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All-thermal reversal of heat currents using qutrits
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Few-level systems coupled to thermal baths provide useful models for quantum thermodynamics and to
understand the role of heat currents in quantum information settings. Useful operations such as cooling or thermal
masers have been proposed in autonomous three-level systems. In this work, we propose the coherent coupling
of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system. This occurs
thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
We explore the thermodynamic performance of such operation and discuss whether it can be distinguished from
the action of a Maxwell demon via measurements of current fluctuations limited to the working substance.
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I. INTRODUCTION

The coupling of quantum systems to thermal baths has ac-
tivated the field of quantum thermodynamics in the last years
[1,2], favored by a considerable experimental advance in the
control of heat flows at the nanoscale [3–5]. Seminal proposals
six decades ago [6–8] already considered three-level systems
as constituents of minimal quantum thermodynamic machines
[9–13]. Recently, few-level systems (qubits, qutrits, ...) have
been proposed as autonomous heat engines and refrigerators
under the influence of two or more heat or work reservoirs
[14–17] (see Refs. [18–21] for recent reviews). For these op-
erations, the various system-bath couplings need to be either
spatially separated (with different baths acting on different
qubits) or appropriately filtered, an experimental difficulty
that has been overcome recently using superconducting cir-
cuits [22–29] or laser-emulated reservoirs in trapped atoms
[30], ions [31,32], nitrogen vacancies in diamond [33], nu-
clear spins [34], or photons [35]. From a practical point of
view, quantum thermodynamic machines open possibilities to
the on-chip manipulation of heat flows in quantum processors,
e.g., in the form of thermal transistors [36], rectifiers [37–43],
switches [44], or transducers [45,46]. Electronic analogs have
also been implemented [47–50] with the charge occupation
defining the few-state system.

The state of a qubit is clearly of information nature.
The connection between thermodynamics and information
[51–53] unveiled by the Maxwell demon is explicit in quan-
tum and mesoscopic setups, where one has direct access to the
microscopic state of single particles (see detailed discussions
for mesoscopic electronic transport in Refs. [54–58]). The
information of the qubit state can be used, via appropriate
measurement and feedback mechanisms, to manipulate the
thermodynamic flow [59–74]. In particular, the controlled
exchange coupling of two qubits can define a Maxwell de-
mon refrigerator [59,61] whose protocol can be interpreted in
terms of analog quantum heat engines [62]. Information-based

engines can also be made autonomous, allowing for a full
thermodynamic interpretation in terms of measurable heat and
particle currents [47,75–88]. Ideally, one asks the autonomous
demon to violate the second law while simultaneously
respecting the first law in some part of the device where mea-
surements are carried (hereforth called simply the system).
For this aim, the demon needs to be comprised of at least two
reservoirs so it holds a nonequilibrium situation [58]. Propos-
als so far mostly focus on electronic configurations [89–99].

In this work, we propose an autonomous demon in an
all-thermal setup, in the sense that work sources are absent
and transport is purely due to heat currents responding to
temperature differences. We consider two qutrits (1 and 2)
and four photonic reservoirs, all treated on equal footing [see
Fig. 1(a)]. Transport is measured in reservoirs L and R (the
system) at temperatures TL and TR. The other baths (the demon
reservoirs, A and B) are used to induce a nonequilibrium situ-
ation by maintaining a temperature difference TB � TA. Each
qutrit exchanges photons with one system and one demon

FIG. 1. Scheme of our device. (a) Two qutrits, α = 1, 2, cou-
pled via an exchange interaction λ and connected to thermal baths
that form the measured system (L and R) and the demon (A and
B). Couplings gl are filtered at frequencies (ωs or ωd ) determining
transport in the system or the demon baths. (b) Transitions between
the different states |N〉α of each qutrit are affected by a different bath.
The sketched cycle achieves the transport of a quantum of heat h̄ωs

from the cold (R) to the hot (L) system reservoirs enabled by h̄ωd

flowing through the demon terminals (from B to A).
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reservoir: 1 with A and L, 2 with B and R. The connection
that enables transport between the two qutrits is via swap
interactions [see Fig. 1(b) for a representative sequence].

The demonic action in this case corresponds to a reversal
of heat currents in the measured system under a finite-
temperature difference (say TL > TR), without heat being
injected from the other baths (A and B) forming an environ-
ment, e.g., when heat flows out of the colder R (Q̇R < 0)
and into the hotter L (Q̇L > 0) with Q̇L + Q̇R = 0. It hence
simultaneously enables cooling and pumping into the system.
This can even happen when L and R are the hottest and coldest
reservoirs, while the demon baths are only warm (we will refer
to this situation as the warm demon operation). Of course,
a proper (according to the laws) thermodynamic behavior is
recovered once one has access to the dynamics (currents) of
the whole system.

Different kinds of autonomous demons have been iden-
tified. Bipartite systems allow for mechanisms with a clear
interpretation in terms of measurement and feedback pro-
tocols based on the interpartition interactions [89,91,92,99].
However, the notion of information is not always obvious:
systems coupled to nonequilibrium environments (also known
as N demons) can be tuned to achieve a demonic effect in
particular configurations [90,93–96] (i.e., if instead of the
detailed knowledge of the single-particle states, the demon has
a global knowledge of the system [60]), and by allowing fluc-
tuating deviations of the demon conditions (i.e., the system
and the demon only exchange noise [100]). Our configuration
is of none of these kinds: despite using information states, it
is not bipartite and has no clear interpretation of a memory;
unlike N demons there is a spatial separation of the demon
sources and does not require fine tuning.

The question of how to classify these demonic operations
based on the limited information accessible in the system has
attracted some interest [58,97]. In other words, if an observer
who can only measure the currents in two reservoirs detects a
demonic action, how can they learn about the type of demon?
A criterion for a device to behave as a so-called strict Maxwell
demon has been proposed based on the presence of an internal
current in the device being reversed under the action of the
demon [97]. Typically this current is either not accessible in a
mesoscopic device, as one measures currents in the reservoirs,
or cannot be measured without affecting the nonlocal trans-
port [101,102] (see a pedagogical discussion in Ref. [103]).
To overcome this limitation, the perfect cross-correlation of
the two system currents is suggested as a signature of such
demonic process. Another desired property of a strict demon
is that the conservation of heat in the system occurs not
only on average but even at the level of the fluctuations i.e.,
the separation of system and demon currents always holds
in the stationary regime (not relying on a particular set of
parameters), according to Ref. [97]. The spatial separation
of the system and demon terminals in our model allows us
to define an interface for the internal current at the coupling
between the qutrits and explore its properties in connection
with the reversal of the system currents. As a clear difference
with previous electronic proposals based on matter and charge
currents, in our device this internal current is not continuous,
in the sense that particles are being injected from some reser-
voirs and absorbed by others after going through the system.

The model and relevant processes are discussed in detail in
Sec. II.

We are hence interested in the properties of heat currents
and their correlations. To compute them, we use a full count-
ing statistics approach [104,105], a method that has been
applied to electronic [106–109], bosonic [110,111], or mixed
systems [112,113] described by master equations. We extend
a recursive method [108], so far restricted to the autocorre-
lations in charge conductors, to multimode photon transport
through a few-level system coupled to multiple thermal baths.
The method is described in Sec. III. On top of giving infor-
mation about the system dynamics, currents and fluctuations
can be used to characterize the thermodynamic performance
in terms of useful power, efficiency, and noise. For a multiple-
reservoir and multitask performance like ours, we need to use
generalized efficiencies in terms of free energies [94,114,115].
For the noise, we compare to the thermodynamic uncertainty
relation (TUR) [116–118] as defined for classical Markovian
dynamics, as discussed in Sec. IV.

