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Abstract – We theoretically propose Nernst engines based on quantum Hall edge states. We
identify a setup that exhibits an extreme asymmetry between the off-diagonal Onsager coefficients
for heat and charge transport. In terms of thermodynamic efficiency, this engine outperforms a
recently proposed classical Nernst engine. A second setup using an antidot is found to be more
efficient as energy filtering becomes less strong.

Copyright c© EPLA, 2014

Introduction. – Nanoscale thermoelectrics has re-
cently received a lot of interest. On the one hand,
this was driven by fundamental questions that aimed,
e.g., to understand the thermopower of basic meso-
scopic devices such as quantum point contacts [1–3] or
quantum dots [4–12]. On the other hand, nano heat
engines are also promising candidates for energy har-
vesting applications [13–18]. Three-terminal harvesters
benefit from the possibility to separate charge and heat
flows. In a four-terminal configuration, this can be
taken to the extreme: two different pairs of termi-
nals serve for the injection of charge and heat currents,
respectively.

A central question that is relevant both from a funda-
mental as well as from an applied point of view concerns
the limits on the efficiency of a heat engine operating be-
tween a hot and a cold reservoir with temperatures T1 and
T2, respectively.

A first answer to this question was obtained by
Carnot who showed that thermodynamics dictates the ef-
ficiency to be smaller than the Carnot efficiency ηC =
1 − T2/T1. By now, several theoretical works demon-
strated the possibility of reaching ηC in nanoscale heat
engines [13,15,16,19–22]. However, this limit can only be
reached for a heat engine that operates reversibly and,
therefore, does not generate any output power.

For applications it is therefore more relevant to analyze
the efficiency at maximum power (EMP) ηmaxP. Using
the framework of linear irreversible thermodynamics it was
shown that a system with time-reversal symmetry satisfies

ηmaxP = (ηC/2)[ZT/(1 + ZT )] where the figure of merit
satisfies ZT ≥ 0 [23]. ZT diverges in the tight-coupling
limit where heat and charge currents are proportional to
each other and ηmaxP takes its maximal value ηC/2. While
the above limit is completely universal, this is no longer
true in the nonlinear regime where ηmaxP depends on the
symmetry of the heat engine [24].

For systems that break time-reversal symmetry, the
EMP not only depends on the figure of merit but
also on the asymmetry of the off-diagonal Onsager
coefficients [25]. For a finite asymmetry, the EMP can
overcome the bounds imposed by thermodynamics in the
presence of time-reversal symmetry and even reach Carnot
efficiency [25]. However, in multi-terminal setups, cur-
rent conservation imposes additional constraints that lead
to an EMP smaller than ηC but can be larger than
the bound ηC/2 valid in the presence of time-reversal
symmetry [26,27].

A particular realization of such multi-terminal setups
breaking time-reversal symmetry is given by a Nernst en-
gine where a magnetic field is applied perpendicular to a
two-dimensional conductor. A temperature bias along the
sample will then give rise to a charge current perpendicular
to both the temperature gradient and the magnetic field.
Recently, such a Nernst engine based on transport of clas-
sical particles in a four-terminal setup has been analyzed
in ref. [28]. This classical Nernst engine has off-diagonal
Onsager coefficients of equal magnitude and opposite sign.
It was shown to saturate the resulting bounds on efficiency
and EMP. Experimentally, the thermopower of different
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multi-terminal setups subject to magnetic fields has been
measured [29–31].

Here, we establish a quantum analogue of the classical
Nernst engine based on a four-terminal cross structure in a
two-dimensional electron gas in the quantum Hall regime
where transport occurs along dissipationless edge chan-
nels. As energy-dependent scattering is a prerequisite for
any thermoelectric response in order to break particle-hole
symmetry, we analyze different ways of introducing it into
the system. The central questions we address are what
asymmetry the quantum Nernst engine exhibits and what
bounds for the maximal efficiency and EMP derive from
it. We also check if the different realizations of quantum
Nernst engines that we consider saturate these bounds.

Mesoscopic Nernst effect. – We start by briefly
reviewing the scattering theory of thermoelectric
transport [32,33]. We consider a central scattering region
connected to single-channel electric leads i with chemical
potential μ + eVi and temperature T + ΔTi. In linear
response in the applied voltage and temperature bias, the
charge and heat current, Ie,h

i , can be compactly written
as

Ie
i =

∑
j

e
(
LeV

ij FV
j + LeT

ij FT
j

)
, (1)

Ih
i =

∑
j

(
LhV

ij FV
j + LhT

ij FT
j

)
. (2)

In eqs. (1) and (2) FV
i = eVi/kBT and FT

i =
kBΔTi/(kBT )2 denote the affinities that drive particle and
heat currents. Furthermore, we introduced the linear-
response Onsager coefficients(

LeV
ij LeT

ij

LhV
ij LhT

ij

)
=

1
h

∫
dE

(
1 E
E E2

)
δij − Ti←j(E)
4 cosh2 E

2kBT

, (3)

that link currents to affinities. Here, Ti←j(E) denotes the
energy-dependent transmission probability from lead j to
lead i. We remark that within linear response heat and
energy currents are identical.

