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Thermal transistor and thermometer based on Coulomb-coupled conductors
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We study a three-terminal setup consisting of a single-level quantum dot capacitively coupled to a quantum
point contact. The point contact connects to a source and drain reservoir while the quantum dot is coupled to a
single base reservoir. This setup has been used to implement a noninvasive, nanoscale thermometer for the bath
reservoir by detecting the current in the quantum point contact. Here, we demonstrate that the device can also be
operated as a thermal transistor where the average (charge and heat) current through the quantum point contact
is controlled via the temperature of the base reservoir. We characterize the performances of this device both as
a transistor and a thermometer and derive the operating condition maximizing their respective sensitivities. The
present analysis is useful for the control of charge and heat flow and high precision thermometry at the nanoscale.
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I. INTRODUCTION

Engineering and controlling heat and its coupling with
electricity at the nanoscale is one of the big challenges that
the field of nanoelectronics is facing today. The phenomenon
of thermoelectric transport at the mesoscopic level has been
widely explored in nanostructures to achieve this goal [1,2].
This includes the design of nanoscale heat engines [3–19],
refrigerators [20–27], thermal rectifiers [28–33], and thermal
transistors [31,34–40]. Also the detection of heat flows in such
devices via nanoscale low-temperature thermometers [41–44]
has been addressed. Remarkable progress has been recently
achieved with different mesoscopic devices for milikelvin
[45–55] or ultrafast [56–58] thermometry.

Recent interest has been raised in designing multiterminal
devices able to separate charge and heat currents. Proposals
include the use of three-terminal configurations of capaci-
tively coupled quantum dots where transport through two
(source and drain) terminals responds to charge fluctuations in
the third one (the base), involving heat but no charge transfer.
Setups of this kind allow for the realization of heat en-
gines [7,8,13–16,59–61], refrigerators [24,25,27,62], thermal
transistors [36–38,63], and thermometers [64]. Of particular
interest is the case of thermal transistors and noninvasive
thermometers, where one seeks to maximize the response
of the system (a current from source to drain) by minimizing
the injection of heat from the base terminal. In the first case,
transport in the system is modulated by changes in the base
temperature, �. Conversely in the second case, the current
serves as readout of the temperature of the base. However,
the tunneling current through a weakly-coupled quantum dot
(based on single-electron transitions) is small. To overcome
this issue, we consider an alternative structure, shown in
Fig. 1, consisting of a capacitively coupled quantum dot and
a quantum point contact (QPC). The quantum dot is tunnel

coupled to the base reservoir, which has a given temperature
�. The steady-state population of the quantum dot impacts
the average (charge and heat) currents through the QPC,
which in turn is connected to source and drain reservoirs.
This structure has been employed previously to study the full
counting statistics of single electron transport in quantum dots
both theoretically [65–75] and experimentally [76–82], where
the QPC acts as a charge detector that monitors the occupation
of the dot. This setup was also experimentally demonstrated
[48,50,83,84] to behave as a thermometer, enabled by the fact
that the population of the dot is sensitive to the temperature in
the base reservoir.

In this paper, we show that the structure can be used as a
thermal transistor as well. We analyze its performance both as
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FIG. 1. (a) The QPC (beige region) and a single electron quan-
tum dot connected to three terminals. Source and drain reservoirs
have chemical potentials μL, μR and temperatures �L, �R. The base
reservoir, with temperature � and electrochemical potential μ, is
tunnel coupled to the quantum dot with tunneling rates Won/off . The
capacitance C mediates the dependence of the current through the
QPC, Iα , upon the charge state α of the quantum dot, (b) α = 0 or
(c) α = 1.
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a transistor and a thermometer by deriving the corresponding
sensitivities and finding the operating conditions optimizing
them. When the device is operated as a thermal transistor, the
goal is that a small temperature change in the base reservoir
triggers a large change of the average charge or heat current
in the QPC. We quantify the device performance by the
differential sensitivity of the average charge and heat current
to the infinitesimal temperature change in the base, as well as
by the power gain.

