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Coherent control of thermoelectric currents and noise in quantum thermocouples
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Three-terminal coherent conductors are able to perform as quantum thermocouples when the heat absorbed
from one terminal is transformed into useful power in the other two. Allowing for a phase coherent coupling to
the heat source, we introduce a way to control and improve the thermoelectric response via quantum interference.
A simple setup composed of a scanning probe between two resonant tunneling regions is proposed that achieves
better performance than incoherent analogs by enhancing the generated power and efficiency and reducing the
output current noise.
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I. INTRODUCTION

The importance of phase coherence in transport through
mesoscopic electrical conductors is well-known [1,2]. When
the system size is small with respect to the length at which car-
riers decohere in their propagation (i.e., the coherence length),
the phases accumulated within the sample induce quantum
interference effects that manifest in the mean currents through
the system, see, e.g., Ref. [3] for a discussion of exper-
imental realizations. The resulting sharp spectral features
(e.g., Fabry-Pérot-like or Fano-like resonances and destructive
Aharonov-Bohm interference) can be used as energy filters,
one of the requirements to find thermoelectric devices able
to efficiently convert heat into electrical power [4–9]. Recent
experiments using quantum dots (QDs) have confirmed these
expectations [10,11]. Phase coherence can then induce a ther-
moelectric response in conductors that would not manifest it
in the absence of interference. Furthermore, this response can
be controlled externally in different configurations including
magnetic fields [12–15], gate voltages [16], and movable junc-
tions [17]. Interferences have also been used to enhance the
thermoelectric efficiency [18–21].

Multiterminal configurations [22,23] contain the nonlocal
thermoelectric effect: a charge current is measured in an
isothermal conductor formed by two terminals at the same
temperature and electrochemical potential out of the conver-
sion of heat injected from one or more other terminals. They
introduce the possibility to inject heat directly into the meso-
scopic region, allowing one to probe the energetics of internal
processes, including electron-electron interactions [24–27],
phonon- [28–33] and photon-assisted tunneling [34], fluc-
tuating potentials [35–37], thermalization [11,38–41], local
hotspots [17,42], and Kondo correlations [43] in semiconduc-
tor devices (with connections with models of hot carrier solar
cells [44–47], nothing avoids the sun to be the third terminal
of a mesoscopic conductor), Cooper-pair splitting [48–53],
or Andreev reflection [54–56] in QDs proximitized with a
superconductor, and chirality [57–59] and helicity [60,61],
or nonthermal states [62] in quantum Hall edge channels. In

most of the above works, the phase coherence of the particles
injected from the hot source is lost as they enter the conductor.
However, coherently coupling to the hot terminal [42] makes
the source responsible for the thermoelectric response not
only for providing heat but also for inducing the necessary en-
ergy filtering via quantum interference. Unfortunately, though
this effect enhances the longitudinal thermoelectric response
substantially [42], the nonlocal thermoelectric efficiency re-
mains tiny [17].

This effect evidences that the coupling to the heat source
can dramatically change the conduction properties of a sys-
tem. Think, for instance, of using the resulting interference
to enhance transport between some pairs of terminals while
suppressing it into some others. We are interested in find-
ing the simplest configurations where such effect leads to
efficient heat to power conversion. For this, we consider a one-
dimensional two-terminal conductor with two regions where
electrons are scattered (defined by scattering matrices Sα , with
α = 1, 2). The two regions are separated by a distance d short
with respect to the electron mean-free path (we assume ballis-
tic propagation). This separation can be scanned by the tip of a

FIG. 1. Scheme of the quantum thermocouple. A quasi-one-
dimensional quantum conductor connected to two isothermal termi-
nals, L and R, is coupled to a third hot terminal, H, via the tip of
a scanning probe. The tip scans the region between two scatterers,
represented by the scattering matrices Sα , α = 1, 2, and separated
by a distance d . We chose these scatterers to be either resonant
tunneling single or double quantum dots with couplings �α and λα ,
and resonance energies εα , as indicated in the inset.
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tunneling microscope [63–65] which exchanges particles with
the conductor (though we will assume that the injected particle
current is zero in average). The tip couples the conductor to
a third terminal, H, that acts as the heat source, see Fig. 1.
Transport between every two terminals depends not only on
the properties of the two scattering regions α but also on the
internal reflections involving the tip. Therefore, the position
of the tip, situated at a distance x from the scattering region 1,
can be used to shape the transmission probabilities between all
three terminals in a way that can be controlled experimentally.
Using this property, the system thermoelectric response can be
tuned. Nanometer-resolved nonlocal thermoelectric responses
have been achieved in one- [66,67] and two-dimensional sam-
ples [68–70] via different kinds of scanning probes.

