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As in the main text, we fix Lx = 100a0, Ly = 5a0, a =

0.5a0, and t = t0(a0/a)2, a0 ≡ 1 and t0 ≡ 1 being our space
and energy units.

I. FINITE-SIZE EFFECTS

The low-temperature transport coefficients S̄LT , S̄LL, and
ḠLL are strongly dependent on the ribbon width W . As noticed
in the main text, the 2DEG limit (W → ∞) is guaranteed at fi-
nite W as long as the tip is moved in a small region around the
QPC center (the smaller W , the smaller the region). Outside
this region, additional scattering against the ribbon boundaries
become relevant. We show in Fig.S1 how the interference pat-
terns of S̄LT vary when W is increased, keeping fixed the lat-
tice spacing a. For small µ = 0.2 (i.e. when the QPC is tuned
to its first transmission step, top panel in Fig.S1), finite-width
effects along the axis yT = 0 are negligible for |xT | . 80 and
W ≥ 100, and we check that S̄LT → 0 at large |xT |. At larger
µ = 0.8 (i.e. when the QPC is tuned to its second transmis-
sion plateau, bottom panel in Fig. S1), stronger finite-width
effects in W appear at large xT . They prevent us from provid-
ing a rigorous numerical proof of the cancellation of S̄LT away
from the QPC, in the 2DEG limit. This would require longer
calculations that we did not run.

II. DEPENDENCE OF THE TRANSPORT COEFFICIENTS
ON THE TIP-2DEG COUPLING

The amplitude of the tip-induced oscillations of the low-
temperature transport coefficients S̄LT , S̄LL, and ḠLL increases
with the tip-2DEG hopping term tT . We find numerically that
S̄LT/(tT/t)2, (S̄LL − S̄0

LL)/(tT/t)2, and (ḠLL − Ḡ0
LL)/(tT/t)2

are (almost) independent of tT in the low coupling limit (tT �
t). This is illustrated in Fig. S2.

III. TRANSMISSION PLOTS

In the low temperature limit and within linear response
regime, the (dimensionless) local and non-local thermopowers
S̄LL and S̄LT are controlled by the transmissions τRL, τLT , τT R
and their derivatives ∂EτRL, ∂EτLT , ∂EτT R, through Eqs. (8)
and (12) of the main paper (with ταβ = τβα for α,β = L, R
or T ). To understand the behavior of S̄LL and S̄LT with the tip,
it is therefore instructive to investigate how the transmissions
ταβ and their derivatives ∂Eταβ vary when the tip is moved

FIG. S1. Non local thermopower S̄LT in the low temperature limit
as a function of the tip position xT , for various values of the ribbon
width W (W = 100 (black line), 500 (red line), 1000 (green dashed
line), and 2000 (blue dashed line)). Data are shown for µ = 0.2
(top panel) and µ = 0.8 (bottom panel). In both panels, yT = 0 and
tT = 0.1t.

above the 2DEG. Our results are summarized in Figs. S3 and
S4. In those figures, the tip is moved along the x axis at fixed
yT = 0 or yT = 3.

In Fig. S3, we see that for µ . 0.2 i.e when τ0(µ) = 0
(see Fig. 1 of the main paper), the left-to-right transmission
of the three-terminal device vanishes (τRL = τ0 = 0) since the
QPC is closed. However, if the tip is placed between the QPC
and the left lead, electrons coming from the tip can flow to-
wards the left lead, after a sequence of bounces against the
QPC barrier. This explains why interference fringes are visi-
ble for xT < 0 at small µ . 0.2 in the colormaps of τLT (xT ,µ)
shown in Fig. S3 (third column). For symmetry reasons, the
same behavior is observed for τT R(xT ) = τLT (−xT ) (last col-
umn of Fig. S3). When µ is increased so as one electronic
mode can be transmitted through the QPC (0 < τ0(µ) ≤ 1),
τRL increases. The latter is almost unaffected by the presence
of the tip on the first QPC plateau while deviations of τRL from
its value τ0 without tip are relevant around the first QPC step.
In all cases, τRL(xT ) = τRL(−xT ). On the contrary, the col-
ormaps of τLT (and τT R as well) are strongly asymmetric with
respect to the axis xT = 0. When µ is increased further so
as 1 < τ0(µ) ≤ 2, the second QPC channel comes into play.
Due to its V-shaped spatial structure, it has no interplay with
the tip if the latter is moved along the axis yT = 0 (top panels
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FIG. S2. Tip-induced oscillations of the low-temperature transport coefficients (S̄LT (left), S̄LL (middle), and ḠLL (right)), as a function of the
tip position xT , for different values of the tip-2DEG hopping term tT (tT = 0.01t (black line), 0.2t (red line), 0.3t (green line), 0.4t (orange
line), 0.5t (blue line), and t (dark green line)). After shifting and scaling the data for S̄LT , S̄LL, and ḠLL along the y−axis, the curves of
S̄LT /(tT /t)2, (S̄LL− S̄0

LL)/(tT /t)2, and (ḠLL− Ḡ0
LL)/(tT /t)2 are nearly superimposed for small tT � t. In all panels, yT = 0, W = 500 and

µ = 0.2.