For the operation of the device as a thermometer, we apply
metrological tools to characterize two measurement protocols.
The first one involves the sequential coupling of the dot to
the probed reservoir and the QPC. This corresponds to the
paradigmatic protocol of classical and quantum metrology
[85]. In the second protocol, both interactions are always
turned on. This latter procedure is easier to implement and
was actually used in Refs. [48,50,83,84]. Both protocols allow
noninvasive temperature measurements since single electron
tunneling only involves a very small amount of energy and
charge exchange between the measured reservoir (the base)
and part of the thermometer (the quantum dot). When op-
timally operated, we find that the thermometer’s sensitivity
is for both protocols limited by telegraph noise induced in
the QPC by electron tunneling in the dot. Interestingly, the
optimal sensitivity of the thermometer occurs for the same
quantum-dot parameters as the optimal sensitivity of the ther-
mal transistor. In contrast to the thermal transistor, we find that
the sensitivity limits of the thermometer do not depend on the
QPC current in the two quantum-dot charge configurations.
For the thermal transistor, instead, we find that the power gain
is independent of the dot occupation and the base-reservoir
temperature.

With respect to the previously studied setup containing two
capacitively coupled dots, the device shown in Fig. 1 has
two definite advantages. First, the average currents flowing
through the QPC are much larger than in the quantum-dot case
where the Coulomb blockade much reduces the conductance
compared to the conductance quantum [86]. Furthermore,
backaction is suppressed: In a QPC, there is no significant
charge buildup in the vicinity of the saddle point potential,
which forms the QPC. As a consequence, the quantum dot
state modifies the transmission probability of the QPC without
energy exchange between the quantum dot and the QPC. This
property allows us to obtain high power gain for the transistor
and participates to make the thermometer noninvasive as only
a small bounded amount of energy flows back and forth
between the dot and the base without involving the QPC.
This situation is different for transport through a quantum
dot connecting source and drain lead. In the latter case,
random fluctuations of the electrostatic potential caused by
the nearby, capacitively coupled gate dot [36,37] (or simply
environmental fluctuations [8,82,87,88]) do induce energy
exchange between the source-drain system and the base part in
general. Exceptions have been identified involving particular
tunneling rate configurations or strongly coupled dots [36,37].

The paper is organized as follows. In Sec. II we introduce
the model of our setup. The operation as a thermal transistor
is discussed in Sec. III, while the thermometer configuration
is analyzed in Sec. IV. Our results are summarized and
conclusions are drawn in Sec. V.

II. SETUP

We consider a three-terminal device as shown in Fig. 1.
It contains a spinless single-level quantum dot, which can
be either empty, denoted as 0, or occupied with a single
electron, denoted as 1 (this corresponds to a quantum dot
in the spin-split Coulomb-blockaded regime). The addition
energy ε is defined as the energy difference of these two
states. The dot is weakly tunnel coupled to the base reservoir
with chemical potential μ and temperature �. In what follows
we choose the electrochemical potential of the base reservoir
as a reference energy, μ = 0. Throughout this paper, we set
kB ≡ 1. The coupling strength between dot and base reservoir
is characterized by the rate �. The population dynamics of the
weakly coupled dot, with h̄�/� � 1 is described by the rate
equations

Ṗ0(t ) = −WoffP0(t ) + WonP1(t ) (1)

and Ṗ1(t ) = −Ṗ0(t ), where P0(t ) and P1(t ) denote the prob-
ability to find the dot empty or singly occupied at time t ,
respectively. According to Fermi’s golden rule, the transi-
tion rate from dot state 0 to 1 is Woff = � f�(ε) and the
transition rate from dot state 1 to 0 is Won = �[1 − f�(ε)],
where f�(ε) = 1/(eε/� + 1) is the Fermi function. The dot
occupations relax to the steady state on a time scale �−1. The
steady state populations are

P0 = Won/� = 1 − f�(ε), (2)

P1 = Woff/� = f�(ε). (3)

The mesoscopic QPC is connected to two macroscopic
source and drain reservoirs with electrochemical potentials
and temperatures μL, �L and μR, �R respectively, as shown
in Fig. 1. The average current in the QPC sensitively depends
on the state of the nearby quantum dot due to Coulomb
interactions. For an ideal, saddle shaped potential landscape
where transport occurs only via the lowest transverse mode,
the QPC transmission takes the form [89]

Tα (E ) = 1

1 + exp
(− 2π E−Uα

h̄ω

) . (4)