Experimentally, the exchange coupling of two qutrits can
be achieved in different configurations, in particular including
superconducting implementations [119,120] (see Ref. [121]
for a review). In the various physical implementations (e.g.,
superconducting circuits, atoms, quantum dots) the coupling
mechanism can be very different (inductive [122] or ca-
pacitive [26,123] coupling, or via spin [124] or electronic
exchange [125] interactions, among others). Coupling via a
mediator [126] can be used to further increase the spatial sepa-
ration of the circuit components and introduces further control
on the frequency of the exchange [127]. For the sake of sim-
plicity and generality, we will, however, keep our description
at a phenomenological level. Superconducting resonators can
be used to achieve the qutrit-reservoir coupling [25,26], which
has the additional advantage to facilitate the introduction of
temperature differences.

The properties of heat transport through the system are dis-
cussed for different configurations of the couplings in Secs. V,
VI, and VII, with other possible realizations presented in
Sec. VIII. Conclusions are presented in Sec. IX.

II. DESCRIPTION OF THE MODEL

The system we consider is composed of two thermal baths,
L and R, at temperatures TL/R = T ± �Ts/2. Their coupling
is mediated by two identical coupled qutrits q = 1, 2, each of
them with states |i〉q, i = 0, 1, 2, and energies Eiq, as repre-
sented in Fig. 1(b). Each qutrit is connected to one additional
thermal bath, A or B, as depicted in Fig. 1. We assume the
qutrits to be weakly coupled to all baths. Baths A and B are out
of equilibrium with respect to each other for holding a tem-
perature difference �Td � 0 applied symmetrically: TA/B =
T ∓ �Td/2. At �Ts = �Td = 0 the device is in equilibrium.
The warm demon will operate when �Td < |�Ts|.

The whole device is modeled with the Hamiltonian
ĤS = Ĥ0 + Ĥ1−2, being

Ĥ0 =
2∑

i=0

(Ei1|i〉11〈i| ⊗ 12 + Ei211 ⊗ |i〉22〈i|), (1)

Ĥ1−2 = λ02|20〉〈02| + λ01|10〉〈01| + λ12|21〉〈12| + H.c.

(2)
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FIG. 2. The noisy switch demon. Solid lines indicate the tran-
sitions between the different states of the qutrits. Black lines
emphasize the basic-cycle transitions with a single excited qutrit.
In the upper branch (between |00〉 and |02〉, bath L is effectively
uncoupled from the qutrits (see text). Correspondingly for the lower
branch (between |20〉 and |00〉) and bath R. Clockwise circulation
(as marked by the arrows labeled with the reservoir involved in
each transition) carries a photon from the cold bath R to the hot L.
The orange wavy line indicates the primary coherent swap transition
between states |02〉 and |20〉 with coupling λ02.

the qutrit Hamiltonians and their interaction, respectively.
Here, we introduce the notation |i j〉 ≡ |i〉1 ⊗ | j〉2. The cou-
pling to the reservoirs is given by

Ĥ12-res =
∑

l,q, j,k

glq(âl + â†
l )Ŷq, jk, (3)

where âl annihilates a photon in reservoir l = A, B, L, R, and
Yq, jk = | j〉qq〈k| are jump operators in qutrit q. They induce
the transitions between the different states as represented in
Fig. 2 by the exchange of photons, which leads to the heat
currents Q̇l out of reservoirs l . The couplings glq are also
assumed to be narrow functions of the frequency (e.g., by
being mediated by filters): the system reservoirs L and R are
filtered at h̄ωs = E2q − E1q, and the demon ones, A and B, at
h̄ωd = E1q − E0q. This way, each reservoir induces a single
transition in the qutrit it is coupled to: A(B) between |0〉1(2)

and |1〉1(2), and L(R) between |1〉1(2) and |2〉1(2). We will con-
sider this perfectly filtered configuration throughout the paper,
and relax this assumption in Sec. VII B. As we assume local
couplings [128], we have gA2 = gL2 = gB1 = gR1 = 0. In the
following, we consider symmetric couplings for the remaining
ones and drop the qutrit index gl,q = gl . In order to emphasize
the role of the nonequilibrium state in the demon, we will fur-
thermore assume all gl to be equal, such that the Hamiltonian
is inversion symmetric in the direction of transport, i.e., under
the exchange (1, A, L) ↔ (2, B, R). The qutrit-qutrit coupling
(λ02, λ12, and λ01) can also be seen as an exchange of photons
[129–132], or even phonons [133]. Importantly, these photons
are not necessarily of the same frequency as those from the
baths.

For the numerical calculations, except where explicitly
mentioned, we will fix the frequencies ωs = 2 GHz, ωd =
4 GHz, and (setting h̄ = kB = 1) temperature T = 4 GHz,

around 30 mK . The currents and noise appearing in the plots
are normalized by the references Q̇0 = h̄ GHz2 ≈ 0.11 fW
and S0 = h̄2 GHz3 ≈ 11 pW2s, both within nowadays experi-
mental resolution [22,25].

A. Basic cycle: The fluctuating switch

Consider the perfectly filtered case such that each reser-
voir couples to a single transition and with λ12 = λ01 = 0.
The exchange of photons with L and R occur via the transi-
tions |1 j〉 ↔ |2 j〉 and |i1〉 ↔ |i2〉, respectively, as depicted in
Fig. 1(b). Let us assume TL � TR. The expected heat current
from L to R is conditioned on the occupation of the states
|1〉q, which requires the demon reservoirs to have excited
one qutrit at an earlier time. In this sense, the occupation
of the ground states of each qutrit effectively uncouples it
from the system reservoirs connected to it (L for 1, R for
2), as illustrated in Fig. 2. Fluctuations by photon absorp-
tion and emission from (to) one of the demon reservoirs
effectively switch the coupling to one of the system ones
on (off). These noisy couplings are sufficient to induce a
rectification effect, which requires an asymmetry. In our case,
where the Hamiltonian is symmetric, the asymmetry is in-
troduced by the dynamics: the rates of the two switching
mechanisms are different for having different temperatures TA

and TB.
Since TB > TA, the excitation of the qutrits is more likely to

occur via a photon from reservoir B. This transition populates
state |1〉2, thus effectively switching the coupling of qutrit
2 and reservoir R on, and this way allowing the system to
absorb a photon from reservoir R (the cold one!). The sys-
tem thus reaches state |02〉. The swap transition transfers the
excitation from qutrit 2 to 1, effectively switching the 1-L
coupling on. It also switches the 2-R coupling off, so the
unlikely absorbed photon cannot go back to R. In this sense,
the coherent coupling λ20 acts as a turnstile that changes the
reservoir to which the qutrit system is put in contact with,
bearing resemblances with cyclic Otto refrigerators [134–137]
but requiring no active driving (the cyclic behavior in our
device is purely stochastic) and with the opening of the mem-
brane hole in Maxwell’s original formulation of his demon
[138]. The analogy of Otto cycles in exchange-coupled qubits
and quantum controlled Maxwell demons [59–61] has already
been pointed out [62].

