions and can be treated on the
same footing as the particle currents, cf. eq. (8).
Charge and energy conservation can be written in

terms of state-resolved counting:
∑
l∈s,nNln =

∑
nNg =

0 and
∑
l∈s(Nl,1−Nl,0) =Ng,1−Ng,0, respectively. They

provide additional symmetries of the cumulant generating
function expressed as shifts of the counting fields. Sepa-
rating the contributions from each conductor, system and
gate, ζ = (ζs, ζg), we write:

F(iζs0, iζs1, iζg0, iζg1)
= F(iζs0+ a, iζs1+ a, iζg0+ b, iζg1+ b) (10)

= F(iζs0− c, iζs1− d, iζg0+ d, iζg1+ c),
for arbitrary parameters a, b, c and d. The dimension of
vectors ζs and ζg is given by the number of levels in each
conductor times the number of terminals to which it is
connected. If the states of the gate are not resolved, only
electrons flowing through the conductor are measured,
eqs. (10) lead to an incomplete fluctuation theorem [51]:

F({iζsn}) =F({−iζsn− Ãsn− Ãgn̄}). (11)

Note that the system and gate affinities are taken at
different occupations, n̄=not(n). It applies to cases where
the QPC is not able to distinguish the states (0, 0) and
(0, 1): for example if the difference of the corresponding
signals is smaller than the noise of the measurement.
The state-resolved cumulant generating function

is defined in terms of the probability to detect N
transferred electrons during a period of time, t:
F(iζ) = ln∑N P (N , t)e−iNζ . For later convenience,
the charge currents will be written in terms of the number
of electrons transferred in a given time: Iln = qNln/t.
Then, in the long-time limit, eq. (11) can be expressed
in terms of the probability to measure a given current
configuration, Is = {Iln}, l ∈ s, in the conductor [52]:

q

t
ln
P (Is)

P (−Is) =−
∑
l∈s,n
Iln(Ãl,n+ Ãg,n̄). (12)

In the case of interest here where the two terminals
of the conductor s are at the same temperature, the
previous expression can be notably rewritten in terms of
the total charge current, IC = q

∑
nN2n/t, and the amount

of energy absorbed from the gate, IH,g = Ẽg/t, expressed
in terms of particle flows in the conductor, cf. eq. (8):

1

t
ln
P (Is)

P (−Is) = IC(V1−V2)βs− IH,g(βg −βs)/2. (13)

It resembles fluctuation theorems for thermoelectric trans-
port that separate thermal and electric forces [29,51,
53,54]. However, eq. (13) is configuration dependent:
the right-hand side depends on state-resolved currents
through IH,g. For instance, it is affected by gate voltages.
For single level quantum dots, it reads: IH,g = 2EC(IC−
I11+ I20)/q, where the last two terms represent the differ-
ence of state-resolved currents Iln flowing through the
different leads (l= 1, 2) of the conductor at the different
charge occupations (n= 1, 0) of the gate quantum dot.
An illustration of the previous expression is plotted in

fig. 3. We denote the right-hand side of eq. (13) with ξ.
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Fig. 3: (Colour on-line) Fluctuation relation. We plot the
right-hand side of eq. (13) written in terms of mean charge
currents: 〈ξ〉= 〈IC〉(V1−V2)βs−EC(〈IC〉− 〈I11〉+ 〈I20〉)(βg −
βs), as a function of the bias voltage applied to the conductor.
Different tunneling rate configurations are shown for homoge-
neous (Ts = Tg) and inhomogeneous (Ts �= Tg) temperatures:
“symmetric”(Γln =Γ, ∀{l, n}), “asymmetric”(Γln =Γ, except
for Γ11 =Γ20 =Γ/10), and “optimal”(Γln =Γ, except Γ11 =
Γ20 = 0). The temperature of the conductor is kept kTs = 5�Γ,
while the gate is heated to kTg = 10�Γ in the inhomogeneous
case. The presence of a hot spot generates a shift of the mini-
mum. For asymmetric configurations, it does not cross the
origin except for the optimal case, in which it goes to zero at
the stall potential of eq. (16). The inset shows the same quan-
tity 〈ξ〉 but normalized to the total charge current, 〈IC〉, so all
the isothermal configurations have the same slope. The absence
of detailed balance gives a divergence at the stall voltage.