Here we will consider two cases depending on the cho-
sen structure of the two conductor scattering regions: when
they are given by single resonant tunneling QDs, demon-
strated experimentally to be efficient energy harvesters [11],
or by double quantum dots (DQDs). The performance will
be quantified in terms of the generated electrical power, the
thermoelectric efficiency, and the signal to noise ratio of the
current output. Ideally, one aims for a conductor that is able
to generate a large power output with low noise and high effi-
ciency. In practice, one needs to find a compromise: typically,
high efficiencies occur at the expense of low power outputs
[9], for instance, in the case of very narrow resonances. A
practical alternative is to try to improve the efficiency at a
given power output that one needs to run a particular device. In
that case, systems with boxcarlike transmission probabilities
are found to be optimal in two terminal setups [7,71,72]. The
problem has also been explored in three-terminal coherent
conductors, finding similar boxcar transmissions between the
conductor terminals and the heat source combined with the
extra requirement of having no elastic transfer of particles
between the conductor terminals, L and R [73]. This means
that all electrons flowing along the device are forced to visit
the heat source connected to the mesoscopic region in their
way. Such broadband transmission probabilities are difficult
to find without requiring complicated structures formed by
multiple QDs [7,74,75]. Another possibility is to consider
configurations with broken time-reversal symmetry, either by
a magnetic field [39,76–79] or by ac driving [80,81]. A clear
interest appears in finding simpler and easier to control con-
figurations.

The current noise is also important in mesoscopic con-
ductors [82,83]. From an operational point of view, trying
to reduce the fluctuations adds a different point of view for
optimization [84–90]. One can naively expect that boxcar
transmissions are also beneficial for reducing the noise signal:
the partition noise contribution in two-terminal devices will
vanish as transmission is either 0 or 1. Fluctuations in three-
terminal configurations are somewhat more complicated and
need to be explored. Note, however, that, apart from this prac-
tical issue, the fluctuations contain fundamental information
about the quantum heat engine dynamics [91–94].

We will compare the fully coherent configuration with
existing (inelastic) energy harvesters in which carriers are
fully thermalized at the heat source [11,40]. They consist of
a hot central reservoir directly coupled to the two conductor
terminals via (single) resonant tunneling QDs (as in the QD

case) achieving efficient energy harvesting. We will refer to
them as QD-th in the following. Our results show that resonant
filtering combined with internal reflections lead to boxcar-
shaped transmissions that improve the power, efficiency, and
signal-to-noise ratio as compared to incoherent case.

The remainder of the paper is organized in the follow-
ing way. In Sec. II, we introduce the theoretical description
of transport (currents and noises) based on noninteracting
scattering theory, as well as the performance quantifiers, and
show the resulting zero bias transport properties in Sec. III.
In Sec. IV, we discuss the optimization procedure and the
results obtained for the different configurations. Conclusions
are presented in Sec. V.

II. SCATTERING APPROACH

A. Transport and noise formulas

We are interested in the simplest description of transport
through multiterminal quantum coherent conductors where
correlations due to electron-electron interactions can be disre-
garded (for related configurations including electron-electron
interactions, see, e.g., Refs. [95,96]). This regime is well
described by the Landauer-Büttiker scattering theory [1,97].
Assuming that the system has a single channel, the transport
properties between terminals l and l ′ are encoded in the scat-
tering matrix Sl ′l . With it, we can calculate the mean particle
and heat currents [98,99] flowing out of terminal l = L, R, H:

Il = 2

h

∑
l ′

∫
dETl ′l (E )[ fl (E ) − fl ′ (E )], (1)

Jl = 2

h

∑
l ′

∫
dE (E − μl )Tl ′l (E )[ fl (E ) − fl ′ (E )], (2)

where Tl ′l (E ) = |Sl ′l (E )|2 is the transmission probability
from l to l ′ and fl (E ) = {1 + exp[(E−μl )/kBTl ]}−1, the
Fermi distribution function of terminal l having an electro-
chemical potential μl , and a temperature Tl ; the factor 2
accounts for spin degeneracy in the absence of a magnetic
field, in which case we also have that Tl ′l (E ) = Tll ′ (E ). For
the charge current, one multiplies Eq. (1) by −e. Note that the
thermoelectric effect requires that the transmission probabili-
ties depend on energy: if all terminals are grounded, μl = μ,
∀l , no filtering leads to Il = 0, as

∫
dE [ fl (E ) − fl ′ (E )] = 0.

We emphasize that all heat currents are carried by electrons: at
low (tens of mK) temperatures, the electron-phonon coupling
can be neglected.

We can also calculate the current-current correla-
tions SXl Xl′ (t − t ′) = 〈{�X̂l (t ),�X̂l ′ (t ′)}〉/2, with �X̂l (t ) ≡
X̂l (t ) − Xl , where the mean current Xl = Il , Jl is the statistical
average of the current operator: Xl = 〈X̂l (t )〉 [100]. Following
Ref. [82], one obtains the zero frequency noise (autocorrela-
tions), which can be decomposed in thermal (th) and shot (sh)
noise contributions, SIl Il = Sth

Il Il
+ Ssh

Il Il
. For a three-terminal

configuration (l, l ′, m = L,R,H), they read

Sth
Il Il

= 4

h

∫
dE

∑
l ′ �=l

Tll ′ [ fl (1 − fl ) + fl ′ (1 − fl ′ )] (3)
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and

Ssh
Il Il

= 4

h

∫
dE

⎡
⎣ ∑

l ′,m �=l

Tll ′Tlm

2
( fl ′ − fm)2

+
∑

l ′
TllTl ′l ( fl ′ − fl )