State |20〉 then relaxes by emitting a photon to L (the hot
one!) and subsequently to A. This resets the initial state, after
a cycle as the one highlighted in Fig. 2 by the clockwise
arrows. Along the cycle, a quantum of heat h̄ωs has been
transferred from the cold to the hot system reservoirs, at
the expense of h̄ωd being transported from A to B. Other
transitions are possible (represented in gray in Fig. 2) that
involve states with both qutrits excited. However, these only
introduce fluctuations to the basic cycle, as transport requires
the swapping of the individual qutrit ground states mediated
by the coupling λ02 (recall we are neglecting λ12 and λ01 at
this point).

In the weak coupling limit and in the stationary regime,
the entropy of reservoir l will decrease by ��l = �Ql/Tl

for every amount of extracted heat �Ql [2]. The sec-
ond law will favor the above sequence provided the
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condition

ωd

(
1

TA
− 1

TB

)
> ωs

(
1

TR
− 1

TL

)
(4)

is fulfilled. An observer with access limited to reservoirs L and
R would hence measure that, while energy is conserved (the
first law is respected), entropy has decreased by an amount
given by minus the right-hand side of Eq. (4), and could
interpret this as a violation of the second law (and of common
sense). Of course, the larger increase of entropy in A and B
[left-hand side of Eq. (4)] guarantees the global increase of
entropy.

With the condition TB > TA fixed, Eq. (4) imposes that the
demon operation is restricted to the system temperatures being
TL > TR, as a consequence of the qutrit symmetry. Different
qutrit compositions result in different temperature conditions,
as discussed in Sec. VIII.

Note also that in every cycle, �QL + �QR = 0 and �QA +
�QB = 0, hence, the demon condition for no heat exchange
between system and demon is fulfilled by construction in
the stationary regime. It does not depend on the particular
configuration of system-bath couplings (as long as we stick
to the weak coupling regime) nor on sets of temperatures.
Note that fluctuations in the heat exchanged with the demon
terminals are temporarily stored in the qutrits (in the form
of an excitation that is eventually released back to a demon
terminal) and do not flow into the system reservoirs (which
are filtered at a different frequency) at any time.

B. Partitions

Partitioning the system in different regions allows to inter-
pret the dynamics under the appropriate conditions. We can
for instance distinguish the measured reservoirs (L and R)
and the environment of which one knows nothing (the demon
baths A and B), what we call the partition AB|LR. When the
conditions Q̇R = −Q̇L and Q̇B = −Q̇A are met, which will be
the case in most of the cases below (except for Sec. VII B),
we are allowed to respectively define the system and demon
currents as

Q̇s = Q̇R = −Q̇L and Q̇d = Q̇B = −Q̇A. (5)

Note, however, that this distinction is only conceptual: the de-
vice is not bipartite (as is the case of state-dependent feedback
demons [77,88,92]) in the sense that the system and demon
terminals are coupled to the same system components (the two
qutrits). The heat current Q̇s induced by Q̇d is also reminiscent
of the thermal drag effect [139], which however requires a
heat transfer across the partition.

The spatial separation of the demon terminals (with each
one coupled to a different qutrit) is essential for our configu-
ration. Also, in the case where λi 	 h̄ωα , the dynamics can
be described in terms of the density matrix of states of qutrits
1 and 2 (local description). This allows for a meaningful
partition AL|BR through which we can define the heat flow:

Q̇c = Q̇R + Q̇B = −Q̇L − Q̇A, (6)

which could be interpreted as the internal current, in the
spirit of Ref. [97]. The need to filter the system and demon

transitions impose that ωd 
= ωs and therefore Q̇c can only
vanish when all Q̇l = 0, in this configuration. Note, however,
that the interpretation of Q̇c as an internal current is less clear
for stronger couplings, where the states of the two qutrits hy-
bridize such that the local description is no longer meaningful.

III. CURRENTS, NOISE, AND CORRELATIONS

The dynamics of the coupled qutrit system is described, in
the weak qutrit-reservoir coupling limit and assuming Markov
and secular approximations, by the Gorini-Kossakowski-
Sudarshan-Lindblad master equation [140] of the reduced
density matrix ρ̇ = Lρ, with

LX = − i

h̄
[HS, X ] + DX, (7)

where D = ∑
l Dl represents the dissipative dynamics in-

duced by the reservoirs, being

DlX=
∑

jk

W l
jk

(
Yq, jkXY †

q, jk − 1

2
{Y †

q, jkYq, jk, X }
)

, (8)

and where we sum all possible jump operators Yq, jk describing
transitions |k〉q → | j〉q of qutrit q that are allowed by the
system-bath coupling Hamiltonian introduced in Sec. II (the
qutrit index q is fixed by the involved reservoir l). We assume
a local master equation, valid in configurations for which
λα < �l (see, e.g., Ref. [141]). For later convenience, we
write the transition rates as W l

jk = W ls
jk with s = sgn(ω jk ), to

distinguish when the transition |k〉q → | j〉q is due to reservoir
l absorbing (s = −) or emitting (s = +) a photon of frequency
ω jk , with the Fermi golden rule form

W ls
jk = s�lζl (|ω jk|, zl )nl (ω jk ), (9)

with �l ∝ |gl |2 and the Bose-Einstein distribution function
describing the occupation of reservoir l:

nl (ω) = [exp(h̄ω/kBTl ) − 1]−1. (10)

The system-bath couplings are filtered at different frequencies
ωl (with ωR,L = ωs and ωA,B = ωd ), which we assume to have
a Lorentzian shape

ζl (ω, zl ) = z2
l

(ω − ωl )2 + z2
l

(11)

of width zl , representative of resonator-mediated couplings
[5]. We consider symmetric filters such that zl = zr ∀ l , and
through most of the paper we will assume perfect filtering
such that zr → 0.

The heat currents and their correlations are calculated in
the stationary regime defined by ρ̇ = 0. In the spirit of the
full counting statistics approach [104], we express the heat
transport in terms of the distribution of the number of photons
of different frequencies ωα absorbed by reservoir l , i.e., Nlα ,
each of them carrying an amount of heat h̄ωα . The first two
moments of the distribution (mean and variance) give the
photon currents

Ilα = d

dt
〈Nlα〉 (12)
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and their autocorrelations (l = l ′) and cross-correlations
(l 
= l ′):

SN
lα,l ′β = d

dt
(〈NlαNl ′β〉 − 〈Nlα〉〈Nl ′β〉). (13)

With these we obtain the heat currents

Q̇l = h̄
∑

α

ωαIlα (14)

and the heat noise correlators

SQ
ll ′ = h̄2

∑
αβ

ωαωβSN
lα,l ′β. (15)

Details of the derivation and full expressions for the correla-
tions are given in Appendix A. In what follows, we will drop
the superscript and refer the heat current correlations as Sll ′ .

IV. PERFORMANCE QUANTIFIERS

With the heat currents and noises we can characterize the
performance of the device as follows.

