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Photonic heat transport through a Josephson junction in a resistive environment
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Motivated by recent experiments [Subero et al., Nat. Commun. 14, 7924 (2023)], we analyze photonic
heat transport through a Josephson junction in a dissipative environment. For this purpose, we derive general
expressions for the heat current in terms of nonequilibrium Green’s functions for the junction coupled in series
or in parallel with two environmental impedances at different temperatures. We show that even on the insulating
side of the Schmid transition, the heat current is sensitive to the Josephson coupling exhibiting an opposite
behavior for the series and parallel connection and in qualitative agreement with experiments. We also predict
that this device should exhibit heat rectification properties and provide simple expressions to account for them
in terms of the system parameters.
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Introduction. The physics of Josephson junctions (JJs) has
attracted great interest for many decades [1]. Even the ap-
parently simple case of a single JJ in a resistive environment
provides a rich playground to study the interplay of quantum
tunneling and dissipation [2], which continues to be explored
to this today [3,4]. For this system, a transition between a su-
perconducting and an insulating phase was predicted to appear
as a function of the environmental resistance (R), regardless
of the Josephson coupling energy (EJ ). This is the so-called
Schmid-Bulgadaev (SB) transition [5,6], which has been the
object of intense theoretical [7–11] and experimental debate
in recent years [12–14].

In spite of this intense activity, little is known regarding
this system’s properties beyond dc charge transport. In this
respect, heat transport [15] can provide additional insights. In
a recent experiment, Subero et al. [16] explored heat transport
through a JJ in the supposedly insulating regime (R > RQ =
h/4e2). Even when charge transport could be well described
by dynamical Coulomb blockade theory, it was found that
heat transport was sensitive to the EJ value (tunable through a
magnetic flux in a SQUID configuration), indicating inductive
response at high frequencies. The experimental results were
fitted using a phenomenological theory, including an inductive
term to the junction effective impedance. However, such a
model is incompatible with the mentioned dc charge transport
properties and apparently in conflict with a SB transition.

In the present Letter, we analyze this problem from a
microscopic perspective. For this purpose, we develop a
nonequilibrium Green’s function (GF) approach which takes
into account interaction effects due to finite EJ/Ec values,
where Ec is the junction charging energy. We find that even for
R > RQ, heat transport is sensitive to the Josephson coupling,
in qualitative agreement with experiments. Moreover, we find
that the heat current response is radically different depending
on whether the junction is connected in parallel or in series

to the source and drain leads. We also show that signatures of
the SB transition in the heat conduction appear at sufficiently
low temperatures. We finally demonstrate that asymmetric
devices exhibit heat rectification properties, which provide an
alternative way to detect the SB transition.

In Fig. 1, we schematically represent the two situations to
be considered: In Fig. 1(a), the JJ is connected in parallel
with the left and right resistors (RL and RR) which are held
at temperatures TL and TR, respectively, whereas in Fig. 1(b)
these circuit elements are connected in series, corresponding
to the experimental configuration in Ref. [16]. The aim of the
theory is to determine the resulting heat current J as a function
of the model parameters in these two situations, assuming that
temperatures are low enough to neglect excited quasiparticles
in the superconducting leads.

Parallel configuration. Let us start with the parallel config-
uration [17]. This is modeled by the following Hamiltonian:

H = EcN2 − EJ cos ϕ −
∑

j,k

[
λ j,k (a jk + a†

jk )ϕ − λ2
jk

h̄ω jk
ϕ2

]

+
∑

j,k

ω jka†
jka jk, (1)

FIG. 1. Schematics of the configurations considered, consisting
of two resistors, RL and RR, connected in (a) parallel and (b) series
to a Josephson junction (defined by a Josephson, EJ , and a charging
energy Ec), and holding different temperatures, TL and TR, that lead
to a heat current J .
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where j ≡ L, R and the dissipative terms satisfy

π

2

∑
k

λ2
jkδ(ω − ω jk ) = h̄2ω

4e2
Re

[
1

Zj (ω)

]
,

Zj (ω) being the lead impedances, which in our case corre-
spond to pure resistances Rj . In this configuration. only one
superconducting phase variable, ϕ, conjugate to the charge
which is transferred through the junction, N , plays a role.

Following Ref. [18], the heat current through lead j can
then be computed as

Jj = 〈Ḣj〉 = −i
∑

k

λ jkω jk[〈a jk (t )ϕ(t )〉 − H.c.]