Here α = 0, 1 represents the empty or occupied state of
the dot, ω characterizes the curvature of the potential, and
Uα is the electrostatic potential at the bottom of the saddle
point when the dot is empty or occupied. In the nonlinear
transport regime, it is important to account for the depen-
dence of Uα on the electrochemical potentials of the leads,
Uα = Uα,0 + λμL + (1 − λ)μR with 0 � λ � 1, to ensure
gauge invariance [90]. Throughout this paper, we assume that
�i (i = L, R) is much smaller than all relevant energy scales
in the QPC subsystem, in particular, |Uα − μi| and eV =
μL − μR, so that f�i (E − μi ) can be approximated by the
Heaviside function. Then the energy relevant to electronic and
heat transport falls in the range [μR, μL]. The average charge
and heat currents flowing out of a reservoir, for a given dot
state, can be calculated from the Landauer-Büttiker formula
[91,92]. Focusing on currents flowing out of the left reservoir,
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we find

〈Iα〉 = 2e

h

∫ μL

μR

dETα (E ) = eω

2π2
ln

[
1 + e2π (μL−Uα )/(h̄ω)

1 + e2π (μR−Uα )/(h̄ω)

]
,

(5)

〈IQ
α 〉 = 2

h

∫ μL

μR

dETα (E )(E − μL), (6)

where for simplicity, we have chosen not to indicate the
reservoir L, where we always assume currents to be detected.
The subscript α stands for the dot state. Given the dot stays in
state α, the current noise in the QPC is fully characterized
by shot noise. Since we assume the low-temperature limit,
thermal noise can be neglected. The zero frequency shot noise
power spectral density of the charge current—considering
autocorrelations in reservoir L—is [92]

Sα = e2

π h̄

∫ μL

μR

dE Tα (E )[1 − Tα (E )]

= e2ω

2π

sinh
[

π (μL−μR )
h̄ω

]
cosh

[
π (μL−Uα )

h̄ω

]
cosh

[
π (μR−Uα )

h̄ω

] , (7)

where, again, the subscript α indicates the dot state.

III. THERMAL TRANSISTOR

A. Sensitivity

When the device under study acts as a thermal transistor in
the steady state, analogous to the electric transistor, we would
like to see a large change of average charge or heat current in
the QPC due to a small change in the temperature of the base
reservoir. Control of charge and heat currents via temperature
gradients can be useful if, e.g., a certain device operation
should only be performed as long as a certain temperature is
not exceeded.

When the dot reaches its stationary state at a given base-
reservoir temperature �, the average charge current flowing
in the QPC is

〈I〉� = P0〈I0〉 + P1〈I1〉 = 〈I1〉 + [1 − f�(ε)]	I, (8)

where

	I ≡ 〈I0〉 − 〈I1〉. (9)

For the average heat current one just needs to replace 〈I〉�,
〈Ii〉 and 	I with 〈IQ〉�, 〈IQ

α 〉 and 	IQ ≡ |〈IQ
0 〉 − 〈IQ

1 〉|, respec-
tively. We see from Eq. (8) that both the steady-state average
charge and heat current depend on the temperature of the
base reservoir through the steady-state population of the dot.
The differential sensitivity of the average charge current in the
QPC to the temperature of the base reservoir is1

∣∣∣∣d〈I〉�
d�

∣∣∣∣ =
∣∣∣∣df�(ε)

d�

∣∣∣∣	I = ξ (ε/�)
	I

|ε| , (10)

1Note that we exclude the case ε = 0, where the device is fully
insensitive to temperature changes.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

FIG. 2. The normalized current (〈I〉� − 〈I1〉)/	I and the nor-
malized differential sensitivity (|ε|/	I )|d〈I〉�/d�| = ξ (ε/�) ver-
sus the normalized temperature �/|ε|. The blue and the red lines are
for the cases ε > 0 and ε < 0, respectively.

where we have introduced the function for the normalized
differential sensitivity

ξ (x) ≡ x2

2[1 + cosh(x)]
. (11)

We observe that the asymmetric function ξ (x) reaches its
maximum at |x| = 2.4 and decreases to half of its value at
|x| = 1 and |x| = 4.5. Thus for fixed ε, the prefactor on the
right hand side of Eq. (10) reaches its maximum 0.44 at � ≈
0.4|ε|, with left width 0.2|ε| and right width 0.6|ε|, as shown
in Fig. 2. From this, we derive the maximum differential
sensitivity as

max
�

∣∣∣∣d〈I〉�
d�

∣∣∣∣ = 0.44	I

|ε| . (12)

For the differential sensitivity of the average heat current, one
just needs to replace 	I in Eqs. (10) and (12) with 	IQ.