A. Efficiencies

1. Free-energy efficiency

Multibath systems have the possibility to perform multiple
tasks simultaneously [114,142–144] by using more than one
resource [94,114,145–147]. Our case here complies with both
possibilities in the warm demon condition: the coldest bath
(L) is cooled and heat is pumped into the hottest one (R)
by using heat flowing in the two demon baths. In such a
case, one needs to generalize the definition of efficiency so it
includes multiple operations and resources [114]. For this, it is
useful to consider the changes of the generalized free energies
Ḟl = Q̇l − T0�̇l , which give the maximal amount of work
than a bath at temperature T0 can extract from the different
reservoirs [94,114,115]. The temperature T0 can be considered
as the ambient temperature from the perspective of nonequi-
librium reservoirs [94] or as a reference temperature from an
operational point of view [114]. In our case, it is natural to
assign it to the equilibrium temperature T0 = T . The station-
ary entropy production rate reservoir l in the weak coupling
limit is �̇l = Q̇l/Tl . Then, noticing that Ḟl = (Tl − T )�̇l , free
energy is generated in the reservoirs which, being at a higher
(lower) temperature than T , nevertheless absorb (emit) heat.
The efficiency is then defined in terms of the contribution of
the terminals where free energy is being generated (the sys-
tem) over those where it is consumed (the demon reservoirs
acting as resources):

η f = Ḟs

−Ḟd
= ḞL + ḞR

−ḞA − ḞB
. (16)

Note, however, that under the demon condition Q̇d = Q̇s = 0,
the efficiency is independent of T0 and simply reads as

η f = −�̇s

�̇d
= −�̇L − �̇R

�̇A + �̇B
, (17)

in terms of the system and demon entropy production rates.
It then coincides with entropic efficiencies [148] (see also
Ref. [149]). The interpretation is clear: an efficient demon will

be one that generates as much entropy as is reduced in the
system (or almost).

2. Heat efficiencies

It will also be useful to consider more conventional effi-
ciencies defined in terms of heat absorbed from the hot demon
bath to achieve a given operation, e.g, cooling:

ηh = Q̇R

Q̇B
, (18)

though nothing prevents one to consider bath A as a resource,
instead.

The analogous efficiency taking into account that the ther-
modynamic resource is composed by two baths

ηAB = Q̇R

|Q̇A + Q̇B| (19)

is not bounded and diverges under the demon condition
Q̇A + Q̇B = 0, which gives information on when the device is
working beyond the thermodynamic bounds, defined by some
bound. In the case Q̇A + Q̇B 
= 0, when there is heat leaking
from the demon, we set the bound by comparing with the
case where the demon is replaced by a single thermal bath,
call it E , at temperature T : η̃0 ≡ TR(TL − T )/T (TL − TR) (see
Appendix B for details). Then, the demonic effect manifests
when

ηAB > η̃0, (20)

emphasizing the nonequilibrium state of the demon reservoirs.
In particular, one can define the operation of a relaxed demon
that allows for a finite exchange of heat with the system [94].
In our case, this happens when the system-bath couplings are
not ideal filters (see Sec. VII B).

B. Fluctuations

1. Thermodynamic uncertainty relations

To quantify the presence of noise in the cooling power, we
use the thermodynamic uncertainty relation which introduces
a bound for the minimal fluctuations of a thermodynamic
output current in classical Markovian systems. We use it
to quantify the precision of the cooling power Q̇R via the
coefficient

Q = �̇SRR

Q̇2
R

� 2, (21)

such that very noisy currents give 2/Q 	 1, while 2/Q → 1
saturates the classical bound. This relation has been predicted
to be violated in quantum coherent devices [150,151], in
particular in qutrit masers [152,153]. However, this occurs
at larger couplings than the ones we are interested in in this
work. We note also that these relations have been extended to
multiple reservoir systems [143,154] which could be tested in
our setup. We are not worried about these details here, and will
simply use the classical version (21) to quantify the device
performance.
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2. Pearson coefficient

We are particularly interested in the cross-correlation of
currents in the system terminals. The Pearson coefficient

εP = SLR

(SLLSRR)1/2
(22)

measures the cross-correlation of the system currents with
respect to the corresponding autocorrelations. Maximally cor-
related currents give εP = ±1, a proposed criterium for the
strict Maxwellianity of autonomous demons including internal
currents [97]. Note that currents of different nature can also
be maximally correlated: emitted electrons and photons in a
quantum dot [112] or charge and heat currents in Coulomb
coupled conductors [155]. In our case, the two currents Q̇L

and Q̇R may be related by an internal current (given by pho-
tons exchanged via the coherent couplings λ02 and λ12/01).
However, there is not a continuous flow between L and R: the
internal current corresponds to photons of different frequency
than those exchanged with the reservoirs.

V. DEMONIC BEHAVIOR: HEAT FLOWS
FROM COLD TO HOT

Once we have the ingredients to compute the transport
properties, we start by describing how the expected heat cur-
rents in the system are reversed by coupling to the demon
baths. The configuration for which the effect of the demon
is minimal is when λ12 
= 0 and λ01 = λ02 = 0. Then, heat
flows between L and R via transitions between the effective
two-level systems formed by states |1〉q and |2〉q, as in a
system of coupled qubits [40–42,156], with the difference that
the transport states need to be populated by photons from
reservoirs A and B (noise-induced transport regime). Assum-
ing homogeneous couplings �l = �, we get

Q̇R = h̄ωsλ
2
12�p({Tl}, {ωl})[nL(ωs) − nR(ωs)], (23)

shown in Fig. 3(a) in the region λ02 	 λ12. The demon
reservoirs hence act as switches: they affect the relative occu-
pation of the transport states via the prefactor p({Tl}, {ωl}) ∝
nA(ωd )nB(ωd ), but do not inject any heat [see Fig. 3(b)]. In
that case, for a given temperature difference �Ts > 0 heat
flows from L (hot) to R (cold), Q̇R < 0, as expected, irre-
spective of the situation at terminals A and B [see Fig. 3(c)].
As �Td increases, such that the temperature of reservoir A
decreases, current is suppressed as e−h̄ωd /kBTA , in a sort of
dynamical channel blockade [157]. For kBTA 	 h̄ωd , ther-
mal fluctuations can rarely excite qutrit 1 and transport is
switched off.

As the coupling λ02 becomes finite, heat flows at reservoirs
A and B [see Figs. 3(b) and 3(d)]. For a high enough temper-
ature difference �Td , the heat flow in the system reservoirs is
reversed: qutrit 1 works as an absorption refrigerator and qutrit
2 as a heat pump [8]. By construction, both currents are equal
in magnitude Q̇L + Q̇R = 0, hence the entropy production rate

�̇s ≡ �̇L + �̇R = Q̇RηC/TR (24)

is negative in the system. Here, ηC = 1 − TR/TL is the Carnot
efficiency. Hence, while the first law of thermodynamics is
fulfilled both in the system and demon regions, the second
law is violated in the system region when Q̇R > 0. Notably,
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FIG. 3. Conditions for the demon. Heat current into reser-
voirs (a) R and (b) B as a function of the temperature difference
�Td and the coupling λ02. Parameters (in GHz): �l = � = 0.01,

ωs = 2, ωd = 4, T = 4, λ12 = 0.01, λ01 = 0, and �Ts = 1. The
black dashed line marks the vanishing of the current in R. In
the region between the black and the white dashed lines in (a), the
resource terminals are warm with respect to the system ones and
cause cooling, nevertheless. The demon quantities are divided by
κ = ωd/ωs, for an easier comparison between panels. (c), (d) Cuts
of the previous for different values of the couplings λ02. The thin
dotted lines in (c) correspond to the internal current Q̇c.

this occurs even if �Td < �Ts, such that the coldest reservoir
is cooled further and heat is pumped into the hottest one (the
warm demon) [see the region limited between dashed lines in
Fig. 3(a)].

