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Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without
performing any work on it. Conventionally, such a Maxwell demon’s intricate action consists of measuring
individual particles and subsequently performing feedback. We show that much simpler setups can still act
as demons: we demonstrate that it is sufficient to exploit a nonequilibrium distribution to seemingly break
the second law of thermodynamics. We propose both an electronic and an optical implementation of this
phenomenon, realizable with current technology.
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Introduction.—The second law of thermodynamics
requires entropy to increase on long timescales. Maxwell
demons apparently break this law by decreasing the
entropy in a system without transferring any energy to it
[1]. They do this by measuring individual particles and
performing feedback based on the information acquired.
The second law is restored [2] by the Maxwell demon
generating entropy when erasing the information it has
acquired about the system [3]. Even though highly intri-
cate, such Maxwell demons have been built in electronic
[4–7], superconducting [8,9], and optical [10] systems,
using NMR [11], and optically or electrically controlled
molecules [12] or microscopic objects [13–15].
This Letter shows that a much simpler class of setups has

an analogous effect without involving any measurement of
individual particles (namely, avoiding any acquisition of
information), or any feedback, but instead exploiting a
nonequilibrium (N) distribution. In this sense such a setup
is different from a typical Maxwell demon, and we call it an
N-demon. This N-demon induces a steady-state reduction
of the expectation value of the entropy of a pair of
reservoirs, _S1 þ _S2 < 0, without any steady-state supply
of heat, work, or other energy. We consider two examples
of this entropy reduction: (i) heat in reservoirs 1 and 2 is
turned into work when the two reservoirs are at the same
temperature, generating electrical (or electrochemical)
power while cooling these reservoirs, and (ii) heat is moved
from reservoir 1 to 2, where reservoir 1 is colder. These are,
respectively, apparent violations of the Kelvin and Clausius
versions of the second law. An example of such a N-demon
is shown in Fig. 1(a). This demon injects a nonequilibrium
distribution of particles symbolized by a pair of faucets
inserting particles from cold (blue) and hot (red) distribu-
tions, at rates chosen so that they carry the same average

energy as the backflow of particles (magenta). This way,
there is no steady-state particle or energy flow between the
N-demon and the working substance. In other words, there
is no flow of heat or work. We propose straightforward
implementations of such N-demons in both electronic and

(a)

(b)

FIG. 1. (a) The N-demon supplies no heat or work, but it
supplies a nonequilibrium distribution to the working substance
containing equilibrium reservoirs 1 and 2. The nonequilibrium
distribution could be a nonthermalized mixture of different
equilibrium distributions. Transmission probabilities, T ij, of
the scattering region (beige) involving terminal N are indicated
and accompanied by gray arrows. (b) A physical implementation
in which the nonequilibrium distribution fN is injected locally
into the working substance.
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optical systems, and we show that they do not violate the
second law.
General entropic analysis.—Consider the three-terminal

setup in Fig. 1, where our aim is that terminal N [16] (the
N-demon) reduces the entropy of the working substance
(always indicated with a gray background) containing
reservoirs 1 and 2. We are interested in exploiting terminal
N’s nonequilibrium distribution as the resource, unlike
traditional thermodynamics which exploit heat as the
resource. To clarify the effect of the nonequilibrium
distribution alone, we will concentrate on cases where
terminal N supplies no heat or work to reservoirs 1 and 2;
we will call this the “demon conditions” below.
We assume reservoirs 1 and 2 are each in internal

equilibrium, so the rate of entropy change in each is given
by a Clausius relation _Si ¼ Ji=Ti, where Ji is the heat
current into reservoir i ¼ 1, 2, which has temperature Ti.
For particles in the presence of an electrochemical potential
μi, the heat current is Ji ¼ IEi − μiIi, with the particle
current Ii and the energy current IEi [17,18]. However, as N
is out of equilibrium, there is no such relationship for _SN.
The second law of thermodynamics is