B. Power gain

In general, the power gain of a transistor is defined as the
ratio between output and input power GP ≡ Pout/Pin. Here,
the output power is given by the power difference as the
temperature is changed from �1 to �2 at a given applied
voltage V , i.e.,

Pout = (〈I〉�2 − 〈I〉�1 )V = 	I| f�2 (ε) − f�1 (ε)|V. (13)

The definition of the input power is less straightforward,
since within the considered model no energy flows from the
quantum dot into the QPC circuit. Instead, the relevant energy
flow is here the energy transferred from the base reservoir
into the quantum dot within a time duration �−1 set by
the characteristic time scale of the quantum-dot tunneling
dynamics, when the reservoir temperature is changed from an
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FIG. 3. QPC transmission in the regime where the different dot
occupations correspond to fully closed and open channels. The
requirement to reach this regime is to have (μR − U0 ) � h̄ω and
(U1 − μL) � h̄ω.

initial value �1 to a final value �2. Therefore, we find

Pin = �ε| f�2 (ε) − f�1 (ε)|. (14)

With this the result for the power gain is found to be

GP = V 	I

�ε
. (15)

Interestingly, the information about the occupation of the dot
and about the temperature of the base reservoir drops out.

For fixed applied bias V , one can further maximize the
sensitivity, Eq. (12), and the power gain, Eq. (15), over 	I
or 	IQ. It is readily found from Eqs. (5) and (6) that the
maxima of both quantities are reached when the different
dot occupations (empty or occupied) result into a completely
closed or open QPC channel, corresponding to T0(E ) ≈ 1 and
T1(E ) ≈ 0, respectively. This regime can be reached by tuning
the parameters Uα and ω such that one has (μR − U0)/h̄ω�1
and (U1 − μL)/h̄ω � 1 as shown in Fig. 3. In this regime, we
have 〈I1〉 = 〈IQ

1 〉 = 0, but 〈I0〉 = 2e(μL − μR)/h, and 〈IQ
0 〉 =

−2(μL − μR)2/h.

IV. THERMOMETER

We now turn to the operation of the setup as a thermometer.
We analyze two different types of protocols with the aim to
sense the temperature � of the base reservoir. The standard
protocol of metrology, shown in Fig. 4 and described in
detail in the figure caption, corresponds to a sequence of
discrete measurements: A physical system (the quantum dot,
in our case) is used as a probe which is prepared in some
known initial state and then undergoes some physical process
(charging/uncharging) which depends on the true value of the
estimation parameter of interest (the temperature of the base
reservoir, �). In this way, the information about the estimation
parameter is encoded in the state of the probe. Finally, one
uses some measuring apparatus (the QPC) to measure the state
of the probe. When repeating the above procedure N times, the

probe
sensed

physical
process

refreshing

FIG. 4. A typical cycle of a metrological process consists of the
following steps: (i) The probe (blue rectangle) is initially prepared
in some known state. (ii) The probe interacts with some physical
process (magenta rectangle) that depends on the true value of the
estimation parameter of interest. The interaction is turned off before
moving to the next step. (iii) The interaction between the probe and
the measuring apparatus is turned on to perform a noiseless projec-
tive measurement. When the measurement is done, the interaction is
turned off and the measurement outcome is sent to the computer for
later processing.

standard precision of the measurement scales as 1/
√

N . An
alternative but more practical protocol (this is the one actually
used in experiments Refs. [48,50]) is to keep both interactions
always on, avoiding the sequential coupling and decoupling
procedures.

The QPC as a measurement apparatus or detector of the
state of the dot has been widely discussed in the context
of mesoscopic measurement processes [65–74,76–82]. Let
us first for simplicity assume that the quantum dot is fixed
to be either empty or filled, and that we want to determine
the state of the dot by looking at the current flowing in the
QPC. Although the on and off states of the dot correspond to
different average current 〈I1〉 and 〈I0〉 in the QPC, we cannot
resolve these two current levels instantaneously, due to the
shot noise. Therefore, to measure the state of the dot, one has
to switch on the QPC circuit for some time duration. Suppose
we measure for this time duration τα , which is much longer
than the correlation time of the shot noise in the QPC and
in principle depends on the dot state α. Due to the central
limit theorem, the distribution of the time average current
(1/τα )

∫
Iα (t ′)dt ′ conditioned on the dot state α is a Gaussian

with mean 〈Iα〉 and variance Sα/τ , where Sα is the zero
frequency conditioned shot noise spectral density defined in
Eq. (7). To reach a signal to noise ratio of at least unity for
distinguishing the two Gaussians, the measurement must be
turned on for at least a time duration of max{τ0, τ1}, where
	I is defined in Eq. (9) and

τα ≡ Sα

(	I )2
(16)

is the measurement time. If the QPC circuit is switched on
for a time duration much longer than max{τ0, τ1}, it effec-
tively performs an ideal measurement of the quantum-dot
occupation.