2

]
. (4)

For the heat noise, SJl Jl [101,102], one needs to include
(E − μl )2 in the integrals of the above Eqs. (3) and (4).
The expression for heat-charge crosscorrelations (aka mixed
noise) is slightly more cumbersome:

SIl Jl′ =4

h

∫
dE (E−μl ′ )

{∑
r

TlrTl ′r fr (1 − fr )

− Tll ′ [ fl (1 − fl ) + fl ′ (1 − fl ′ )]

+ 1

4

∑
r �=r′

Mll ′,rr′ [ fr (1− fr′ ) + fr′ (1− fr )]

}
, (5)

where we have defined

Mll ′,rr′ ≡ S†
lrSlr′S†

l ′r′Sl ′r + SlrS†
lr′Sl ′r′S†

l ′r . (6)

In the following, we will concentrate on correlations including
the heat current injected from the tip and the generated current
in terminal R. Hence, we will simplify the notation as SII ≡
SIRIR , SJJ ≡ SJH JH , and SIJ ≡ SIRJH .

B. Scattering components

We will focus on a three-terminal conductor working as
an energy harvester as the one depicted in Fig. 1. A one-
dimensional elastic conductor composed of two terminals,
l = L,R, at the same temperature, T , and with electrochemical
potential μl are connected by two scattering regions α = 1, 2
with scattering matrices

Sα =
(

rα τα

τα rα

)
, (7)

where rα and τα are the reflection and transmission ampli-
tudes, respectively, and fulfill |rα|2 + |τα|2 = 1. We consider
single-channel junctions, for simplicity. We will investigate
two different configurations (sketched in Fig. 1) where the
two scattering regions are either a resonant tunneling QD, with
Breit-Wigner amplitudes [103],

τQD
α (E ) = −i�α

E − εα + i�α

,

rQD
α (E ) = 1 + τQD

α (E ),

(8)

with resonance energy εα and broadening �α , or a double QD
[104] (see Appendix for details),

τDQD
α (E ) = − i�αλα

(E − εα + i�α/2)2 − λ2
α

,

rDQD
α (E ) = 1 + (E − εα + i�α/2)

λα

τDQD
α (E ),

(9)

where λα is the interdot coupling. We assume symmetric
DQDs, each one described by a single resonance energy, εα ,

and coupling �α , for simplicity. We will later also consider
that �1 = �2 = � (both in the QD and DQD cases) and λ1 =
λ2 = λ. Noninteracting DQDs have recently been used to in-
dicate deviations of the fluctuations in coherent transport from
classically established thermodynamic bounds [105,106].

The two regions are separated by a distance d . A third
terminal, H, at temperature TH = T + �T and electrochem-
ical potential μH is coupled to the conductor via the tip of a
scanning tunneling probe at a distance x < d of the scattering
region 1. Scattering at the conductor-tip junction is given by
the matrix [63,107]

Stip =
⎛
⎝−η−/2

√
ε η+/2√

ε η− − 1
√

ε

η+/2
√

ε −η−/2

⎞
⎠, (10)

where η± = 1 ± √
1 − 2ε. The real parameter ε ∈ [0, 1/2]

quantifies the tip-conductor coupling. The tip-conductor ge-
ometry permits to uncouple the heat source when ε = 0, in
which case the system behaves as an isothermal two-terminal
conductor.

The hot terminal is assumed to be a voltage probe [108]
with a floating electrochemical potential which will adapt
to the condition IH = 0. This way, heat but no net charge
is injected through the tip into the conductor. Note that
the heat injection mechanism is fully coherent and adds to
the interferences due to internal reflection in the conductor.
Electrons propagating within scattering regions with wave
number k(E ) = √

2m(E − U0)/h̄ will accumulate a kinetic
phase χx(E )/2 = k(E )x in their way between 1 and the tip,
and χd−x(E )/2 = k(E )(d − x) between the tip and 2. We
take the energy of the lowest subband of the one-dimensional
conductor [3] as the energy origin, U0 = 0. In the ballistic
regime, we can safely neglect disorder effects in the nanowire
potential [109]. The region between S1 and S2 can be viewed
as a double Fabry-Pérot interferometer with a movable inter-
mediate barrier which has the particularity that it absorbs and
reinjects particles. The energy dependence of the accumulated
phases are sufficient to induce a thermoelectric effect in inter-
ferometers [12–17] or to enhance it [18,20,21].

C. Shaping the transmission probabilities

Known the scattering matrices of the two scattering regions
and the tip junction, Eqs. (7) and (10), as well as the phases
accumulated in the connections between them, χd−x and χx,
we are ready to obtain the scattering matrix of the whole
system. For this, one simply needs to take into account that,
e.g., the right-outgoing wave from region 1 is the left-ingoing
wave at the tip, multiplied by a phase factor eiχx (E )/2, and the
same for the wave going out of the tip and scattering at 2
with a factor eiχ(d−x) (E )/2 instead, and solve for all the outgoing
waves as functions of the ingoing ones, see, e.g., Ref. [1] or
Ref. [17] for a more related configuration.