We now consider more specifically the case of a meso-
scopic Nernst engine. It consists of a four-terminal struc-
ture, cf. fig. 1, with a temperature bias applied between
contacts 1 and 3. In addition, a bias voltage can be ap-
plied between contacts 2 and 4 to generate a finite output
power. For a Nernst engine, we impose the boundary con-
ditions Ie

1 = Ie
3 = 0, i.e., terminals 1 and 3 act as voltage

probes [32]. At the same time, we have the boundary
conditions Ih

2 = Ih
4 = 0, i.e., terminals 2 and 4 act as

temperature probes [34].
Eliminating FV

1 , FV
3 , FT

2 , FT
4 using the boundary con-

ditions and setting the charge current Ie = Ie
4 and heat

current Ih = Ih
3 , we obtain

I = LF (4)

with I = (Ie, Ih)T , F = (FV
4 − FV

2 , FT
3 − FT

1 )T and

L =
( LeV LeT

LhV LhT

)
. (5)

Ie

Ih

B

V4
V2

ΔT1

ΔT3

Fig. 1: (Colour on-line) Schematic sketch of a generic
mesoscopic Nernst engine. Four terminals are connected to
a scattering region subject to a perpendicular magnetic field.
A temperature bias is applied between terminals 1 and 3 while
a voltage bias is applied between terminals 2 and 4. A heat
current flows between terminals 1 and 3. In addition, a charge
current flows between terminals 2 and 4.

The Onsager coefficients L can be obtained from the coef-
ficients L given in eq. (3). We discuss their explicit forms
in the specific examples discussed below. Due to the pres-
ence of a magnetic field and inelastic scattering at the
probe terminals, we have LeT �= eLhV at a given mag-
netic field. This is permitted by the Onsager relations
which only relate the off-diagonal coefficients to one an-
other for a reversed magnetic field [35]. In the following,
we discuss the implications of this property for the maxi-
mal power, maximal efficiency and EMP.

The power the heat-driven current delivers by perform-
ing work against a bias voltage FV

4 − FV
2 is given by

P = −Ie kBT

e
(FV

4 − FV
2 ). (6)

The corresponding efficiency of heat-to-work conversion is
given by the ratio between output power and input heat,
η = P/Ih. As was shown in ref. [25], the maximal effi-
ciency is given by

ηmax = ηCx

√
1 + y − 1√
1 + y + 1

, (7)

where y = LeT LhV /Det L is the generalized figure of
merit and x = LeT /(eLhV ) denotes the asymmetry of the
off-diagonal Onsager coefficients. Optimizing the output
power with respect to the applied bias for a fixed temper-
ature difference, we get the maximal power

Pmax =
1
4

kBT

e

(LeT )2

LeV
(FT

3 − FT
1 )2, (8)
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and the associated EMP

ηmaxP =
ηC

2
xy

2 + y
. (9)

The second law of thermodynamics requires the rate
of entropy production to be non-negative, Ṡ = FT I =
FT LF ≥ 0. This imposes the condition that L is positive
semidefinite. This translates into the condition 0 ≤ y ≤
h(x) with h(x) = 4x/(1 − x)2 for x > 0 and h(x) ≤ y ≤ 0
for x < 0. Hence, for |x| > 1, the EMP can be larger than
ηC/2 and even reach Carnot efficiency in the limit x → ∞.
However, as was shown in ref. [28], for a Nernst engine the
conservation of current imposes the additional constraint
that the matrix K1 = L+LT +i(L−LT ) is positive semi-
definite. This gives rise to the condition y ≤ 2x/(1 − x)2

and therefore ηmax ≤ ηC

(
1 − x + x2 − |1 − x|√1 + x2

)
as

well as ηmaxP ≤ (ηC/2)x2/(x2 − x + 1).
For some of the systems discussed below we will find

that instead of the matrix K1 being positive semi-definite,
they fulfill the stronger condition that the matrix Kα =
L + LT + i

√
α(L − LT ) with some parameter α ≥ 1

is positive semi-definite as well. This leads to the
slightly more general bound y ≤ 4x/[(1 + α)(1 − x)2]
and, hence,

ηmax ≤ ηC

2

[
1 + x2 + α(1 − x)2

− |1 − x|√1 + α
√

(1 + x)2 + α(1 − x)2
]
, (10)

as well as

ηmaxP ≤ ηC

2
2x2

1 + x2 + α(1 − x)2
. (11)

Results. – In the following we analyze the thermoelec-
tric performance of different types of quantum Nernst en-
gines. We will start by a setup where two of the arms of a
cross structure contain quantum point contacts. We then
discuss the case in which an antidot is embedded into the
middle of the cross structure.