0 ≤ _SN þ J1=T1 þ J2=T2: ð1Þ

The demon conditions in which the N-demon neither
injects nor extracts heat or work are IEN ¼ IN ¼ 0. If the
N-demon were in internal equilibrium, it too would obey a
Clausius relation, so these conditions would fix _SN ¼ 0.
Then Eq. (1) would become the usual second law for two
reservoirs, forbidding the reduction of the sum of their
entropies. However, one can have _SN ≠ 0 under demon
conditions if terminal N is out of equilibrium.
Take example (i) above, with reservoirs 1 and 2 at the

same temperature T, but with μ1 ≠ μ2. The second law in
Eq. (1) becomes P ¼ ðμ1 − μ2ÞI1 ≤ T _SN , where P is the
electrical power output. Thus if _SN is positive, the working
substance is allowed to do work (positive P) even when the
N-demon supplies no work or heat, IEN ¼ IN ¼ 0. This
means the work output comes from a reduction of heat in
reservoirs 1 and 2, J1 þ J2 ¼ −P < 0, in apparent viola-
tion of Kelvin’s second law.
For example (ii) above, T1 ≠ T2, but μ1 ¼ μ2. Then

Eq. (1) becomes J1ðT1 − T2Þ ≤ T1T2
_SN under demon

conditions. So when _SN is positive, heat may flow from
cold to hot (i.e., J1 may have the opposite sign of T2 − T1),
even though no energy comes from the N-demon, in
apparent violation of Clausius’s second law.
These arguments show that the demon effects (i) and

(ii) do not violate the laws of thermodynamics. Note that, to
fix the demon conditions, one requires knowledge of the
steady-state flows of charge and energy, IEi and Ii, but not
of the behavior of individual particles. In particular, the
N-demon operates without needing to know about any

microscopic details of the working substance. Once the
demon conditions are fixed, the N-demon generates work,
without any further measurement or adjustment.
In the rest of this Letter, we propose two systems which

indeed exhibit such effects. Crucially, throughout this
Letter, we assume noninteracting particles, which excludes
any interpretation in terms of autonomous feedback
[6,19–22]. This is the critical difference from a similar
setup with strong Coulomb interactions [23], which can be
understood as an autonomous Maxwell demon [24].
Scattering description.—As there are no interparticle

interactions, the setups of interest can be described using
scattering theory [25,26], which is known to respect the
second law [17,27,28]. The particle and energy currents
into reservoir i are Ii ¼ Ið0Þi and IEi ¼ Ið1Þi , where

IðνÞi ¼ 1

h

X
j

X
k;k0

Z
dEEνT kk0

ij ðEÞ½fjðEÞ − fiðEÞ�: ð2Þ

Here, T kk0
ij ðEÞ are the transmission probabilities from

channel k0 in j to channel k in i at energy E; see Fig. 1
(superscripts k, k0 are dropped when not relevant). For
equilibrium reservoirs, fiðEÞ are Fermi or Bose distribu-
tions, depending on the discussed setup. Importantly, the
demon effect requires that the nonequilibrium terminal N
has asymmetric and energy-dependent couplings to reser-
voirs 1 and 2, with T 1NðEÞ ≠ T 2NðEÞ for at least some
energy E. The electronic and optical setups proposed in
Fig. 2 fulfill these requirements.
For simplicity, in these setups the nonequilibrium dis-

tribution is created from mixing the flows from two
equilibrium reservoirs. Note, however, that no spatial
separation of these two flows is required. Hence, for clarity,

(a) (b)