= 2
∑

k

λ jkω jkReG+−
a jk ,ϕ

(t, t ) , (2)

where Gαβ
A,B(t, t ′) = −i〈TCB(t ′)A(t )〉 denotes the Keldysh αβ

GF associated with operators A, B. Using the equation of mo-
tion method and transforming it into frequency representation,
one can express G+−

a jk ,ϕ
as

G+−
a jk ,ϕ

(ω) = λ jk
[
Dr (ω)g+−

a jk
(ω) + D+−(ω)ga

ajk
(ω)

]
, (3)

where the g+−,a
a jk

correspond to the uncoupled leads and, for

simplicity, we denote Dαβ,r,a ≡ Gαβ,r,a
ϕϕ (the superscripts r, a

indicate the retarded, advanced components). In this way, we
can express the heat current as

Jj = 2
∑

k

λ2
jkω jk

∫
dω

2π
Re

[
Dr (ω)g+−

a jk
(ω) + D+−(ω)ga

ajk
(ω)

]
.

(4)

We can further use g+−
a jk

(ω) = −2π in j (ω jk )δ(ω − ω jk ) and
ga

ajk
(ω) = 1/(ω − ω jk − i0+), where n j (ω) denotes the Bose

function for the modes in the j lead. Replacing these in Eq. (4)
and taking the real part, we obtain

Jj =
∫

dω

2π

h̄2ω2

e2
Im

[
Dr (ω) coth

(
ωβ j

2

)
−DK (ω)

2

]

× Re

[
1

Zj (ω)

]
, (5)

where we have introduced the Keldysh GFs DK = D+− +
D−+ in the triangular representation [19] and β j = 1/kBTj .
Further simplification is obtained if, as in our case, the
lead admittances 1/Zj (ω) ≡ 1/Rj are frequency independent.
Then, imposing heat current conservation JR = −JL = J , one
gets [18]

J = − h̄2

2πe2

∫
dω

ω2ImDr (ω)

RL + RR
[nL(ω) − nR(ω)] , (6)

which is the heat transport analog of the Meir-Wingreen
formula for mesoscopic charge transport [20], allowing us
to define an effective heat transmission coefficient for the

parallel configuration

τ eff
parallel(ω) = −4ηLηRωImDr (ω)

ηL + ηR
, (7)

where η j = RQ/(2πRj ) ≡ α j/2π . One can further check
that for the perfect-transmission case, one gets J =
Jmax ≡ πk2

B(T 2
L − T 2

R )/(12h̄) as it corresponds to a ballistic
channel [21].

Perturbation theory. The problem is thus mapped into the
evaluation of the Keldysh GFs Dr,a,K (ω). In the present Letter,
we focus on the regime RL,R � RQ and EJ < Ec for which
perturbation theory in EJ should be valid and which should be
appropriate to describe the experimental results of Ref. [16].
To zeroth order in EJ , the GFs are given by

Dr,a
0 (ω) = 1

mω2 ± iω(ηL + ηR) − mω2
c

,

DK
0 (ω) = −2iω(ηL(1 + 2nL(ω)) + ηR(1 + 2nR(ω))(

m
(
ω2 − ω2

c

))2 + (ω(ηL + ηR))2
,

(8)

where m = h̄/2Ec and ωc is a small frequency cutoff which
warrants convergence in the Fourier transforms. At zeroth
order in EJ and ωc → 0, from (7) we obtain

τ 0
parallel(ω) = 4ηLηR

(mω)2 + (ηL + ηR)2
, (9)

which reaches a maximum value 4ηLηR/(ηL + ηR)2 at zero
frequency.

Higher order corrections can be introduced through the
self-energies �r,a,K (ω) associated to the EJ term in the Hamil-
tonian, which would allow us to evaluate the needed GFs as

Dr,a(ω) = [(
Dr,a

0 (ω)
)−1 − �r,a(ω)

]−1
,

DK (ω) = [1 + Dr (ω)�r (ω)]DK
0 (ω)

[
1 + �a(ω)Da

0(ω)
]

+ Dr (ω)�K (ω)Da(ω). (10)

To lowest order in EJ , we have [22]

�r,a(1)(ω) = EJ exp

[
− i

4
DK

0 (t = 0)