A. Standard (discrete) protocol

We now discuss the three steps of the protocol of Fig. 4.
First, (i) we prepare the quantum dot—the probe of our
setup—in state 0, meaning that the dot contains no excess
electrons. Next, (ii) we turn on the interaction with the
base reservoir for a time duration 	t (ii) = c(ii)�−1, where
the constant c(ii) � 1 is sufficiently large to guarantee that
the dot reaches the stationary state. We then (iii) turn
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off the interaction with the base reservoir and at the same time
turn on the measurement by the QPC to determine whether
there is an electron on the dot or not. We measure for time
duration 	t (iii) = c(iii) max{τ0, τ1} to perform an effectively
noiseless ideal occupation measurement, where c(iii) � 1 is
chosen to obtain a sufficiently large signal-to-noise ratio. The
measurement gives a binary outcome statistically described
by the probability mass function {Pα}, Eqs. (2) and (3),
corresponding to the two outcomes α = 0, 1. The information
about the temperature � extracted by a single measurement
cycle the measurement is quantified by the Fisher information,
which is given by

F� =
∑

α=0,1

(∂�Pα )2

Pα

= ξ (ε/�)

�2
. (17)

The inverse of the Fisher information sets the lower bound of
the variance of any temperature estimator, a result known as
the Cramér-Rao bound [93].

Specifically, in a given time t , one can repeat the cycle
N = t/(	t (ii) + 	t (iii) ) times. We denote the measurement
outcome for the nth cycle as xn, where xn = 0 if the dot
is empty and xn = 1 if the dot is occupied. Based on a
series of measurement outcomes {xn}, we propose to apply
the asymptotically unbiased maximum likelihood estimator
�̂MLE({xn}) = ε/ ln[1/ f̂ ({xn}) − 1] to estimate the temper-
ature, where f̂ ({xn}) = ∑N

n=1 xn/N . When N is sufficiently
large, the maximum likelihood estimator asymptotically sat-
urates the Cramér-Rao bound [93], leading to:

Var(�̂MLE) = 1

NF�

= c

t

�−1 + max(τα )

F�

. (18)

For simplicity, we here assumed c(iii) = c(ii) ≡ c. In a typical
experiment, one can resolve the state of the dot in a time scale
much shorter than the lifetime of the state limited by electron
tunneling. This indicates that the time scale of the tunneling
�−1 is much longer than the time scale required to resolve
the two current levels, max{τ0, τ1}. With this approximation,
Eq. (18) reduces to

Var(�̂MLE) = c�2

�tξ (ε/�)
, (19)

which is independent of the QPC parameters. Now, from the
property of the function ξ (x) discussed in Sec. III, we see that

[Var(�̂MLE)]min = 2.3c�2

�t
, (20)

and the variance ranges between [1, 2]× the minimum vari-
ance when |ε| is tuned between [�, 4.5�]. Equation (20)
is confirmed by a Monte Carlo simulation, as shown in
Fig. 5, where we generate the measurement signals (electric
current) in the QPC according to the probability mass function
{Pα (t )} described by Eq. (1). The simulation shows that one
needs to take c � 10 in order to obtain a numerical variance
(square markers) of the maximum likelihood estimator, which
approaches the Cramér-Rao bound (20) (red solid line) in the
long time limit.

Since the optimal value of |ε| depends on the true value
of the estimated temperature, the maximum sensitivity given
by Eq. (20) can only be reached by adaptive measurements

2000 4000 6000 8000 10000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Standard-MC
Standard-Analytic
Always on-MC
Always on-Analytic

FIG. 5. Comparison of analytics of the standard, Eq. (20), and
the always-on protocol, Eq. (29), with Monte Carlo (MC) simula-
tions. We ignore the shot noise in the QPC for both protocols. We
take ε/� to be the optimal value 2.4 for both protocols. In general, if
our prior knowledge about � is very loose and ε can be far detuned
from its optimal value, then the optimal sensitivity shown here can
be achieved by adaptive measurements.

consisting of multiple rounds, where one needs to adjust the
value of |ε| according to the temperature estimate from the
previous round. If |ε| is kept fixed all the time, as shown
in Fig. 6, the normalized standard deviation

√
Var(�̂)/�

of the temperature estimator diverges exponentially at low
temperature and linearly at high temperature.