Quantum point contacts. The first quantum Nernst
engine we consider has a quantum point contact embed-
ded into arms 1 and 2 of the cross structure, cf. fig. 2(a).
For simplicity, we model the energy-dependent transmis-
sion of the quantum point contacts by a step function
with threshold energy E1 and E2, respectively. We find
qualitatively similar results in the case of a more realistic
transmission, such as the saddle point potential model of
a quantum point contact [36]. The Onsager coefficients
of the Nernst engine for E1 > E2 are found to be (for
E2 > E1 the roles of E1 and E2 in the expression for LeT

are simply exchanged)

Lqpc =⎛
⎜⎜⎜⎝

e

h

g1,E2g3,E2 −g2
2,E2

g3,E2

e

h

g2,E2(g1,E1g3,E1−g2
2,E1

)
g1,E1g3,E2

0
1
h

g1,E1g3,E1−g2
2,E1

g1,E1

⎞
⎟⎟⎟⎠, (12)

V4V2

ΔT1

ΔT3

a)

Fig. 2: (Colour on-line) (a) Quantum Nernst engine I. Edge
channels in a 2-dimensional electron gas in the quantum Hall
regime propagate in a four-terminal cross geometry with two
quantum point contacts. Terminals 1 and 3 are temperature-
biased and inject heat but no charge current while terminals 2
and 4 are voltage-biased and inject charge but no heat current
into the sample. (b) Maximal power and (c) EMP as a function
of the threshold energy E1 for E2 = E1.

where the analytic expressions for the functions gn,y are
given in the appendix.

In contrast to the classical Nernst engine which has
LeT = −eLhV [28], for the quantum Nernst engine we
find LhV = 0 for our choice of magnetic field direction.
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Hence, the asymmetry parameter x diverges, x → ∞. As
a consequence, the maximal efficiency and the EMP co-
incide. As discussed above, current conservation implies
that the matrix K1 is positive semidefinite and, hence, im-
poses the upper bounds ηmax = ηmaxP ≤ ηC/2. However,
for the specific form of the Onsager coefficients L we find
that even the matrix K3 is positive semidefinite and hence
the stronger bounds ηmax = ηmaxP ≤ ηC/4 apply.

We now want to address the question if the efficiency
bounds that we have just established are saturated. To
this end, we show in fig. 2(b) and (c) the maximal
power and EMP as a function of the threshold energy
of QPC 1 for E1 = E2 (we checked that both the out-
put power and the efficiency are maximal along this line).
We find that the system delivers a maximal power of
Pmax ≈ 0.1(kBΔT1 − kBΔT3)2/h for E1 ≈ −0.3kBT .
At this point, the device has an efficiency of ηmaxP ≈
0.12ηC . For E1 = E2 → ∞ the largest EMP of ηmax =
ηC/4 is reached, i.e., the bound deriving from K3 be-
ing positive-semidefinite is indeed saturated. Interestingly,
the quantum Nernst engine we propose here outperforms
the classical Nernst engine discussed in ref. [28] in terms
of efficiency even if it does not saturate the bounds that
derive from current conservation alone. We remark that
similarly to the classical Nernst engine the output power
in the regime of largest EMP is exponentially suppressed.

We finally briefly comment on the fluctuation-disspation
theorem in our setup. From scattering theory, we derive
that the equilibrium correlations between charge and heat
currents satisfy [37]

Seq
IeIe = 4eLeV , (13)

Seq
IhIh = 4kBTLhT , (14)

Seq
IeIh = Seq

IhIe = 2kBT (LeT + eLhV ). (15)

This means that for the cross correlations we have to use
the symmetrized Onsager coefficients. In our setup one
of the off-diagonal Onsager coefficiencts vanishes. This
implies that the cross correlations between heat and charge
are only half as big as one could expect naively.

Antidot. We now turn to second type of Nernst en-
gine which demonstrates that for systems with broken
time-reversal symmetry better energy filtering does not
necessarily lead to higher efficiency [25]. This is in di-
rect contrast to time-reversal symmetric systems where
stronger energy filtering leads to higher efficiency. The
setup consists of a quantum Hall cross structure with an
antidot embedded in the middle, cf. fig. 3(a). A re-
lated setup with helical edge channels in a two-dimensional
topological insulator and different boundary conditions
has been recently discussed in ref. [38]. The antidot has
a resonance with energy Er which is coupled to the edge
states with coupling strength Γi. For j �= i + 1 we have
Tj←i(E) = ΓiΓj−1/Δ, where Δ = (E − Er)2 + Γ2/4 with
Γ =

∑
i Γi while for j = i + 1 we have Ti+1←i(E) =

1 − Γi(Γ − Γi)/Δ where all indices are to be taken
modulo 4 [39].