FIG. 2. (a) Electronic, quantum Hall bar (beige) with two
constrictions with energy-dependent transmissions T dðEÞ of the
N-demon and T wðEÞ of the working substance. The four
reservoirs have different temperatures Ti and electrochemical
potentials μi. (b) Optical setup with four blackbodies with
temperatures Ti and wavelength-dependent half-silvered mirrors
with T dðλÞ and T wðλÞ.
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the proposed setups have the demon and the working
substance exchanging particles at a single point.
Proposed implementation 1: Quantum Hall setup.—As

an electronic implementation, we propose a quantum Hall
bar in contact with four reservoirs, in which electron
transport takes place via chiral edge states [29], marked
by green lines with arrows in Fig. 2(a). Such a setup is in
experimental reach since effects of nonequilibrium distri-
butions [30] and heat current measurements [31] have been
demonstrated. We focus on the N-demon (reservoirs 3 and
4 together taking the role of the nonequilibrium terminal N
in Fig. 1). The demon is connected by a constriction (with
energy-independent transmission, taken for simplicity to be
equal to 1) to the working substance, where it generates
work as in example (i) above. The work is electrical, with
the N-demon moving electrons against the potential differ-
ence μ2 − μ1 between reservoirs 1 and 2. The nonequili-
brium distribution which performs this demonic action is
formed using the equilibrium distributions from reservoirs
3 and 4 with possibly different temperatures T3=4 ¼ T þ
δT3=4 and electrochemical potentials, μ3=4 ¼ μþ δμ3=4.
Mixing by an energy-dependent scatterer with transmission
T dðEÞ, yields fNðEÞ ¼ ½1 − T dðEÞ�f3ðEÞ þ T dðEÞf4ðEÞ.
Two of the four parameters (δT3, δT4, δμ3, and δμ4)
determine the out of equilibrium distribution, while the
other two are tuned to ensure the demon conditions, I3 þ
I4 ≔ IN ¼ 0 and IE3 þ IE4 ≔ IEN ¼ 0. These demon condi-
tions are similar to the condition for a voltage or temper-
ature probe [29,32,33], but we repeat that they should not
be confused with the measurement-feedback scheme of a
standard Maxwell demon.
The energy-dependent transmission asymmetry is done

by inserting a scatterer with transmission T wðEÞ, leading to
transmission probabilities T 14ðEÞ ¼ T dðEÞT wðEÞ and
T 21ðEÞ ¼ T wðEÞ. In the linear regime (small potential
and temperature differences), analytic results are as follows.
For affinities Fμ

i ¼ δμi=kBT and FT
i ¼ δTi=kBT2, and

defining Fx
ij ¼ Fx

i − Fx
j , the demon conditions imply that

Fμ
32 ¼ FT

3

ðg1dÞ2 þ g0dX
2
0d

g00g
1
d

− FT
4

ðg1dÞ2 − g0dg
2
d

g00g
1
d

; ð3Þ

and that Fμ
42 takes the same form, with g0d replaced by −X0

0d.
Here, Xν

αβ ¼ gνα − gνβ for α; β ¼ d; w; 0, with gνα…β ¼
ðkBT=hÞ

R
dEð−∂EfÞEνT α…T β for Fermi function f

and T 0 ¼ 1. Then the particle currents are

I1 ¼ −I2 ¼ g0wF
μ
21 þ FT

3

g20ðg0wg0d − g0dwg
0
0Þ þ g00g

1
wg1d

g00g
1
d

− FT
43

�
g0w

ðg1dÞ2 − g2dg
0
d

g1dg
0
0

−
g1dg

1
dw − g0dwg

2
d

g1d

�
: ð4Þ

The crucial point is that the second and third terms on the
right-hand side can overcome the first term such that a

current flows between reservoirs 1 and 2 against the
potential gradient. Algebra shows that this occurs only
for transmissions with the properties below Eq. (2).
In stark contrast with known thermoelectric generators

[17,18,34], this works even if the working substance is
electron-hole symmetric [T wðEÞ symmetric about μ]. The
nonequilibrium distributions break the electron-hole sym-
metry [via T dðEÞ], so one can have finite power output
even when T wðEÞ is symmetric.
Figure 3 presents results for the nonlinear regime, from

Eq. (2), for arbitrary Ti and μi. We choose the N-demon’s
transmission as a quantum point contact, T dðEÞ ¼
θðE − εdÞ, and the working substance’s transmission to
be that of a weakly coupled quantum dot, T wðEÞ ¼
Γ2=½ðE − εwÞ2 þ Γ2� with small width Γ. These are exper-
imentally well understood and controllable circuit ele-
ments. For fixed T d and temperatures T3 and T4,
Figs. 3(a) and 3(b) show the regions where the demon
conditions can be met by adjusting μ3 and μ4 and where
power generation is possible with εw tuned to a suitable
value with gates. The shape of these maps depends on T d;
however they usually show power generation under demon
conditions in an extended parameter regime, even when
T3 ¼ T4, so long as T3 ≠ T; see Fig. 3(a).