The resulting scattering matrix S (E ) connects the three
terminals L, R, and H. The obtained transmission probabilities
can be decomposed as

TlH (E ) = 2ε|A|−2|ταl |2IlH , (11)
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(a) TLH=
2ε

|A|2 ILH |τ1|2 (b) TLR=
η2
+

4|A|2 |τ1|
2|τ2|2 (c) TRH=

2ε

|A|2 IRH |τ2|2

FIG. 2. Transmission probabilities between (a) terminals L and
H , (b) terminals L and R, and (c) terminals R and H as a function
of the energy of the scattered electrons when scattering regions 1
and 2 correspond to the single QD case. The total transmission
(black full line) can be decomposed as suggested in Eqs. (11) and
(12) (red/green dashed: transmission probability of quantum dots
1,2; blue dotted: contribution from the multiple internally reflected
trajectories between scattering regions and the tip). Parameters: d =
10l0, x = d/2, ε = 0.5, �E = 10kBT, � = kBT, μ = 20kBT .

for trajectories between terminals l = L, R, and H, with
αL(R) = 1(2), and

TLR(E ) = η2
+

4|A|2 |τ1|2|τ2|2, (12)

for elastic transport along the conductor (without visiting the
probe terminal). In these expressions, τα are the transmission
amplitudes at scatterer α, see Eqs. (8) and (9), while

A = 1 + η−
2

(r1eiχx +r2eiχd−x ) − √
1−2ε r1r2eiχd , (13)

where χd = χx + χd−x, and

IlH (E ) = 1 − |τβl |2
2

+ Re[rβl e
iχl ] (14)

account for the quantum interference of multiple internally
reflected trajectories between the QDs and the tip, with
χL(R) = χd−x(χx ) and βL(R) = 2(1). As the scattering matrix
is unitary, reflection probabilities can be calculated from the
transmissions: Tll = 1 − ∑

l ′ �=l Tll ′ .
As an illustration, the three transmissions are plotted in

Fig. 2 for the case of QD scatterers when the tip is right in
the middle distance between them. Henceforth, lengths are
expressed in units of l0 = h̄/

√
8mkBT , which for GaAs wires

is of the order of 40 nm at T = 1 K. We will also assume that
the tip is strongly coupled, ε � 0.5, which gives the largest
power [17]. While |τQD

α |2 give Lorentzian line shapes around
the energies ε1 (red-dashed line) and ε2 (green-dashed line),
the interference patterns (blue-dotted lines) strongly influence
the total transmission probabilities (full black lines), which
show Fano-shaped narrower tunneling resonances at εα and
additional very sharp peaks. To understand the Fano-like in-
terference, one can think of the closed trajectories formed
between the tip and the reflecting barrier (scatterer 2 for TLH ,
scatterer 1 for TRH ) as playing the role of a localized state in
parallel to trajectories that are transmitted through the other
barrier and the tip. Of particular interest for our purposes
here is the destructive interference that strongly suppresses the
elastic contribution between L and R, see Fig. 2(b).

Note that the developed interference patterns require scat-
terers with broad spectral features. In this sense, the weak
coupling limit where �α 
 kBT , so |τQD

α |2 ≈ �αδ(E − εα ),
is not particularly useful.

D. Thermoelectric response

Transport between the two conductor terminals, L and R,
consists of two contributions. On top of the elastic trans-
mission between L and R, TLR(E ), sequential transmission
between the conductor terminals and the tip, given by TLH (E )
and THR(E ), introduces an inelastic contribution. The current
can be decomposed in the two contributions, IR = Iel + Iinel,
with

Iel = 2

h

∫
dETLR(E )[ fR(E ) − fL(E )], (15)

Iinel = 2

h

∫
dETHR(E )[ fR(E ) − fH (E )], (16)

with particle conservation IL = −IR being guaranteed by the
probe condition, IH = 0. In the absence of an applied voltage,
the elastic contribution vanishes (remember TL = TR). Even
worse, as a finite bias is applied, the elastic contribution will
always flow downhill, i.e., dissipating (Joule) power. Hence,
the thermoelectric power generation relies on the inelastic
contribution [8,110]. Note that the inelastic scattering contri-
bution is not describing heat leakage with an environmental
bath but rather with an electronic reservoir that is treated in
equal footing as the conductor terminals.

At zero bias, a finite current will flow as soon as the energy
dependence of TLH (E ) and THR(E ) are different. The sign
of the current will be determined by the dominance of hole-
or electronlike character of the two lead-tip transmissions,
similar from what one expects in a conventional thermocou-
ple [9]. In our case, this can be controlled with the energy
gain �E ≡ ε2 − ε1 given by the position of the resonances
(measured with respect to the equilibrium electrochemical
potential, μ), and tuned by gate voltages. It is also modulated
with the internal interferences depending on the position of
the tip, x.

Then, a finite power, P = −IR�μ > 0, will be gener-
ated as long as the inelastic contribution flowing against the
electrochemical potential difference �μ ≡ μR − μL (applied
symmetrically around μ) is larger than the elastic one flowing
in favor. The maximal generated power in a quantum channel
connecting two electronic reservoirs with different tempera-
tures turns out to be limited by quantum mechanical effects
[111], as found in Refs. [7,112], with the bound given by

PW = 2A0
π2

h
k2

B�T 2, (17)

where A0 � 0.0321, the factor 2 accounts for spin degeneracy,
and �T is the temperature difference between reservoirs.
This is a two-terminal result, so to compare with an optimal
thermocouple heat engine that consists of two systems with
opposite thermoelectric responses, we have to multiply by a
factor 2.