0 1 2 3 4 5

10-1

100

101

102

Standard
Always on

FIG. 6. The normalized standard deviation of the thermometer
against the normalized temperature when |ε| is kept fixed. The blue
and red lines are plotted according to Eqs. (19) and (28) respectively,
where c = 10 in Eq. (19). We see that for both protocols, the
normalized standard deviation

√
Var(�̂)/� scales as exp(|ε|/�) at

low temperature and �/|ε| at high temperature.
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B. Always-on estimation

Let us now consider the alternative protocol, where the
measurement by the QPC and the interaction with the electron
reservoir are always turned on. In this protocol, we estimate
the temperature of the base reservoir from the charge trans-
ferred through the QPC during some measurement duration t .
When the dot reaches its steady state, the average current in
the QPC is described by Eq. (8), where the impact of the
quantum dot enters via its steady-state occupation probabil-
ities. This QPC current has statistical fluctuations, which can
be attributed to two different sources of noise. The first is the
already mentioned shot noise, described by Eq. (7), due to the
partially open channel in the QPC. The other source is tele-
graph noise, which stems from stochastic switching of the dot
states caused by electrons tunneling on and off the quantum
dot. We define the transferred charge in the QPC between the
beginning of the measurement at t ′ = 0 up to time t as

Q =
∫ t

0
I (t ′)dt ′. (21)

The full counting statistics gives the cumulants of Q [73,
94–96], see also Appendix. The first and second cumulants of
Q are

〈Q〉 = t〈I〉� = t[〈I0〉 − f�(ε)	I], (22)

Var(Q) = t

[
2(	I )2WonWoff

�3
+

∑
α=0, 1

SαPα

]
. (23)

Now we estimate the occupation f by some specific sampling
of Q according to Eq. (22). This results in the following
estimator

f̂ = 1

	I

[
Q

t
− 〈I0〉

]
. (24)

This estimator has a simple physical interpretation: The
occupation of the dot is estimated from the fraction of the
measurement time during which the dot contains an electron.
Note that in the long time limit, the distribution of Q is
approximately Gaussian. Then the occupation estimator (24)
is also the maximum likelihood estimator. According to
Eq. (22), it is an unbiased estimator, i.e., 〈 f̂ 〉 = f�(ε). The
variance of such an estimator is

Var( f̂ ) = 1

t

[
2

�
f�(ε)[1 − f�(ε)] +

∑
α=0, 1

Pατα

]
. (25)

For sufficiently long t such that Var( f̂ ) is small, we can
calculate the variance of the temperature estimator through
the following error propagation relation

δ�̂ =
(

df�(ε)

d�

)−1

δ f̂ . (26)

From Eq. (26), we find

Var(�̂) = 2�2

ξ (ε/�)t

[
1

�
+ τ0

2 f�(ε)
+ τ1

2[1 − f�(ε)]

]
. (27)

Direct minimization of Eq. (27) is tedious but can be done
numerically. As in Sec. IV A, we assume the practical
situation τα� � 1 to simplify the minimization. With this

assumption, we see that as long as the detuning |ε| is not
much larger than �, such that f�(ε) is neither close to 0 nor 1,
the contributions from the shot noise in Eq. (27) can be safely
ignored. Therefore Eq. (27) reduces to

Var(�̂) = 2�2

ξ (ε/�)�t
, (28)

which is independent of the QPC parameters as in the standard
protocol. When ξ (x) is maximized at |ε|/� = 2.4, and
consequently f�(ε) ≈ 10−2, the shot noise can be neglected
as long as τα� � 10−2. In this case the minimum variance is

[Var(�̂)]min = 4.6�2

�t
. (29)

Equation (29) is confirmed by a Monte Carlo simulation as
shown in Fig. 5, where we simulate the telegraph process to
generate the measurement signals in the QPC. As in the stan-
dard protocol, the optimal regime requires the knowledge of
the true value of � and therefore adaptive measurements are
required in general. The behavior of the temperature estimator
in a nonadaptive measurement is qualitatively the same as the
standard protocol, as shown in Fig. 6. However, near the op-
timal regime the always-on protocol has a factor of 5 smaller
variance than the standard protocol, as shown in Fig. 5.