However, the reversal of heat currents in the system reser-
voirs is not necessarily accompanied by a reversal of the
internal flow, plotted with dotted lines in Fig. 3(c): Q̇c and
Q̇R are both positive only in a limited region. The size of this
region increases with λ02/λ12 and will occupy all the phase
space for λ02/λ12 → ∞ which is the case that we discuss in
detail in Sec. VI. In the opposite regime �Td 	 �Ts, it is the
demon currents which are reversed [see Fig. 3(b)]. Differently
from the system currents, the temperature difference at which
Q̇B changes sign is independent of λ02 [see Fig. 3(d)]. Of
course, the total entropy never decreases: �̇ = ∑

l Q̇l/Tl � 0.
The current-current correlations give additional insight

(see Fig. 4). For small λ02, the system noise is monotoni-
cally suppressed with �Td , following the behavior of Q̇R. The
system noise increases with the coupling λ02, as it is affected
by the fluctuations of the demon reservoirs. As expected, the
demon reservoirs noise increases with the onset of Q̇d as the
coupling λ02 increases [see Fig. 4(d)]. It eventually dominates
the fluctuations of the system [compare Figs. 4(c) and 4(d)].
However, neither the system nor the demon noises have any
feature related to the reversal of the heat currents. Remark-
ably, in each subsystem the current-current correlations are
identical:

SLL = SRR = −SLR, (25)

and similarly for reservoirs A and B [see Figs. 4(a) and 4(b)].
Equation (25) is a consequence of the conservation of energy
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parameters as in Fig. 3. The demon quantities are divided by κ2, for
an easier comparison between panels. (c), (d) Cuts of the previous
for different values of λ02.

in the AB|LR partitions at every cyclic sequence, not only on
average: a photon emitted by one bath is either absorbed by
the other bath in the same partition (leading to heat transport)
or reabsorbed (no transport). It also results in a Pearson coef-
ficient εP = −1, one of the requirements of a strict Maxwell
demon, according to Ref. [97]. However, like in an N demon
[90] (where conservation of energy occurs only on average),
there is no clear notion of information processing nor any
feedback mechanism.

VI. IDEAL OPERATION: PERFECTLY FILTERED SYSTEM

In the following, we discuss the operation of the device
for different configurations, in terms of the cooling power and
efficiency, as well as the noise properties.

Let us first discuss the optimal case in which the two
qutrits are only coupled via the term proportional to λ02 in
Eq. (2), i.e., λ12 = λ01 = 0. The couplings to the baths are also
perfectly filtered, i.e., zr → 0. This configuration corresponds
to the limit λ02 � λ12 considered in Sec. V. Then, the only
cycle that contributes to transport is the one highlighted in
Fig. 2 and described in Sec. II A. The transition |02〉 ↔ |20〉
acts as a bottleneck for the heat currents: in order to have
an excitation transfer between qutrits, one of them has to
have consecutively been excited by a demon and then by a
system bath, in a sort of sequential (incoherent) up-conversion
process. The other qutrit then down converts the excitation in
photons absorbed by its two baths. In the completion of every
basic cycle, one photon of frequency ωs has been emitted by
reservoir R and one absorbed by reservoir L, and correspond-
ingly with photons of frequency ωd by reservoirs B and A. In
the stationary regime, hence

Q̇A

ωd
= Q̇L

ωs
= − Q̇B

ωd
= − Q̇R

ωs
. (26)

0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

0 2 4 6 8

−1

0

0

ωs

ωd

1

0

0.002

0.92

1

k
B
h̄
−

1
Δ

T
d

[G
H

z]

kBh̄−1ΔTs [GHz]

−2

0

2

(a) (b)

(c) (d)

Q̇R ×10−3

k
B
h̄
−

1
Δ

T
d

[G
H

z]

kBh̄−1ΔTs [GHz]

0

1

ηf

k
B
h̄
−

1
Δ

T
d

[G
H

z]

kBh̄−1ΔTs [GHz]

0

3

SRR ×10−3

k
B
h̄
−

1
Δ

T
d

[G
H

z]

kBh̄−1ΔTs [GHz]

0

1

2
Q

Q̇
l
[1

03
]

Q̇R

Q̇B

η f
,
η h

S
ll

SRR

SBB/κ2

2/
Q

FIG. 5. Perfectly filtered case. The density plots show (a) the
cooling power, (b) efficiency, (c) noise, and (d) Q for heat ex-
tracted from reservoir R as functions of the temperature differences
�Ts and �Td . Parameters (in GHz): �l = � = 0.01, ωs = 2, ωd = 4,

T = 4, λ02 = 0.01, λ01 = λ12 = 0. White regions in (b) and (d) mark
the configurations with no cooling. The dashed black line in all plots
is a guide to the eye that marks the condition �̇s = 0, according to
Eq. (27). In the region between the black and the (diagonal) white
dashed lines in (a), the resource terminals are warm with respect to
the system ones. The line plots show cuts of (a) to (d), for �Td = 4,
including as well the current and noise of reservoir B in (a) and (c),
for comparison, with κ = ωd/ωs. The blue-dashed line in (b) corre-
sponds to the heat efficiency ηh.

Therefore, the system and demon currents and, as a conse-
quence, also Q̇c, are all reversed at the same point. Assuming
that the temperature increases are applied symmetrically in
the system and demon baths, we find the vanishing current
condition to be uniquely depending on the temperature of the
demon baths:

�T 0
s =

√
ξ 2

d + 4T 2 + ξd , (27)

with ξd ≡ (�T 2
d − 4T 2)ωs/2�Tdωd .

Equation (27) hence sets the boundary of the region where
heat is extracted from reservoir R. This is plotted in Fig. 5 as
a function of the system and demon temperature differences.
For �Ts < �T 0

s , the system works as a refrigerator induced
by the heat transferred between the demon reservoirs. Re-
markably, this occurs even if the demon reservoirs are closer
to equilibrium (warmer) than the system ones, i.e., having
�Ts > �Td . This is the region between the black-dotted and
the white-dashed lines in Fig. 5(a). The warm demon oper-
ation is here possible because ωd > ωs. It turns out that the
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efficiency is also largest in this region, as shown in Fig. 5(b),
with η f approaching 1 for �Ts → �T 0

s . For �Ts > �T 0
s ,

the roles of the system and the demon are reversed. Note
that �T 0

s → 0 for �Td → 0, i.e., there is no possible demon
working at equilibrium.

The same arguments that led to Eq. (26) apply to the
fluctuations, leading to

SAA

ω2
d

= SBB

ω2
d

= −SAB

ω2
d

= SLL

ω2
s

= SRR

ω2
s

= −SLR

ω2
s

, (28)

i.e., all currents are perfectly correlated and result in a max-
imal Pearson coefficient εP = −1. The noise of the extracted
current is plotted in Fig. 5(c), showing (again) no particular
feature related to the reversal of the heat currents. It monoton-
ically decreases as one of the reservoirs gets colder. The TUR,
however, becomes saturated as �Ts → �T 0

s [see Fig. 5(d)].
At this point, not only the refrigerator has the maximal effi-
ciency η f → 1, but is also maximally precise Q → 2.

We then conclude that the device performs under the con-
ditions of a strict Maxwell demon for an experiment accessing
not only the currents and fluctuations of the system terminal,
L and R, but also having information on the reversal of the
AL|BR interpartition flow.