(b)

(a) (e)

(f)

(c) (d)

FIG. 3. Power generation in the working substance of the
quantum Hall setup. T d is a step function with threshold
εd=kBT3 ¼ 0.5, and T w has a resonance εw with width Γ.
(a) T3 ¼ T4. Map of regions where the demon conditions cannot
be fulfilled (cyan), where they can be fulfilled, but no power is
generated (yellow), and where power generation with the
N-demon is possible (green). At × the N-demon produces
maximum power if εw ¼ 0; the injected nonequilibrium distri-
bution is shown in (c) compared to f3=4ðEÞ (dashed lines).
(b) Same as (a), with T4 ¼ 2T3. The injected nonequilibrium
distribution at ⊗ is shown in (d). (e) Power generated in the
working substance and (f) entropy production in the N-demon,
for T3 ¼ T4 ¼ 7T=10 [white dashed line in (a)] and different εw.
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Taking T3 ¼ T4 ¼ 7T=10, Fig. 3(e) shows the power
generated as a function of μ1 − μ2 and for different εw. For
two specific situations, we show the nonequilibrium dis-
tribution injected by the N-demon; see Figs. 3(c) and 3(d).
As required by Eq. (1), the entropy production in the N-
demon, _SN ¼ J3=T3 þ J4=T4, is always larger than P=T;
see Fig. 3(f). However, in contrast to what one would
expect from a feedback-based demon [6,19–22], the
entropy production of the N-demon does not depend on
the details of the working substance. Importantly, this
entropy production is spatially completely separated from
the working substance, and its control (or even minimiza-
tion) is hence of minor relevance.
Proposed implementation 2: Optical setup.—Figure 2(b)

shows a N-demon implementation of example (ii) above in
an optical setup with noninteracting photons [35]. The
demon part of the setup consists of two thermal (blackbody)
photon sources at temperatures T3 and T4, emitting light in a
wavelength window ½λb; λa� (respectively, an energy win-
dow ½Ea; Eb� with Ea;b ¼ hc=λa;b). Both emit photons
onto a mirror, which transmits or reflects light in a wave-
length-selective manner T dðλÞ. The resulting nonequili-
brium distribution is sent into the lower part of the device,
the working substance. The latter consists of two black-
bodies with a temperature difference ΔT ¼ T1 − T2. The
relation between temperatures required to satisfy the demon
condition, IE3 þ IE4 ¼ 0, depends on the N-demon’s trans-
mission T dðλÞ and the transmission T wðλÞ of the working
substance. In linear response the demon conditions reduce to
FT
3 ¼ ½ðg20 − g2wÞFT

1 þ g2wFT
2 − g2dF

T
4 �=ðg20 − g2dÞ, with the

same abbreviations as for the electronic setup, but with
fiðEÞ≡ fiðhc=λÞ being Bose distributions. Then

IE2 ¼ ½AFT
12 − g20g

2
dwF

T
14 þ g2dg

2
wFT

24�=ðg20 − g2dÞ; ð5Þ

where A ¼ g2wð2g20 − g2d − g2w þ g2dwÞ. A simple example
shows that heat flow between reservoirs 1 and 2 is not
always from hotter to colder. Fixing the wavelength-depen-
dent transmissions to be T dðλÞ ¼ θðλ − λ0Þ ¼ 1 − T wðλÞ,
we have IE2 → g10F