In order to have a concrete idea about the performance
of this thermometer, we compute the error made on a tem-
perature estimation, using the parameters from Ref. [48]. In
this reference, the temperature of the base is estimated to be
144 mK with an error of 1 mK, using a method based on the
fitting of the curve I (ε). The value of ε is swept slowly (the
measurement takes 3 min) by ramping up the voltage applied
at the base. Using the value of the base-dot coupling strength
provided in this paper, i.e., � = 600 kHz, and assuming the
optimal operating regime where the voltage of the base can
be chosen such that ε is tuned to the optimal value 2.4�,
we estimate from Eq. (29) that a continuous measurement
of the current through the QPC during 160 ms is needed to
obtain the same error of 1 mK. Reaching the optimal operating
regime requires a rough prior knowledge of the temperature
of the base reservoir, which can be obtained with the first
few runs of the protocol, adjusting each time the value of ε

according to the temperature estimated in the previous run.
Nevertheless, despite the time cost of obtaining the prior
knowledge, these calculations suggest that the estimation
protocol proposed here still reaches the same sensitivity in a
much shorter time than the fitting-based method in Ref. [48].

V. CONCLUSION

We have analyzed a setup consisting of a quantum dot
capacitively coupled to a QPC as shown in Fig. 1 used as
a nanoscale thermal transistor and noninvasive thermometer.
The basic operation principle relies on the sensitivity of the
average charge and heat current through the QPC to the aver-
age occupation of the quantum dot. The average dot occupa-
tion in turn depends on the temperature of the base reservoir.
We characterized the performance of the thermal transistor
by its power gain as well as the differential sensitivity of
the average charge current through the QPC to a variation
of the temperature of the base reservoir. The performance
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of the thermometer was characterized by the variance of
the temperature estimator. Furthermore, the thermometer is
noninvasive since reading out the temperature only involves
single electron tunneling and it is assumed that there is no
energy exchange between the base and the QPC.

Interestingly, as a consequence of the common operation
principles, we have found that for both types of devices the
maximal sensitivity occurs when the addition energy of the
dot and the temperature of the base reservoir are related as
ε = 2.4�. However, while for the transistor the base tempera-
ture is optimized at fixed addition energy, for the thermometer
the optimization has to be performed over the addition energy
keeping the base temperature fixed. Furthermore, while the
sensitivity of the transistor depends on the difference 	I of
the average QPC currents, the sensitivity of the thermometer,
characterized by the variance of the temperature estimator, is
independent of 	I .

The setup proposed here has already been implemented
experimentally [48,50,83,84] for thermometers. Our work
shows its interest for the purpose of controlling charge or
heat flow at the nanoscale and sets its theoretical ideal per-
formance.
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APPENDIX: FULL COUNTING STATISTICS
OF THE TRANSMITTED CHARGE IN THE QPC

In this Appendix we give a brief overview of the full
counting statistics method applied to the current through the
QPC, used in Sec. IV B. We note that the statistical depen-
dence of the transferred charges in consecutive time intervals,
which are much larger than the typical correlation time of the
current flowing in the QPC, can be neglected. Namely, for
two consecutive time intervals δt1, δt2 where δt1, δt2 � �−1,
the charges transferred in the QPC denoted as δQ1 and δQ2,
respectively, can be treated as statistically independent. We
define the total charge transferred during the two intervals as
δQ = δQ1 + δQ2 and denote the probability distributions of
δQ1, δQ2, and δQ as P(δQ1, δt1), P(δQ2, δt2), and P(δQ, δt )
respectively, where δt = δt1 + δt2. Then P(δQ, δt ) is a con-
volution between P(δQ1, δt1) and P(δQ2, δt2) due to the
statistical independence of δQ1 and δQ2.