Another way to quantify the thermoelectric performance is
the efficiency, η = P/JH , whose thermodynamic bound is, not
very surprisingly [73], established by the Carnot efficiency,
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ηC = 1 − T/TH . However, it is not the main limitation in
this case, as quantum mechanical effects establish a stronger
bound for the efficiency at any given power output, ηW [7].
Although there is not analytical expression for this value, it
is possible to obtain it numerically following Ref. [112] by
finding the narrower boxcar transmission that results in the
chosen power, which also depends on the choice of applied
bias. One usually needs to find a compromise between high
power output and high efficiency, which may depend on the
desired operation at task.

Additionally, one wants that the generated power does not
strongly fluctuate. This question has generated strong interest
in the last years related to thermodynamic bounds on the
amount of fluctuations depending on the entropy produced
by the engine. These are the so-called thermodynamic un-
certainty relations, initially obtained for classical stochastic
engines [113] and shown to be modified in the presence of
quantum coherence [105,114,115] and generalized for multi-
terminal configurations [56,116]. Here we will adopt a more
practical strategy and quantify the signal-to-noise ratio via the
particle current inverse Fano factor [82]:

1

F
= 2|IR|

SIRIR

. (18)

Note that while the isothermal transport of noninteracting
electrons is sub-Poissonian (F < 1) [82], there is no such
restriction in the presence of a temperature difference: think,
for instance, of the stopping voltage where current vanishes
on average but fluctuations do not, see, e.g., Ref. [88]. We will
not compare with any complicated bound; here we are simply
interested in trying to keep 1/F as high as possible.

E. Thermalized cavity model

To emphasize the quantum coherent effects, we will com-
pare the performance of the above models with an energy
harvester where the two scatterers (formed by single resonant
tunneling QDs) couple the two conductor terminals directly to
the hot reservoir. This way, electrons are thermalized in H as
they tunnel from the conductor terminals through the QDs.
Hence, the elastic contribution vanishes, as T QD−th

LR (E ) =
0, and currents are fully determined by the transmission
probabilities T QD−th

lH (E ) = �2
αl

/[(E − εαl )
2 + �2

αl
] which en-

ter the inelastic transport [40]. Note this model cannot be
obtained from the limit of a strongly coupled tip (ε → 1/2)
in the QD setup: terminal H requires two channels to avoid
interference [117].

III. ZERO BIAS TRANSPORT

Let us first consider the transport properties of the unbiased
conductor with μL = μR = μ. Without coupling to the hot
reservoir (ε = 0), all currents are zero, as expected for a sys-
tem in equilibrium. Only noise will be finite due to the thermal
fluctuations, see Eq. (3). As the tip is coupled, electrons in the
conductor at a distribution fL(E ) = fR(E ) can be absorbed by
terminal H and be reinjected with a hotter distribution fH (E ),
leading to a heat current JH . This process breaks detailed bal-
ance provided TLH (E ) �= TRH (E ): Consider, for instance, the
configuration shown in Fig. 2, where TLH (E ) is, on average,

FIG. 3. (a) Generated thermoelectric current, IR, and (b)–(d) heat
currents in reservoirs l = H,L,R, Jl , when the temperature of reser-
voir H is increased by �T/T = 1 and the scatterers are single
quantum dots, with �μ = 0. Parameters: �E = 6kBT , ε = 0.5, � =
2kBT , μ = 20kBT .

more weighted for energies below the electrochemical poten-
tial, with the opposite being true for TRH (E ), for instance,
if �E > 0. Then, cold electrons from L will most likely be
absorbed by the tip than those from R; similarly, the reinjected
hot electrons will most likely be transferred to R than to L. As
a result, a net current will flow from L to R. The position of the
tip modulates the energy dependence transmission probabili-
ties TlH (E ), resulting in periodic oscillations which suppress
the generated current. Eventually, the current changes sign
for low �E . This is shown in Fig. 3(a) as a function of the
distances from the tip to the two scatterers. This is an effect of
interference not present in the QD-th configuration with simi-
lar QDs [40]. Similar oscillations show up in the heat currents
[17] flowing out of the hot terminal and into the conductor
ones, with the maxima of all four currents occurring in the
same regions, see Figs. 3(b)–3(d). Note that in some regions
all currents are suppressed, suggesting that the tip works as a
valve. Note also that the heat currents are suppressed in the
symmetric condition x = d/2, with replicated features paral-
lel to this condition. Remarkably, the spots where I changes
sign coincide with the minima of the injected JH , which may
be attributed to resonances close to μ that require a smaller
(and opposite) energy gain than �E to generate current from
R to L. Interestingly, features that look similar in the gen-
erated current and the injected heat, like, e.g., the current
suppression for fixed x and for fixed d − x, see vertical and
horizontal regions in Figs. 3(a) and 3(b), have very different
noises, as shown in Fig. 4. Indeed SII is maximal along the ver-
tical ones (for fixed d − x) and minimal along the horizontal
(fixed x), see Fig. 4(a). This asymmetry, caused by the finite
�E , is much less evident in the fluctuations of the injected
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FIG. 4. (a) Particle current noise and (b) its shot contribution at
terminal R, (c) heat noise at terminal H, and (d) crosscorrelation
between injected heat from H and particle current at R, for the same
scenario and parameters of Fig. 3.