VII. LESS IDEAL CASES

Now we relax the ideal conditions of the previous sec-
tion by considering that all couplings are mediated by
finite-width filters, such that either the secondary swap tran-
sitions |01〉 ↔ |10〉 and |12〉 ↔ |21〉 become possible, or the
qutrit-bath couplings become leaking, e.g., with the system
reservoirs (L and R) being able to excite the ground state.

A. Additional exchange couplings

We first explore the effect of additional swap transitions.
We do this by assuming that the qutrit coupling is medi-
ated by a resonance of width zc around ω0 = ωs + ωd , for
which we consider λα → λ02ζ0(ωα, zc), using Eq. (11). As
the width of the resonance increases, additional couplings
start to contribute. The effect on transport, plotted in Fig. 6,
shows that, though the cooling power is barely affected by zc,
the efficiency is reduced. The reason is the onset of cycles
|00〉 → |01〉 ↔ |10〉 → |00〉 for finite λ01 which transfer heat
directly from B to A without involving the system reservoirs
[see Figs. 6(a) and 6(b)]. The same argument applies to the
system autocorrelations and the TUR [see Figs. 6(c) and 6(d)].

The conservation of energy in each cycle imposes that
the fluctuations in L and R, and in A and B are the same
in the steady state, no matter in how many different ways
the excitations are transferred between the qutrits. Hence, the
cross-correlations are not affected by these additional transi-
tions (as also discussed in Sec. V for a similar case), so the
Pearson coefficient is still εP = −1. Hence, the operation is
still indistinguishable from that of a Maxwell demon from
measurements in L and R only. The analogy in this case can be
done with a demon that controls only one of several holes in
the membrane that separates the two system partitions [138].
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FIG. 6. Additional couplings: (a) Heat currents, (b) efficiencies,
(c) noise, and (d) Q for heat extracted from reservoir R as functions
of the temperature difference �Ts, for different zc and �Td = 4 and
the same other parameters as in Fig. 5. Efficiencies and Q are plotted
in the cooling region where Q̇R > 0.

B. Leaking filters: Relaxed demon

The effect of imperfectly filtered couplings between the
qutrits and the reservoirs is more drastic, as it introduces
the possibility that the two qutrit transitions are induced
by the two reservoirs each one is coupled to. Experimentally,
the couplings to the reservoirs can controllably be made lossy
[158]. We do this here by considering finite-width resonances
(the same for all reservoirs, zr) via ζl (ω, zr ) in Eq. (11).

The additional transitions are detrimental for cooling
power, as shown in Fig. 7(a), therefore, the efficiency is
strongly reduced even for small zr [see Fig. 7(b)]. Also, the
autocorrelations and cross-correlations are affected, breaking
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FIG. 7. Effect of imperfect filtering: (a) Heat currents, (b) effi-
ciencies, (c) autocorrelations (dashed) and cross-correlations (dotted)
of the system currents, and (d) thermodynamic uncertainty Q
(dashed) and εP (dotted) for heat extracted from reservoir R as func-
tions of the temperature difference �Ts, for different zr and �Td = 4
and the same other parameters as in Fig. 5. Efficiencies and Q are
plotted in the cooling region where Q̇R > 0. Gray lines mark the
perfect filtering case as references.
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We only plot the relaxed demon region as defined by the condition
(20). The insets are maps of the operation regions according to the
same condition: gray is where the device is a nondemonic refriger-
ator, gold marks the relaxed demon territories with ηAB > η̃0, while
orange and dark red are for increasingly efficient demons ηAB > 10
and 100, respectively. Note that η̃0 = (1 − �Ts/2T )/2 � 1/2. The
dashed black line limits the refrigeration region in the perfectly
filtered case (strict demon).

the symmetry of Eq. (25) [cf. Fig. 7(c)], making the TUR
deviate from Q = 2 [cf. Fig. 7(d)]. Most important for our
discussion, the lack of perfect correlations reduce the Pearson
coefficient as zr increases [see dotted lines in Fig. 7(d)].

Furthermore in this case, the demon condition Q̇d = 0 is
not necessarily fulfilled, so the first law is not verified in the
system. However, we can still find a relaxed demon behavior
as long as the cooling power is larger than Q̇d (representing
the deviation from the first law in the system induced by heat
leaking from the demon), as defined by Eq. (20) (see Ref. [94]
for a related behavior). We plot the Pearson coefficient in the
relaxed demon region in Fig. 8. Increasing widths zr not only
reduce |εP|, they also reduce the region where the relaxed
demon operates. The map of the region territories is also
shown in the insets of Fig. 8, with different colors marking the
degree of violation of the efficiency “bound” η0. In the gray
regions, the device behaves as a conventional (in the sense of
nondemonic) multibath refrigerator.

VIII. ALTERNATIVE CONFIGURATIONS

The coupling between two qutrits may have different prop-
erties depending on the experimental realization. For this
reason, we explore other configurations where similar effects
can be found. In the previous sections we have discussed a
symmetric configuration based on two identical qutrits with
a dominant swap of the |02〉 and |20〉 states, which we name
S02 in the following. Additionally, we identify two other cases
which make the noncontinuity of the internal current more
explicit, as we will see: The S01, where the two qutrits are
also identical, but they are coupled via swapping the |01〉
and |10〉 states [see Fig. 9(a)]; and the A02, where the system
is antisymmetric for the qutrits have opposite anharmonicity,
with the main coupling mediated again by λ02 [see Fig. 9(b)].

A. Case S01: Antiparallel internal and system currents

The configuration S01 needs that the demon reservoir cou-
plings are filtered at a frequency ω

S01
d = (E2q − E0q)/h̄ (for

(a) S01

L

A

R

B

(b) A02

L

A

B

R

FIG. 9. Schemes of alternative configurations. (a) S01 consists on
the same qutrit disposition as for S02 but with the demon reservoirs
being filtered at a different frequency, h̄ωd = E2q − E0q. The domi-
nant exchange coupling is in this case λ01. (b) A02 considers qutrit 2 to
have a negative and opposite anharmonicity, with the same filters as
the S02 configuration. Note that the S01 demon works for the opposite
temperature distribution in the system, cooling L and pumping R.

the numerical calculations of this case we fix ωs=2 GHz ).
This way, baths L and R induce transitions between |1〉1/2 and
|2〉1/2, and A and B between |0〉1/2 and |2〉1/2 [see Fig. 9(a)].
Additionally, the swap transition is centered around ω

S01
d − ωs,

so that λ01 � λ02, λ12.
The mechanism of the S01 and S02 systems is similar:

they are both based on the asymmetric fluctuations of the
1-L and 2-R switches, as discussed in Sec. II A, with the
difference that now the demon reservoirs induce transitions
between the |0〉q and |2〉q states. Hence, the cycle |00〉 →
|02〉 → |01〉 ↔ |10〉 → |20〉 → |00〉, sketched in Fig. 9(a),
leads to h̄ωs quanta being absorbed from L and emitted into
R, i.e., the roles of L and R are exchanged in the cool-
ing and pumping operations as compared to configuration
S02: they occur when TR > TL. This goes with an energy
h̄(ωS01

d − ωs) flowing in the opposite direction through the
AL|BR partition via the swap transition, i.e., the system cur-
rents are antiparallel to Q̇c. Furthermore, in this case the
presence of an internal system current is compromised by the
fact that photons are absorbed by R before they are emitted
from L.