The moment and cumulant generating functions associated
with P(δQ, δt ) are

G(λ, δt ) =
∫

d (δQ) exp(iλδQ)P(δQ, δt ), (A1)

F (λ, δt ) = ln G(λ, δt ). (A2)

Thus we have

G(λ, δt ) = G(λ, δt1)G(λ, δt2), (A3)

F (λ, δt ) = F (λ, δt1) + F (λ, δt2). (A4)

As a consequence, the cumulant generating function of
P(Q, t ), where Q is defined in Eq. (21), takes the form

F (λ, t ) ≡ tH (λ). (A5)

We Taylor expand F (λ, t ) as

F (λ, t ) =
∞∑

n=0

λn

n!
〈〈Qn〉〉, (A6)

and define

〈〈In〉〉 ≡ 〈〈Qn〉〉/t . (A7)

Then, H (λ, t ) can be written as

H (λ) =
∞∑

n=0

λn

n!
〈〈In〉〉. (A8)

We denote the probability Pα (Q, t ) as the probability of
transferring charge Q up to time t and having the dot in state
α at time t . We note that if there is no tunneling between the
dot and the base reservoir,

Pα (Q, t ) =
∫

dλ

2π
exp[−iλQ + Fα (Q, t )]

=
∫

dλ

2π
exp[−iλQ + tHα (λ)], (A9)

which is equivalent to writing the time derivative as

Ṗα (Q, t ) =
∫

dλ

2π
exp[−iλQ]Gα (λ, t )Hα (λ). (A10)

On top of this effect, we have to take into account the effect
due to tunneling, which yields the master equation

Ṗ0(Q, t ) =
∫

dλ

2π
exp[−iλQ]G0(λ, t )H0(λ)

− WoffP0(Q, t ) + WonP1(Q, t ), (A11)

Ṗ1(Q, t ) =
∫

dλ

2π
exp[−iλQ]G1(λ, t )H1(λ)

− WonP1(Q, t ) + WoffP0(Q, t ). (A12)

Rewriting both sides in terms of the generation functions
Gα (λ, t ) = exp[tHα (λ)] = ∫

dQ exp(iλQ)Pα (Q, t ) gives

Ġ0(λ, t ) = [H0(λ) − Woff]G0(λ, t ) + WonG1(λ, t ), (A13)

Ġ1(λ, t ) = WoffG0(λ, t ) + [H1(λ) − Won]G1(λ, t ). (A14)

The above equation can be rewritten as

Ġ = HG, (A15)

045418-7



JING YANG et al. PHYSICAL REVIEW B 100, 045418 (2019)

where

G(λ, t ) ≡
[

G0(λ, t )
G1(λ, t )

]
, (A16)

and

H (λ) ≡
[

H0(λ) − Woff Won

Woff H1(λ) − Won

]
. (A17)

Thus the solution to Eq. (A15) is

G(λ, t ) = exp[tH (λ)]G(λ, 0). (A18)

When t is sufficient large, the unconditional cumulant gener-
ating function

H (λ) = lim
t→∞

ln[
∑

α Gα (λ, t )]

t
(A19)

approaches the maximum eigenvalue of H (λ), which gives

H (λ) = 1

2

[ ∑
α

Hα (λ) − �

]

+
√

[H1(λ) − H0(λ) − 	�]2/4 + WonWoff. (A20)

From this equation one can find

〈〈I〉〉 = ∂H (λ)/∂λ|λ=0 =
∑

α

Pα〈〈Iα〉〉, (A21)

〈〈I2〉〉 = ∂2H (λ)/∂λ2
∣∣
λ=0

= 2(	I )2WonWoff/�
3 +

∑
α=0, 1

〈〈
I2
α

〉〉
Pα�, (A22)

where 〈〈Iα〉〉 = ∂Hα (λ)/∂λ|λ=0 and 〈〈I2
α〉〉 = ∂2Hα (λ)/∂λ2|λ=0.

In the long time limit, we can easily obtain

〈〈Iα〉〉 = lim
t→∞

〈〈Qα〉〉
t

= lim
t→∞

1

t

∫ t

0
〈Iα (τ )〉dτ = 〈Iα〉, (A23)

and

〈〈
I2
α

〉〉 = lim
t→∞

〈〈
Q2

α

〉〉
t

= lim
t→∞

1

t

[∫ t

0

∫ t

0
〈Iα (τ1)Iα (τ2)〉 − 〈Iα〉2t2

]

= lim
t→∞

∫ t

−t
〈δIα (τ )δIα (0)〉dτ

= Sα, (A24)

where δIα (τ ) ≡ Iα (τ ) − 〈Iα〉, 〈Iα〉, and Sα are conditional
average electric current in the QPC and the shot noise power
spectral density defined in Eqs. (5) and (7), respectively. With
Eqs. (A23), (A24), (A21), and (A22), one can easily obtain
Eqs. (22) and (23) in the main text.
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