FIG. S3. Transmission maps as a function of µ and xT for yT = 0 (top line) and yT = 3 (bottom line). From left to right, colormaps are shown
for τRL, τRL− τ0, τLT , and τT R evaluated at the energy µ . The three regions where τ0(µ) = 0, 1 and 2 (corresponding respectively to the
zero-th, first, and second QPC plateau) are clearly visible in the leftmost panels for τRL since the deviation of τRL from its value without tip τ0
is small compared to 2 everywhere. In all panels, W = 100 and tT = 0.1t.

in Fig. S3). However, signatures of the opening of the second
QPC channel are clearly visible in the different transmission
maps along yT = 3 (bottom panels in Fig. S3).

In Fig. S4 (first three lines), we show horizontal cuts of the
colormaps displayed in Fig. S3 for four values of µ (0.2, 0.4,
0.595, and 0.8) considered in Figs. 2 and 3 of the main pa-
per and for which the QPC is tuned respectively to its first
step, first plateau, second step, and second plateau of conduc-
tance. Data are shown for the transmissions τRL, τLT , τT R
(red lines) and their derivatives ∂EτRL, ∂EτLT , ∂EτT R (blue
dashed lines). In addition, we also show data for the local
thermopower S̄LL, obtained using Eq. (12) of the main paper

(purple lines in the bottom panels of Fig. S4). On the QPC
steps (first and third columns in Fig. S4), τLT ,τT R� τRL and
∂EτLT ,∂EτT R � ∂EτRL, so that the local thermopower S̄LL is
well approximated by the formula (orange dashed lines in the
first and third bottom panels)

S̄LL ≈
∂EτRL

τRL
on the QPC steps (S1)

that neglects the small asymmetry S̄LL(xT ) 6= S̄LL(−xT ). On
the QPC plateaus (second and fourth columns in Fig. S4),
τRL ≈ τ0 while ∂EτRL� ∂EτLT ,∂EτT R, and so S̄LL is very well
approximated by the formula (orange dashed lines in the sec-
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FIG. S4. (First line) τRL (red full line) and ∂E τRL (blue dashed line) as a function of xT , along yT = 0 at µ = 0.2 (first column) and µ = 0.8
(fourth column), and along yT = 3 at µ = 0.4 (second column) and µ = 0.595 (third column). (Second line) Same for τLT (red full line) and
∂E τLT (blue dashed line). (Third line) Same for τT R (red full line) and ∂E τT R (blue dashed line). Note that τT R(xT ) = τLT (−xT ). (Last line)
Same for the local thermopower S̄LL (purple full line) and the approximate value S̄approx

LL (orange dashed line) defined as S̄approx
LL = ∂E τRL/τRL

for µ = 0.2 and µ = 0.595 (i.e. on the QPC steps) and as S̄approx
LL = τT R∂E τLT /[τ0(τLT + τT R)] for µ = 0.4 and µ = 0.8 (i.e. on the QPC

plateaus). In all panels, W = 100 and tT = 0.1t.

ond and fourth bottom panels)

S̄LL ≈
τT R∂EτLT

τ0(τLT + τT R)
on the QPC plateaus. (S2)

As a result, S̄LL is finite only when the tip is on the left side
of the QPC (i.e. the one attached to the hot reservoir) because
∂EτLT ≈ 0 for xT > 0 while it is finite for xT < 0, and τT R
is also (small but) finite for xT < 0. This explains the origin
of the asymmetry in the interference patterns of S̄LL (giving
rise to the rectification effect discussed in the main paper) and
why this asymmetry is more visible on the QPC plateaus than
on the QPC steps.