]
→ 0 , (11)

since ImDK
0 (t = 0) → −∞ for ωc → 0. One also obtains

�K (1)(ω) = 0, as it corresponds to an effective static potential.
To get the frequency-dependent corrections, it is then neces-
sary to go to higher order. To second order in EJ , we find [22]

�r(2)(t ) = E2
J sin

Dr
0(t )

2
exp

[
i

2

(
DK

0 (t ) − DK
0 (0)

)] − Bδ(t ),

�K (2)(t ) = −iE2
J cos

Dr
0(t )

2
cos

Da
0(t )

2

× exp

[
i

2

(
DK

0 (t ) − DK
0 (0)

)]
, (12)

where B is a constant such that �r(2)(ω = 0) = 0.
From these expressions, one can obtain numerical results

for the self-energies [23]. In addition, fully analytical results
for the Keldysh self-energies can be obtained in the limit
(RL + RR)/RQ → 1 and Tj → 0 [23] (see also comments be-
low). Let us also mention that this perturbative analysis leads
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FIG. 2. (a) Effective heat transmission coefficient in the parallel
configuration for increasing EJ values (from 0 to 0.4) and TL =
0.2, TR = 0.1, ωc = 2 × 10−3 (in units of 2Ec) and ηL,R = 1/4π .
(b) Total heat current J , normalized to the maximum heat current for
a ballistic channel Jmax, as a function of EJ . The full line corresponds
to the parameters in (a), while the dashed lines illustrate its behavior
with ηL = ηR varying between 1/π to 1/5π . (c) J/Jmax for EJ = 0.2
as a function of mean temperature T̄ = (TL + TR )/2 in the linear
response regime for the same ηL = ηR range.

to the same predictions as dynamical Coulomb blockade the-
ory that were used in Ref. [16] for fitting the IV curves [23].

Replacing these results into Eq. (10), we obtain the re-
sults in Fig. 2(a) for the heat transmission coefficient, which
exhibits a strong dependence on EJ , in spite of the full
suppression of the dc Josephson effect that occurs in the
insulating phase [24] for this parameter range. As shown in
Fig. 2(b), the total heat current in this configuration decreases
with increasing EJ , and, as illustrated by the dashed lines in
this panel, the sensitivity of the total heat current with EJ

exhibits a strong dependence on the lead resistances.
One gets more insight by analyzing the low fre-

quency renormalization of the heat transmission coefficient
τparallel(ω). In fact, at low frequencies �r(2)(ω) ∼ −iδηω +
δmω2, where δη and δm provide renormalization of the damp-
ing and mass model parameters. An analytical expression
for the temperature and resistance scaling of these effective
parameters is presented in Ref. [23]. At low temperatures
(TL,R 	 γ ) and for ηL,R ∼ 1/2π , we obtain

δη ∼
(

EJ

γ

)2(
ηLTL + ηRTR

m2γ 2

)−2 ∏
j

(
Tj

γ

)η j/πm2γ 2

, (13)

where γ = (ηL + ηR)/m. Note that for TL = TR = T and
αL = αR = α/2, the SB transition at α = 1 is encoded in the
scaling law ∼T 2/α−2, which results for the renormalization of
the damping parameter [22,25].

In terms of these renormalized parameters, τparallel(ω) at
low frequencies can be written as

τ eff
parallel(ω)
 4ηLηR

m̃2ω2 + η̃2

η̃

ηL + ηR
, (14)

where η̃ = ηL + ηR + δη and m̃ = m − δm. This expression
accounts for the qualitative behavior of the heat transmission
coefficient that can be observed in Fig. 2(a), i.e., a suppression

and broadening of the ω ∼ 0 peak for increasing EJ . Note
that the peaks observed in the transmission coefficient for
higher frequencies and finite EJ (see Fig. 2) arise from the
self-energy structure, which includes a mass renormalization
that saturates for ω/2Ec ∼ 1.

On the other hand, lower temperatures are required to
observe signatures of the SB transition in the heat trans-
port properties. In Fig. 2(c), we show the heat current J as
a function of T̄ = (TL + TR)/2 in the linear regime (δT =
TL − TR → 0) for different values of ηL = ηR, ranging from
1/π to 1/5π , i.e., across the transition which for the par-
allel case should occur at ηL,R = 1/4π . While for T̄ � γ , J
decreases with increasing resistance due to the narrowing of
the τ eff

parallel(ω) zero-frequency peak, the tendency is reversed
at low temperatures (T̄ 	 γ ) due to the divergence of δη

for α > 1. The transition between these two opposite behav-
iors occurs around T̄ = T ∗ ∼ 1/(2πe3/2), where the damping
renormalization is weakly dependent on the environment re-
sistance [23]. This behavior is similar to the nonmonotonous
dependence of the mobility found for quantum Brownian mo-
tion in a periodic potential [26].