Remember that IH,g can be written in terms of charge
currents. In equilibrium, ξ = 0. Remarkably, in asymmetric
configurations that manifest noise-induced transport, 〈ξ〉
does not vanish even if the total current, 〈IC〉, does at
a certain stall potential. Though at that voltage no net
charge currents flow, heat flowing through the gate drives
the system out of equilibrium. Detailed balance is restored
only at the optimal converter configuration, cf. eq. (14)
below.
Optimal heat-to-charge conversion occurs in particu-

lar cases where the tunneling events (0, 0)↔(1, 0) and
(0, 1)↔(1, 1) can only take place through different termi-
nals of the conductor [9]. For instance, if Γ11� Γ10 and
Γ20� Γ21, so I11, I20→0. Then, a universal relation holds:
1

t
ln
P (IC)

P (−IC) = IC
[
(V1−V2)βs− EC

q
(βg −βs)

]
. (14)

The cycles involved are illustrated in fig. 1. At this config-
uration, a charge q is transported across the conductor for
each quantum of heat EC that is exchanged between the
two systems, so IC/q= IH,g/EC . This implies that IC and
IH,g are maximally correlated, i.e., 〈ICIH,g〉= 〈IC〉〈IH,g〉,
and all their cumulants coincide.

Note that a related expression can be obtained using
the relation of rates for the cycle that transfers an energy
EC to the conductor, γ

+ =Γ−10Γ
−
31Γ

+
21Γ

+
30, and its reversed

sequence, γ− =Γ−30Γ
−
21Γ

+
31Γ

+
10, which gives

γ+

γ−
= exp[q(V1−V2)βs+EC(βs−βg)]. (15)

The exponent on the right-hand side of eq. (15) is given
by the entropy flux per cycle [55,56]. We can therefore
interpret the right-hand side of eq. (14): it relates the
entropy flux to the Joule heat in the conductor and heat
absorbed from the gate. It also provides the condition for
the stall potential

q(V1−V2) =EC βg −βs
βs

=−ECηC , (16)

where a conversion efficiency approaching the Carnot limit
is predicted [9]. This stall potential defines a non-linear
analogue of a Seebeck thermopower, EC/(qTg), for noise-
induced transport.

Conclusions. – To summarize, we propose a mecha-
nism to detect the statistics of electronic heat currents
in Coulomb blockaded quantum dot systems. Multilevel
charge detection by means of a side-coupled quantum
point contact allows to count the transfer of discrete
energy EC . The same scheme permits to investigate devi-
ations of charge flow statistics in the presence of hot
spots, manifested in non-universal fluctuation relations.
We investigate a three-terminal heat-to-charge converter
where noise-induced transport avoids detailed balance of
charge flows. Only for an optimal configuration when the
absorption of a quantum of heat EC leads to the trans-
fer of a charge q across the conductor, can a fluctuation
theorem for total charge flow be written. In a two-terminal
device with no net charge currents, state-resolved charge
counting statistics fulfill a universal fluctuation theorem
equivalent to the one obtained for heat currents. All our
results can be probed within present experimental tech-
nology.

∗ ∗ ∗

We thank A. N. Jordan and B. Sothmann for a
critical reading of the manuscript. Work supported by
the Spanish MAT2011-24331, the EU ITN Grant 234970,
the Swiss NSF and the EU project NANOPOWER
(FP7/2007-2013) under grant agreement No. 256959. RS
acknowledges support by the CSIC and FSE JAE-Doc
program.

REFERENCES
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