heat current, SJJ , cf. Fig. 4(c). Though SII is strongly dom-
inated by the thermal contribution at these temperatures, the
shot noise term is also sensitive to this feature, see Fig. 4(b).
Note that Ssh

II is rapidly suppressed as the separation of the two
scatterers increases. This is not the case of the mixed noise,
which increases with the scatterers’ separation, thus serving
as an indicator of the tiny spots where the generated current
changes sign in the long-wire regime, see Fig. 4(d). Let us
mention that the noise SILIL shows the same features as SIRIR

reflected over the antidiagonal: i.e., maxima in the horizontal
current suppressions, minima in the vertical ones (not shown).
However, in the regions where the particle current is maximal,
both contributions are roughly the same, so it does not matter
which one we chose for the optimization.

In a real wire, the separation of the scatterers is typically
fixed, while the position of the resonant energies can be con-
trolled with plunger gates [11]. Figures 5(a) and 5(b) show
the generated current and the injected heat as functions of the
QD energy difference �E and the position of the tip, x, for
a fixed distance d = 5l0. The sign of the current is mainly
determined by the sign of �E , as expected, see also Fig. 5(c).
However, for small differences, the interference induced by
the position of the tip is able to reverse the sign of the current.
At �E = 0, where a thermalized 2DEG thermocouple would
be electron-hole symmetric (and hence I = 0 [40]), the scat-
tering at the hot tip is able to induce an oscillating current,
as shown explicitly in Fig. 5(c). Note the expected symmetry
Xl (x,�E ) = −Xl (d−x,−�E ) is fulfilled both for IR and JH .

FIG. 5. (a) Generated zero bias thermoelectric current, IR, and
(b) injected heat current, JH , as functions of x and �E in the QD
case. The dashed line in (a) marks the condition I = 0. (c) Cuts of
the current in (a) for fixed �E , as indicated. Parameters: d = 5l0,
ε = 0.5, � = 2kBT , μ = 20kBT, �T/T = 1.

The maxima of the generated current and the injected heat
occur at different positions, however, in both cases they are
in the region around �E ∼ 5 − 10kBT , for TH = 2T , see
Figs. 5(a) and 5(b). At higher energies of the resonant lev-
els, the thermal fluctuations of terminal H become negligible
and both currents are suppressed. This result, also depends
strongly on other parameters, in particular, the linewidth,
� (here we considered � = 2kBT which maximizes the re-
sponse, as will be shown later). For this reason, it is useful
to find the optimal parameters that enhance the thermoelectric
properties of the device. In what follows, we will do so for the
two configurations consisting of QD and DQD scatterers. We
will (quite arbitrarily) consider μ = 20kBT and �T/T = 1,
except where explicitly stated.

IV. PERFORMANCE OPTIMIZATION

In the sections above, transport was induced by the hot
terminal, with the electric current flowing at zero bias. To
generate a finite power, this current needs to flow against
an electrochemical potential difference. In the following, we
focus on the performance of such a heat engine. There are
different ways one can optimize it. Traditionally, researchers
have been interested in getting either the highest efficiency
[6], which usually comes along with tiny generated powers,
or the efficiency at maximum power, which may be a good
strategy when one is not limited by the amount of generated
power and wants to minimize the cost of the used resources,
e.g., in power plants [118]. A different strategy is to maximize
the efficiency for a given value of power that one needs to use
[7], for instance, to run a particular device with an on-chip
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FIG. 6. Optimization procedure: the parameters of the QD sys-
tem, �QD, are optimized for each configuration (d − x, x) to obtain
the maximum power, Popt, shown in (a) for fixed �T/T = 1 and
μ = 20kBT . (b) Obtained values for �.

energy harvester. Depending on the chosen procedure, the
desired properties of the engine are different: sharp resonant
transmissions give maximal efficiencies, while boxcar-shaped
transmissions maximize the efficiency for a given power.

In a mesoscopic sample as ours, the generated power is
expected to be a small quantity. Also, as we discuss below,
the different quantities cannot be optimized simultaneously.
Hence, we chose to optimize the parameters that give the max-
imal power and compare the resulting performance quantifiers
(power, effficiency, and noise) for the different models with
QD and DQD scatterers and the QD-th model of Ref. [40].