Series configuration. In the actual setup in Ref. [16], left
and right leads are placed in a loop for the heat current mea-
surements, which actually corresponds to a series connection,
as depicted in Fig. 1(b). One should describe this situation
in terms of two phase variables ϕ1 and ϕ2, each one coupled
to the left and right reservoirs respectively, while the charge
N through the junction is conjugate to ϕ1 − ϕ2. Consequently,
Eq. (1) should be modified by replacing the Josephson term by
−EJ cos(ϕ1 − ϕ2) and ϕ by ϕ j in the coupling to the environ-
mental modes. Thus, the bare GFs adopt a matrix form in the
ϕ1,2 space and can be obtained from the following equations:(

m
(
ω2 − ω2

c

) ± iωηL −m
(
ω2 − ω2

c

)
−m

(
ω2 − ω2

c

)
m

(
ω2 − ω2

c

) ± iωηR

)
D̂r,a

0 = Î,

(15)

and D̂K
0 = D̂r

0d̂K
0 D̂a

0, where

d̂K
0 = −2iω diag[ηL coth(βLω/2); ηR coth(βRω/2)].

To include the effect of finite EJ in this configuration, the
corresponding self-energies in Eq. (12) have to be expressed
in terms of D̃0(t ) = Tr[D̂0(t )(Î − σx )], where σx is a Pauli
matrix in ϕ1,2 space. The resulting self-energies �̃r,K (ω) ex-
hibit a similar behavior as in the parallel configuration (see
Supplemental Material (SM) [23]).

On the other hand, the Dyson equations for the dressed GFs
(10) acquire a matrix form in the ϕ1,2 space and the corre-
sponding self-energies are obtained from �̃r,a,K as �̂r,a,K =
�̃r,a,K (Î − σx ).

The heat current in the series connection cannot be ex-
pressed in the compact form (6). It is, in contrast, necessary
to reproduce the steps leading to Eq. (5) to derive the
corresponding expression for the heat current in the series
connection

Jj =
∫

dωω2η jIm

[
Dr

l j l j
(ω)(1+2n j (ω)) −

DK
lj l j

(ω)

2

]
, (16)
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FIG. 3. Same as Fig. 2 but for the series configuration. The
parameters in (a) are the same as those in Fig. 2(a) while in (b) and
(c) the full lines correspond to ηL = ηR = 1/π , where the SB transi-
tion occurs for this configuration.

where l j = 1, 2 for j = L, R respectively. This expression
can be decomposed [23] as Jj = (−1)l j Jel + J in

j , where Jel =∫
dωh̄ωτ eff

series(ω)[nL(ω) − nR(ω)] corresponds to the elastic
contribution with

τ eff
series(ω) = 4ηLηRω2

∣∣Dr
12(ω)

∣∣2
, (17)

while the inelastic contribution is given by

J in
j =

∫
dωω2η jIm[D̂r{(�̂r−�̂a)(1+2n j ) − �̂K}D̂a]l j l j .

(18)

In the noninteracting case (i.e., EJ = 0), the inelastic term
vanishes and the heat current can again be written in the usual
Landauer form with a transmission coefficient at ωc → 0,

τ 0
series(ω) = 4m2ω2ηLηR

((ηL + ηR)mω)2 + (ηLηR)2 , (19)

which exhibits a zero frequency dip and tends to 4ηLηR/(ηL +
ηR)2 at large frequencies, as illustrated in Fig. 3.