V4V2

ΔT1

Γ1

Γ3
Γ2

Γ4

ΔT3

a)

Fig. 3: (Colour on-line) (a) Quantum Nernst engine II. The
edge states are tunnel-coupled to an antidot formed in the
middle of the cross. (b) Maximum power in units of k2

B(ΔT1 −
ΔT3)2/h and (c) EMP in units of ηC as a function of the an-
tidot resonance position and width for Γ1 = Γ3 = Γ/2.

The general expressions for L are rather lengthy. We
can obtain compact expressions in the limit Γ2 = Γ4 = 0
which we numerically found to yield the largest possible
output power and efficiency. In this limit, we have

Ldot =
1
h

(
e (f1 − Γ1Γ3h1) eΓ1Γ3h2

Γ1Γ3h2 f3 − Γ1Γ3h3

)
, (16)
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with the functions fn and hn defined in the appendix. As
we have LeT = eLhV , the asymmetry parameter is x = 1
and hence, the upper bound for the EMP is ηC/2 as in the
case of time-reversal symmetric systems. In the following,
we are going to address whether this upper bound can
be saturated when varying the position and width of the
antidot resonance.

Figure 3(b) shows the maximum power as a function
of the resonance position and width. For a given width,
the output power vanishes at the particle-hole symmetric
point Er = 0 and takes maximal value at Er ≈ ±2kBT .
Starting from small resonance widths, this maximal value
increases until it reaches its largest value for about Γ ≈
7kBT and then decreases again for larger values of the
resonance width.

The EMP (which for this system we numerically found
to be close to the maximal efficiency) shown in fig. 3(c)
similarly vanishes at Er = 0 and takes maximal values
for Er ≈ ±2.5kBT for a given resonance width. It is sig-
nificantly smaller than the bounds derived from current
conservation. Surprisingly, the efficiency of the system
monotonically grows with the resonance width. Hence, in
contrast to typical heat engines, for this Nernst engine,
better energy filtering does not lead to higher efficiency.

We now elucidate the mechanism behind this seemingly
paradoxical result. For a broad resonance, most electrons
are transmitted from terminal 3 (4) to 2 (1) and vice versa.
Due to the boundary conditions Ip

1 = Ip
3 = Ih

2 = Ih
4 = 0,

these processes do not contribute either to the heat or
charge current in the system. Only processes where elec-
trons follow a different path through the system can give
rise to any thermoelectric response. Due to the broad
resonance, these processes most likely involve high-energy
electrons. The number of electrons with a given energy
decays exponentially with this energy. Hence, effectively
only electrons in a certain energy window contribute to
the thermoelectric response, thereby leading to a high
efficiency.

We finally mention that our antidot heat engine does
not saturate the general bounds on the EMP that follow
from thermodynamics. This is not surprising since for a
system with x = 1 the limit ηmaxP = ηC/2 is only reached
when heat and charge currents are proportional to each
other [23], due to, e.g., transport through a sharp level,
which is clearly not the case in our system.

Conclusions. – We analyzed a quantum Nernst en-
gine based on thermoelectric transport along quantum
Hall edge states. We first considered a setup based on
quantum point contacts which we found to outperform a
recently proposed classical Nernst engine in terms of effi-
ciency [28]. It exhibits an extreme asymmetry of the off-
diagonal Onsager coefficients. For a second setup based on
an antidot, we demonstrated that a better energy filtering
does not necessarily lead to a larger efficiency for systems
with broken time-reversal symmetry.
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Appendix: integrals. – The functions fn, gn,y and hn

used in the main text are defined in terms of the following
integrals:

fn =
∫ ∞
−∞

dx
xn−1

4 cosh2 x
2kBT

, (A.1)

gn,y =
∫ ∞

y

dx
xn−1

4 cosh2 x
2kBT

, (A.2)

hn =
∫ ∞
−∞

dx
1

(x − Er)2 + Γ2/4
xn−1

4 cosh2 x
2kBT

. (A.3)

For the functions fn and gn,y, the following compact ana-
lytical expressions can be obtained for n = 1, 2, 3:

f1 = kBT, (A.4)
f2 = 0, (A.5)

f3 =
π2

3
(kBT )3, (A.6)

g1,y =
kBT

1 + ey/(kBT ) , (A.7)

g2,y =
(kBT )2

2

(
log 4 + 2 log cosh

y

2kBT
(A.8)

− y

kBT
tanh

y

2kBT

)
, (A.9)

g3,y =
(kBT )3

2

{
−4Li2

(
−e−y/(kBT )

)
+

y

kBT
(A.10)

×
[

y

kBT
+4 log

(
1+e−y/(kBT )

)
− y

kBT
tanh

y

2kBT

]}
.

(A.11)
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