Let us first describe the procedure to find optimal con-
figurations of the device in detail. For fixed μ and �T , we
define the function P(x, d,�q ) which gives the extracted
power for given distances x and d and a particular set of pa-
rameters, �q, we want to optimize: �QD = {�,�E ,�μ, ε},
�DQD = {�, λ,�E ,�μ, ε}, and �QD−th = {�,�E ,�μ}, in
each case. Note that �q fully describe the properties of the
scatterers. Then, the function −P(x, d,�q ) is numerically
minimized with respect to the chosen set. This is repeated for
multiple combinations of distances, as illustrated in Fig. 6(a)
for the QD case, where Popt = P(�opt

QD) is the value of the
extracted power for the parameters obtained after the mini-
mization, �opt

QD. As a representative value, we show in Fig. 6(b)
the obtained values of �opt that optimize power at each pair
of distances (d − x, x), which is found to vary around a few
times kBT . Note that for the distances where the currents are
suppressed (see Fig. 3) no set of parameters is able to generate
any substantial power. In these regions, the destructive inter-
ference between the two scatterers (strongly dependent on x
and d) dominates (the absence of) transport. Furthermore, for
the areas where Popt is maximum, the optimal values for the
parameters (here only shown for �) only vary smoothly.

Our numerical minimization searches for local minima
around a guessed set of parameters with �, �E , and �μ of the
order of kBT , and for a strongly coupled tip, ε ≈ 1/2. The ob-
tained parameters give us information about how the optimal
transmission probabilities result from the combination of the
interference patterns and the properties of the scatterers. The

FIG. 7. Energy dependence of the (a) QD and (b) DQD
transmission probabilities when parameters are chosen to op-
timize the extracted power at a particular position of the
tip having a maximum of P: (a) d = 5.6l0, x = 2.6l0, giving
�QD/kBT = {2.3, 11, 1.6, 0.5/kBT }, and (b) d = 6.4l0, x = 6.2l0,
with �DQD/kBT = {3.1, 2.1, 11.7, 2.2, 0.43/kBT }.

resulting transmissions are plotted in Fig. 7 for the QD and
DQD cases for two different (d − x, x) configurations chosen
to have a maximal power. In both cases, we observe that the
transmission probabilities between the conductor terminals
and H are broad peaks with sharp borders. This is particularly
evident in the DQD case, for which both TLH (E ) and TRH (E )
approach a boxcar function of width ∼8kBT and centered
around E − μ ≈ �E/2 ∼ 6kBT . Furthermore, as discussed
in Sec. II C, destructive interference almost completely can-
cels TLR(E ), confirming the detrimental contribution of elastic
transport between the two conductor terminals. Clearly, elec-
trons that are not absorbed by the tip do not contribute to the
thermoelectric current.

The chosen performance quantifiers for the different con-
figurations (QD, DQD, and QD-th) are shown in Fig. 8 by
optimizing the parameters as �T is increased: Popt, η∗ ≡
η(�opt) and 1/F ∗, with F ∗ ≡ F (�opt). It shows that indeed
the DQD setting performs better in terms of a larger power and
efficiency, as well as a less noisy output current. The effect of
the coherent coupling to H via the tip also results in being
advantageous in the comparison of the QD and the QD-th
setups. This is a clear manifestation of the improvement of
considering the interference patterns that modulate the shape
of the scattering resonances. The fact that the DQD is closer
to a boxcar function than the QD is not totally surprising, as
these transmissions have been proposed to be the asymptotic
limit of arrays of QDs [7,74]. In our case, the Fabry-Pérot-like
resonance between the DQD and the tip plays the role of an
additional QD. An advantage of our setup is that, while one
can only have control of the system parameters (εα , �, and λ)
up to some extent in a real experiment, sample imperfections
can be compensated with an appropriate tuning of the tip
position. It is expected that adding more QDs will help the
optimization. However, this would come at the expense of
increasing the system complexity and decreasing the degree
of control.

As expected, the maximal power, in general, increases with
�T . Note that Fig. 8(a) normalizes it with the power bound,
cf. Eq. (17), which increases quadratically. For small temper-
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FIG. 8. Performance quantifiers: (a) Popt, (b) η∗, and (c) 1/F ∗, as
functions of the temperature difference for the QD (red dashed) and
DQD (blue dotted) cases, compared with the QD-th (green full lines).
The parameters are optimized for each system to extract maximum
power at each �T and fixed μ = 20kBT , with x and d being the same
as in Figs. 7(a) and 7(b) for the QD and DQD, respectively.

ature difference, Popt increases as (�T )γ , with γ > 2 in the
DQD, getting closest to 2PW around �T ≈ T . In the other
two cases, this ratio does not change appreciably, indicating
γ ≈ 2, see Fig. 8(a). Differently, the efficiency increases at
the same rate as the Carnot efficiency for the DQD, while the
QD and QD-th cases both increase their efficiency with �T ,
see Fig. 8(b).

We then chose the temperature difference �T = T , and
compare the performance of the different models (properly
optimized) as a function of the applied bias. The results are
shown in Figs. 9(a)–9(c). Again, the DQD case outperforms
the other cases for all quantifiers. However, power and ef-
ficiency are very similar for QD and DQD at low voltages.
This is not the case for the inverse Fano factor, for which QD
and QD-th give lower values. As anticipated in Sec. II D, the
Fano factor changes from sub to super-Poissonian with �μ,
see Fig. 9(c). Let us note that the DQD configuration seems
to be beneficial for the increase of 1/F when compared with
sharp step transmissions (with, e.g., a quantum point contact)
in two-terminal thermoelectrics [88]. It is also useful to plot
the power and efficiency relation as voltage is tuned between
�μ = 0 and the stopping voltage, see Fig. 9(d). In all cases,
the resulting elongated lasso diagrams involve that the maxi-
mum power and maximum efficiency points occur for not very
different voltages. Remarkably, the efficiency of the DQD
case reaches high values η > 0.4ηC , not far from the maximal
efficiency bound, ηW , (calculated following Ref. [112]) for the
same voltage (around 0.6ηC).