IV. BEYOND THE COHERENT REGIME

The results described above assume coherent quantum
transport through the device, except in the vicinity of the tip
playing the role of a scanning voltage probe. We will now
investigate (in a phenomenological way) the effects of inco-
herent scattering on a large scale around the QPC. For that
purpose, we introduce in our system fictitious probes mim-
icking inelastic (electron-electron) scattering. In a region of
width Wp and length Lp around the QPC center, we attach to
each site Sp in the 2DEG a semi-infinite chain (with lattice
parameter a) directed along the axis z < 0 and described by
the Hamiltonian

Hp =−t ∑
〈i, j〉

c†
i c j +µ ∑

i
c†

i ci . (S3)

We denote by tp the (spatially uniform) hopping term be-
tween the site Sp and its nearest neighbor in the probe p. At
the energy µ around which transport is investigated, the self-
energy of a probe is purely imaginary and reads Σp(i, j) =

−i(t2
p/t)δi j. Each probe p is also attached to an electronic

reservoir characterized by its temperature θp and electrochem-
ical potential µp. Their values adjust in such a way that the net
average charge and heat currents flowing through the probe
vanish (i.e. Ie

p = 0, Ih
p = 0). Contrary to the tip which acts as

a voltage probe, those probes do not exchange heat with the
2DEG. Such probes have been used in the literature to model
local thermometers.1–4 Here, we use them to investigate the
role of inelastic processes upon the thermoelectric response
of our device, in the spirit of Refs. 5–7.

We proceed as follows. We compute the set of ταβ (µ)
and ∂Eταβ (E = µ) between the 3 + M reservoirs, M being
the number of fictitious probes. We deduce (with Eq. (6)
of the main paper) the total Onsager matrix (of dimension
[2(M + 2)]2) in the low temperature limit. Then we write
down Eq. (5) of the main paper for the particle and heat cur-
rents in the M probes (by noticing that the index β in Eq. (5)
now runs over L, T , and the M probes) and we impose the
probe condition i.e. Ie

p = 0, Ih
p = 0 to deduce the values of

∆µp = µp − µ and ∆θp = θp − θ (p = 1, ...,M) as a func-
tion of ∆µL, ∆µT , ∆θL, and ∆θT . In practice, this requires to
solve four systems of 2M linear equations. We insert those
values into Eq. (5), now written for α = L and T , and de-
fine thereby an effective 4× 4 Onsager matrix L̃ that relates
through Eq. (5) the particle and heat currents (Ie

L, I
h
L , I

e
T , I

h
T ) to

the biases (∆µL,∆θL,∆µT ,∆θT ). In the end, we can repro-
duce the study done in Sections III and IV of the main paper
in the presence of incoherent scattering processes by replacing
therein the coherent Onsager matrix L with L̃. The resulting
S̄LT , S̄LL, and ḠLL are independent of θ in the low temperature
limit.

Our results are summarized in Fig. S5. In Fig. S5(a), we
show that the conductance Ḡ0

LL and the thermopower S̄0
LL of

the QPC without tip respectively decreases (till vanishing) and
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FIG. S5. Effect of fictitious probes on the thermoelectric response.
(a) Ḡ0

LL (black squares) and S̄0
LL (red circles) without tip, as a func-

tion of tp/t, for µ = 0.8. Dashed lines are guides to the eye. (b)
S̄LT (xT ,yT = 0) in the low temperature limit for µ = 0.2 and var-
ious values of tp (tp = 0.001t (black line), 0.03t (red line), 0.05t
(green line), 0.07t (cyan line), 0.1t (pink line), 0.2t (orange line),
and 0.3t (blue line)). (c) Same as (b) for µ = 0.8. (d) Same as (c) for
∆S̄LL ≡ S̄LL− S̄0

LL. (e) Same as (d) for ∆ḠLL ≡ ḠLL− Ḡ0
LL. In panels

(b) to (e), data without fictitious probes (corresponding to Figs.2(a),
2(d), 3(d) and 3(h) of the main paper) are shown with black dots.
Parameters: W = 100, Wp = 100, Lp = 60, and tT = 0.1t (except in
(a) where tT = 0).

increases (before decreasing and vanishing) with the hopping
term tp. Thus, the fictitious probes become invasive as soon as
tp & 0.1t : In addition to incoherent scattering processes, they

induce backscattering.8 In Figs. S5(b)-(e), we add the tip and
explore how the interference patterns of S̄LT , S̄LL, and ḠLL are
modified in the presence of the fictitious probes. We check
first that we recover the coherent limit discussed in the main
paper when tp → 0 (as evidenced by the superposition of
dots on black lines in Figs. S5(b)-(e)). As long as the ficti-
tious probes are non invasive (i.e. in the weak coupling limit
tp . 0.01t), S̄LT , S̄LL, and ḠLL are unaffected by the probes.
For larger tp, the tip-induced oscillations of S̄LT , S̄LL and ḠLL

– around 0, S̄0
LL and Ḡ0

LL respectively – die out gradually. The
present investigation does not allow us however to disentan-
gle the roles of (invasive) backscattering and (noninvasive) in-
coherent scattering processes. To assess specifically the ef-
fect of quantum coherence on the tip-induced thermoelectric
effects discussed in the main paper, other models might be
considered.8–11 This is left for future works.
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