The S01 case can be seen as a single-qutrit absorption
refrigerator coherently coupled to a heat source that contains
the BR partition: B and R reservoirs are both hot and inject
heat into the colder partition AL (remember TR > TL and
TB > TA), which results in L being cooled down, as happens
in three bath configurations [11]. However, the demonic effect
manifest in that, at the same time, heat is being pumped
into the hottest reservoir R, which is not possible with three
reservoirs only.

B. Case A02: The rat trap demon

The mechanism for the A02 cycle, sketched in Figs. 9(b)
and 10, has a different interpretation. When the device is in the
ground state, it is in contact with reservoirs R and A, both cold.
The smaller frequency ωs favors that a photon is absorbed
from R as long as also ωs/TR < ωd/TA. Once in state |01〉,
absorbing a photon from B effectively uncouples reservoir
R. In this sense, the transition |1〉2 → |2〉2 acts as closing a
trap door (in analogy with the trap door model introduced
by Smoluchowski [159]) that avoids the excitation extracted
from R to be released back. The excitation is hence trapped (or
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FIG. 10. The rat trap demon (model A02). Solid lines indicate
the transitions between the different states of the system. As in
Fig. 2, black lines emphasize the basic-cycle transitions with a single
excited qutrit, though the transitions involve different reservoirs, as
indicated over the colored arrows. Clockwise circulation carries a
photon from the cold bath R to the hot L. The orange wavy line
indicates the primary coherent swap transition between states |02〉
and |20〉 with coupling λ02.

secured) until the swapping |02〉 → |20〉 transfers it to the AL
partition. The 1-L coupling is hence set on and the emission
of a photon of energy ωs into the hot reservoir L is enabled.
The subsequent relaxation back to the ground state acts as a
second trap door closing the 1-L coupling and resets the cycle
again.

Note that, in this case, one can introduce a notion of in-
formation as done in the quantum dot models [77,92]: the
excitation absorbed from reservoir R is detected by reservoir
B, which emits a photon and furthermore introduces back-
action by uncoupling reservoir R. The other demon terminal
(A) is then used to erase the information.

C. Comparison of the models

We compare the performance of the three cases in Fig. 11,
always in the ideal case with perfect filtering and only one
exchange interaction (the dominant one in each case). Note
that while the demon and system currents flow in the same
direction for the S02 and A02 cases, the opposite happens in
the case S01 [see Fig. 11(a)], as expected. However, in all
three cases, Q̇c, which is dominated by the demon flows, is
reversed at the onset of the demon operation, as a consequence
of the perfect correlation of the transitions. In spite of this, in
the S01 setup the cooling power and the internal current flow
in opposite directions, emphasizing the lack of a continuous
current in the device.

While S02 and A02 configurations seem to have very similar
performance in terms of output power, the case S01 has the
advantage that the warm demon region is larger because of
the larger ratio ωd/ωs in that configuration. This also ex-
tends the temperature region where the demon operates, as
evidenced by Fig. 11(b). The noise features are similar in all
three cases, though the S01 case is noisier in the operating
region [see Figs. 11(c) and 11(d)].
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FIG. 11. Comparison of the three different configurations.
(a) Heat currents, (b) efficiencies, (c) noise, and (d) Q for heat
extracted from reservoir R as functions of the temperature difference
�T ∗

s = �Ts (for the S02 and A02 cases) and �T ∗
s = −�Ts (for the S01

case). The device parameters are as in Fig. 5, except for the case S01,
where ωd = 6, λ12 = 0.01, and λ02 = λ01 = 0. The curve for S02 is
the same plotted there. The small dotted lines in (a) show the internal
current Q̇c in each case.

IX. DISCUSSION

To conclude, we have proposed the coherent coupling of
two qutrits in a four-reservoir configuration to reverse the heat
current in the (sub)system formed by two of the baths (hence
locally violating the second law of thermodynamics) without
injecting any heat from the other reservoirs (hence locally
respecting the first law) in experimentally relevant configura-
tions [27]. Thus, the device operates as an autonomous demon
for an observer measuring only currents and fluctuations in
the system terminals. For this it requires that the two demon
terminals are out of equilibrium and that the qutrit-reservoir
couplings are properly filtered. The simultaneous cooling and
heat pump operations in the system reservoirs does not depend
on the particular configuration of the device and occurs even
if the temperature difference in the demon (the driving ther-
modynamic force) is smaller than that of the rectified system.

Our device has similarities and differences with other
proposed models for autonomous demons based on
few-level configurations. Different from most proposals
[77,82,88,89,92], the device is not bipartite, i.e., the state of
the qutrit system cannot be separated into system and demon
states, they are rather intertwined in the state space. Different
from N demons based on the coupling to nonequilibrium
environments [90,94], the nonequilibrium state introduced
by the demon reservoirs is spatially separated, with each
bath being coupled to a different qutrit. This separation is
essential to our proposal, as it takes the (necessary to a
rectifier) asymmetry to the fluctuations, while all system-bath
couplings can in principle be equal. Such a geometry was
argued in Ref. [97] to possibly induce apparent reversals
of the current in two terminals of a classical multiterminal
conductor by nondemonic means, which would be revealed
by the properties of the current-current correlations and by the
presence of an internal current that is not reversed together
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with the one measured in the reservoirs. In particular, a strict
(autonomous) Maxwell demon is expected to show perfectly
cross-correlated currents in the system baths, with a Pearson
coefficient |εP| = 1.

We have explored the performance of the device as a simul-
taneous refrigerator and heat pump, focusing on both the mean
heat currents and the autocorrelations and cross-correlations
in the system reservoirs, where the measurements occur. We
find in the first term that an internal heat current can be
identified by conservation of heat in the connection between
qutrits (across the AL|BR partition). In ideal configurations
(with perfectly filtered coupling to the leads and a single
contribution to the qutrit-qutrit interaction) it is reversed with
the system current. However, this may happen at different con-
ditions under the contribution of additional swap couplings.
On top of it, the internal current is not necessarily parallel to
the cooling power, as demonstrated in related configurations
(S01). Second, we note that a continuous current cannot be
defined to flow between the system terminals and through the
device: the transfer between qutrits is due to a sequence of up
conversion and down conversion of the photons absorbed and
emitted from and to the reservoirs. Despite these, the currents
in the two system terminals are perfectly correlated via the
internal dynamics in perfectly filtered configurations, even in
the presence of several qutrit-qutrit couplings. Furthermore,
this happens for a wide region of temperatures, not depending
on the particular configuration of the system-bath couplings.

As a consequence, the mechanism cannot be distinguished
from that of a strict Maxwell demon by an observer with lim-
ited information of the system. Furthermore, our device ques-
tions the relevance of an internal current: differently from con-
ductors with classical dynamics, where all currents can be de-
fined locally, the coherent coupling between qutrits makes the
response nonlocal, avoiding the detection of the system inter-
nal dynamics (hence any internal flow) without disturbing it.

For the computation of the currents and correlations, we
have extended the method of Ref. [108] (initially introduced
for charge currents in quantum dot systems) for the computa-
tion of the counting statistics of multimode and multiterminal
bosonic few-level systems described by weak-coupling master
equations. We use it to calculate the heat currents and the
autocorrelations and cross-correlations, and to estimate the
performance of the device and its precision via the free-energy
efficiency and the thermodynamic uncertainty relation. We
find that the hybrid refrigerator-heat pump operation reaches
the maximal efficiency at the current reversal condition (i.e.,
when no power is extracted) with an optimal precision sat-
urating the classical TUR. The performance is, however,
affected by having additional swap couplings, which reduces
the efficiency and the TUR but does not affect the Pearson
coefficient. Most critical is the effect of imperfect filtering
in the qutrit-reservoir couplings. Not only it perturbs all per-
formance quantifiers (η f ,Q) and εP, it also introduces heat
leakage that compromises the conservation of heat in the
system terminals: the demon conditions are in that case only
met for particular temperature configurations. However, it still
works as a relaxed demon when the cooling power is larger
than the leaking heat across the AB|LR partition.