The behavior of the effective transmission coefficient for
finite EJ is illustrated in Fig. 3(a) for the same parameters as
in Fig. 2(a). We observe that at finite EJ the zero frequency
dip is progressively suppressed. On the other hand, the in-
elastic term provides an additional contribution to the heat
current [23]. Thus, in contrast to the parallel configuration,
there is a slight increase of the heat current with EJ , which
is confirmed by the integrated results in Fig. 3(b). As can be
observed, this increase is more pronounced as the leads resis-
tances approach RQ. This behavior is in qualitative agreement
with the experimental results in Ref. [16]. On the other hand,
the temperature dependence of J/Jmax in the linear regime,
illustrated in Fig. 3(c), exhibits a crossover at T ∗ as in the par-
allel case but with an opposite tendency with environmental
resistance: it increases with increasing resistance (decreasing
ηL,R) for T > T ∗ and the opposite for T̄ < T ∗. At the critical
resistance (ηL = ηR = 1/π ), the temperature variation of the
heat conductance is minimal, which provides an alternative
signature of the transition. Note that the experimental re-
sults of Ref. [16] exhibit a drop at the lower temperatures,

FIG. 4. Asymmetry in the heat transmission coefficient
δτ eff (ω) = τ

eff(+)
parallel (ω) − τ

eff(−)
parallel (ω) for the parallel configuration

with ηL = 1/π, ηR = 1/4π,�T = 0.1, T̄ = (TL + TR )/2 = 0.15,
and increasing values of EJ from 0 to 0.4. The corresponding heat
rectification ratio R = |J+/J−| as a function of EJ is shown as a full
line in the inset. The dashed lines illustrate its variation with T̄ from
0.175 to 0.1.

consistent with an insulating behavior (see additional figure in
the SM [23]).

Rectification properties. Another interesting property of
a JJ in a resistive environment is its possible behavior as a
heat rectifier. The JJ anharmonicity has been used to define
thermal diodes based on weakly coupled qubits [27]; see also
Ref. [18]. Though heat rectifiers using JJs have been mea-
sured in the absence of environmental effects (but additionally
coupled to a phonon bath) [28] or in superconducting qubits
[29,30] (see also Ref. [31] for a review), their rectifying prop-
erties in the insulating side of the SB transition have not been
considered. For simplicity, we consider here only the parallel
configuration with an asymmetry provided by RL �= RR. We
can then define a forward (J+) and a reverse (J−) heat current
given by

J± =
∫

dω

π
h̄ωτ

eff(±)
parallel(ω)[n±

L (ω) − n±
R (ω)], (20)

which correspond to positive and negative temperature bias
�T = TL − TR. As is customary, we also define a heat rec-
tification ratio R = |J+/J−| which, as can be seen from
Eq. (20), deviate from unity provided δτ eff ≡ τ

eff(+)
parallel −

τ
eff(−)
parallel �= 0.

In Fig. 4, we show the behavior of δτ eff (ω) for increasing
values of EJ in an asymmetric configuration with αL = 2 and
αR = 0.5. We observe that, for finite EJ , heat transport in
the forward direction is favored at low frequencies, while the
opposite occurs at higher frequencies. There is not, however,
a compensation in the total heat current and thus one obtains
that R > 1, as illustrated in the inset of Fig. 4. Rectification
ratios of the order of 10% or larger are obtained for the set of
parameters in this figure. These ratios can increase further by
decreasing the mean temperature T̄ = (TL + TR)/2 (see inset
in Fig. 4).

Further insight on these properties can be obtained from
the analytical approximation to the system self-energies. As
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shown in Ref. [23], the rectification ratio in the parallel con-
figuration can be expressed as

R− 1 ∼ (mEJ )2 ηR − ηL

ηL + ηR

(
2

α
− 2

)
T̄

2
α
−2 δT

T̄
(21)

in the limit TL,R 	 γ and α � 1 upon a small temperature
difference δT 	 T̄ . This expression accounts for the main
features of the numerical results, i.e., the quadratic increase
with EJ and the increase of R as the mean temperature is de-
creased. Equation (21) also indicates that, as far as α > 1, the
heat current is larger when the colder reservoir corresponds
to the one with larger resistance. This behavior is similar to
the case of a two-level system with a nonseparable coupling
to the heat baths [27,32]. Equation (21) also indicates that the
SB transition could be detected by the change in sign of R− 1
at α = 1.

Conclusions. In summary, we have presented nonequilib-
rium Green’s function calculations for photonic heat transport
through a Josephson junction in a resistive environment. Our
results are in qualitative agreement with the experimental ones

from Ref. [16] and suggest how signatures of the SB transition
can be detected in heat transport measurements at sufficiently
low temperatures [33]. We further demonstrate rectifica-
tion properties for this device that can be tested in future
experiments.

Note added. Recently, we become aware of a related study
[34] for the same system in the scaling regime, yielding results
which are complementary to the ones in the present Letter.
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