T
12 þ g1dF

T
24. Then heat flows from cold to

hot when FT
12 and FT

24 have opposite signs, and the
magnitude of FT

24 compensates for the difference between
g20 and g2d. Figure 4(a) shows the full, nonlinear energy
current into reservoir 2 as function of T andΔT. Cooling of
the colder reservoir occurs between the dashed lines.
Figures 4(b) and 4(c) show line plots of the cooling power
(black lines) for two examples at fixed temperatures T
(indicated by arrows). They also show that the cooling power
is enhanced by tuning λ0. We have assumed that each
frequency contributes with a single spatial mode. An
increase of the overall cooling power is expected when
increasing the mode number.
Requirements for experimental demonstrations.—For the

quantum Hall implementation of the N-demon, we expect
power outputs of the order of P ≈ 10 aW when choosing

T ¼ 70 mK, T3 ¼ T4 ¼ 100 mK, and Γ ¼ 1 μeV
ð≈0.1kBTÞ. In the optical setup in the near-infrared regime,
with wavelengths λd ¼ λw ¼ 6.2 μm, λa ¼ 12.4 μm, and
λb ¼ 0.25 μm and temperatures around T ¼ 1000 K, the
cooling power changes between 0 and�0.1 μWfor temper-
ature gradients between �100 K and 0, respectively. These
numbers are experimentally attainable. It is also necessary to
experimentally demonstrate that the device is operating
under the demon condition. For the electronic setup in
Fig. 1(a), a quantum dot with a sharply peaked transmission
T wðEÞ was chosen for the example studied in Fig. 3
because it allows a readout [30] of the incoming non-
equilibrium distribution function. An additional side-
coupled dot could be used at the outgoing channel from
reservoir 2 to 3 to monitor the reinjected equilibrium
distribution. In the optical setup the incoming and outgoing
light from the N-demon can be split by a mirror and sent on
separate spectrum analyzers. From the detected distribution
functions particle and energy currents can be deduced.
Practical uses.—Our demons are less intricate to con-

struct than standard Maxwell demons, so their practical
uses merit consideration. The implementations that we
suggest could be used to spatially separate production from
reduction of entropy for nanoscale heat management. This
is a more general version of the nonlocality of thermo-
dynamics laws identified in Ref. [23]. Crucially, if some
other independent process generates a nonequilibrium
distribution as “waste,” our results show that one can
use its nonequilibrium nature as a resource to perform
work (or cooling).

(a)

(c)

(b)

FIG. 4. Optical N-demon. (a) Cooling power (energy current
into reservoir 2) as a function of ΔT and T for T1ð2Þ ¼ T � ΔT,
and fixed T3. We set λ0 ¼ λ�, and λb ¼ 0.02λ�, λa ¼ 5λ�. T4 is
given by the demon conditions, which cannot be fulfilled in the
dark-gray region (light-gray regions have unphysical negative
T1=2). White and black dashed lines at ΔT ¼ 0 and at vanishing
cooling power are shown as guides for the eye. The black lines in
(b) and (c) show cuts marked by green and magenta arrows at
T ¼ 0.9T3 and T ¼ 1.1T3, respectively, together with results for
different λ0 ¼ 2λ�, 3λ� but the same T (lines stop when demon
conditions are unfulfillable).
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Conclusion.—We have shown that nonequilibrium dis-
tributions can be exploited for power generation and
cooling in a demonlike manner. In contrast to other
demonlike devices exploiting “engineered reservoirs”
(see, e.g., Refs. [36–38]), our proposal does not require
any subtle quantumcoherence or correlation effects.Wehave
proposed two very different implementations that could be
constructed with current technology. For clarity, our two
examples have their nonequilibrium distributions made out
of two equilibrium reservoirs; however nature is rife with
other types of nonequilibrium systems. Our thermodynamics
arguments imply that generic nonequilibrium systems could
act as N-demons. It is sufficient that the demon and the
working substance exchange energy, similar to Ref. [23];
there is no requirement for the particle exchange. One could
also have hybrid systems, e.g., an opticalN-demon acting on
an electronic working substance. Transient nonequilibrium
effects may also be of interest [39].
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