Note that related configurations have been recently pro-
posed for entanglement generation [160] as well as for

discussing synthetic negative temperatures [161], due to
population inversion (an effect intimately related to the
mechanism discussed here), emphasizing with our work and
state-of-the-art experiments [27] the relevance of multibath
coupled qutrits for the control of heat in quantum devices
and nonequilibrium processes in quantum thermodynamic
settings.
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APPENDIX A: PHOTONIC FULL COUNTING STATISTICS

To compute the heat currents and noises, we adopt
a full counting statistics approach following the method
of Ref. [108], originally developed for counting electrons
emitted into one terminal of a mesoscopic conductor, and ex-
tending it to frequency-resolved particle counting in multiple
reservoirs (see also Refs. [162–164]). This allows us to recur-
sively calculate the cumulants of the statistics of the number
of photons with frequency ωα that are absorbed by reservoir
l, Nlα . In an undriven system, we can relate it with the amount
of heat transferred in a given time: 〈�Ql〉 = ∑

α h̄ωα〈�Nlα〉.
This way, we compute the statistics of both particle and heat
currents from those of Nlα . Here we will focus on the mean
currents

Ilα = d

dt
〈Nlα〉 (A1)

and their correlations

SN
lα,l ′β = d

dt
(〈NlαNl ′β〉 − 〈Nlα〉〈Nl ′β〉). (A2)

The expressions for heat currents are obtained by replacing
each Nlα by h̄ωαNlα in the above expressions (A1) and (A2).

We extend the total density operator ρS+B by introduc-
ing the vector χ whose components are the counting fields
χlα . The resulting operator is then reduced to the system
degrees of freedom by tracing out the reservoirs: F (χ, t ) =
TrB(eiχNρS+B). Note that here N is a vector containing the
different particle-number operators Nlα . In the weak qutrit-
bath couplings regime and assuming a secular Born-Markov
approximation [2,165], we get a generalized master equation

Ḟ (χ, t ) =
[
L +

∑
lαs

(esiχlα − 1)J s
lα

]
F (χ, t ), (A3)

with the index s = ± accounting for processes where a photon
is absorbed by or emitted from a reservoir. It includes the usual
Lindblad superoperator L, including the system Hamiltonian
HS and the transition rates W lαs

jk given by Eqs. (7) and (9).
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Equation (A3) also contains the photon event operators

J s
lα =

∑
jk

W lαs
jk Yq jk (A4)

which will be used to compute the current operator.
The mean currents (n = 1) and higher-order (n > 1) corre-

lations are obtained by averaging nth derivatives of F (χ ) with
respect to iχlα . Solving Eq. (A3) may, however, be a hard task.
Also, one is usually interested only in the first few cumulants.
In those cases, we can obtain them recursively by performing
a Taylor expansion:

F = ρ +
∑

lα

iχlαF (1)
lα − 1

2

∑
ll ′αα′

χlαχl ′α′F (2)
lα,l ′α′ + · · · (A5)

up to the order of the desired correlation and introduce it
into Eq. (A3). Alternative approaches have been considered
as well [107,110]. As we are interested in the first two order
moments

〈Nlα〉 = TrF (1)
lα , (A6)

〈NlαNl ′β〉 = TrF (2)
lα,l ′β, (A7)

a second-order expansion will be sufficient. With Eq. (A5), we
get a hierarchy of equations of motion. At zero-th order we
recover the master equation for the reduced density matrix:

ρ̇ = Lρ. (A8)

The first- and second-order equations read as

Ḟ (1)
lα = Ilαρ + LF (1)

lα (A9)

and

Ḟ (2)
lα,l ′β = IlαF

(1)
l ′β + Il ′βF

(1)
lα + 1

2LF (2)
lα,l ′β

+ δll ′δαβ

(
I+

lαρ + 1
2LF (2)

lα,l ′β

)
, (A10)

respectively. Using Eq. (A4), we define the current operator
Ilα ≡ I−

lα from

I±
lα ≡ J +

lα ± J −
lα . (A11)

With the solutions of Eqs. (A8), (A9), and (A10) we get
the system density matrix and the corresponding moments of
the number of emitted particles, Eqs. (A6) and (A7), whose
time derivatives give the mean currents and their fluctuations
[see Eqs. (A1) and (A2)]. Note that we do not need to solve
Eq. (A10) explicitly. Note also that, when replacing Eqs. (A6)
and (A7) into Eq. (A2), the projection of F (1)

lα onto the kernel
of L is canceled out when taking the trace [108]. It is hence

convenient to solve the equation for the perpendicular compo-
nent ϒlα = F (1)

lα − ρ TrF (1)
lα :

ϒ̇lα = (Ilα − Ilα )ρ + Lϒlα, (A12)

instead of (A9). In the stationary regime, we are left with the
system of equations

Lρ = 0, (A13)

Lϒlα = −(Ilα − Ilα )ρ, (A14)

which, completed by the conditions Trρ = 1 and Trϒlα = 0,
can be solved by simple linear algebra. Then, we can write the
frequency-resolved particle currents:

Ilα = Tr(Ilαρ) (A15)

and the correlators

SN
lα,l ′β = Tr[Ilαϒl ′β + Il ′βϒlα + δll ′δαβI+

lαρ]. (A16)

With this expression we can compute the correlations of par-
ticles with different frequencies in different detectors. The
heat currents and the autocorrelations (l = l ′) and cross-
correlations (l 
= l ′) are finally given by Eqs. (14) and (15).
We can verify that the conservation of energy imposes∑

l

Q̇l = 0 and
∑

ll ′
Sll ′ = 0, (A17)

both for currents and fluctuations.

APPENDIX B: THE DEMON
AS A NONEQUILIBRIUM ENVIRONMENT

Following the ideas of Refs. [90,94], it makes sense to
compare the operation of the system with the efficiency of
a three-bath configuration for which the demon terminals
are replaced by a single reservoir E at temperature TE . In
that case, the simultaneous refrigeration and heat pumping
of the two system reservoirs is not possible (in the absence
of work sources). Even worse, under the demon conditions,
here expressed as Q̇E = 0, neither cooling nor pumping oc-
curs. However, one can look at the efficiency of the separate
operations when allowing for a finite Q̇E (the case of a usual
three-reservoir setup). For instance, the device can operate
as an absorption refrigerator that extracts heat from a cold
reservoir at temperature TC by putting it in contact with a
hot reservoir at temperature TH and dumping heat into the
environment E . To highlight the role of the warm demon,
we define the efficiency in terms of the heat flowing into the
environment (rather than the usual definition in terms of the
heat from the hot bath) as

η̃abs,eq = Q̇R

−Q̇M
� TC

TE

TH − TE

TH − TC
, (B1)

where the inequality assumes that the three baths are in inter-
nal equilibrium. For the definition of η̃0 in Eq. (20), we replace
(TH , TC, TE ) by (TL, TR, T ).
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