Figure 10 gives a more complete description of how the
QD and DQD configurations perform as the system is brought
out of equilibrium by increasing �μ and �T . The regions
in which power and efficiency are maximal roughly coincide,

FIG. 9. Performance quantifiers: (a) P, (b) η, and (c) 1/F , as
functions of �μ for the QD (red dashed) and DQD (blue dotted)
cases, compared with the QD-th one (green full lines). The parame-
ters are those that maximize the extracted power at �T/T = 1 and
μ = 20kBT in each case: those of Fig. 7 for the QD and DQD cases,
and � = 1.6kBT and �E = 9kBT for the QD-th. (d) Lasso diagrams
relating P and η as �μ is varied between 0 and the corresponding
stopping voltage. The black curve indicates the calculated bound for
efficiency at given power output, ηW .

though the maxima do not occur for the same configurations,
see Figs. 10(a), 10(b), 10(e), and 10(f). In this sense, it does
not seem complicated to find a reasonable compromise to get a
powerful and efficient heat engine. Reducing the output noise
at the same time is more challenging, as 1/F increases in
the region with small �μ and high �T , where both P and
η are strongly suppressed, see Figs. 10(c) and 10(g). Panels
in Figs. 10(d) and 10(h) may be helpful for that task. They
can be understood as plotting 1/F in a compilation of all the
lasso diagrams [like those in Fig. 9(d)] for all �T giving a
thermoelectric response. They clearly show that the signal-
to-noise ratio is actually larger in the region where P and η

are smallest. One can also see that for a given efficiency, 1/F
increases with P. On the contrary, for a given power, 1/F
decreases with η. Hence, to find a regular energy harvester,
it seems more convenient to operate the system at higher
powers even if efficiency is slightly compromised. Note that
the DQD allows one to do so with a smaller decrease in the
engine efficiency, as well as with an overall larger P and η

approaching ηC/2.

V. CONCLUSIONS

We have investigated the role of internal coherence in the
propagation of electrons through mesoscopic three-terminal
energy harvesters. For this, we couple an isothermal two-
terminal conductor to a heat bath via a coherent beam splitter,
which allows for interference in the conductor-bath cou-
pling. Experimentally, this can consist of a one-dimensional
semiconductor quantum wire, with the QDs formed by con-
veniently stopping the growth process to include tunneling
barriers [32,119]. Side plunger gates can be then added to tune
the QD energy levels. The coupling can be due to the tip of a
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FIG. 10. Performance quantifiers for (a)–(d) the QD and (e)–(h) the DQD configurations as functions of applied bias and temperature
difference: (a), (e) Extracted power normalized by the power bound PW ; (b), (f) efficiency and (c), (g) inverse Fano factor. The parameters
are those of Fig. 7(a) for the QD case and of Fig. 7(b) for the QD, chosen in both cases to maximize the power for fixed �T/T = 1 and
μ = 20kBT . (d), (h) Trade-off relation among P, η, and 1/F for different values of �μ and �T (similar to the lasso diagrams of Fig. 9). Lines
are shown along which 1/F is constant.

scanning probe [66,67,120,121], hence introducing a mech-
anism to control the interference pattern. One-dimensional
channels with QDs can also be patterned in two-dimensional
materials [69] or two-dimensional electron gases, see, e.g.,
Refs. [122,123]. The latter are unfortunately less accessible
by a movable tip, though a hot third terminal can be connected
by a quantum point contact at a fixed position of the wire
[11,124].

We find that the combination of resonant tunneling scat-
terers between the tip and the conductor terminals and
modulated internal interferences considerably increases both
the generated power and efficiency with respect to related
configurations involving only one of these effects [17,40].
This is due to the particular spectral dependence of the re-
sulting transmission probabilities between the three terminals.
Our results show that improving the (nonlocal) thermoelectric
response requires the suppression of elastic transport along
the conductor, which results from destructive interference for
certain positions of the tip. On top of that, optimal configu-
rations are found where the coupling between the conductor
terminals and the tip occurs via broadband filters, in line with
related proposals [7]. Configurations with DQD scatterers
give transmission probabilities which approach sharp boxcar
functions, optimizing the heat engine performance in terms of
the generated power, the efficiency, and the output signal to
noise ratio.

As expected, one needs to find a compromise between
producing the highest power and doing it at the highest ef-
ficiency. However, we observe the detriment in either case is
not big. Though the signal-to-noise ratio is mostly enhanced
in the regions with low power and low efficiency, it is found to
improve for configurations with increasing power for a fixed

efficiency. On the contrary, for a given power production, in-
creasing the efficiency comes with the cost of noisier currents.

Tunable internal interferences hence introduce a valuable
way to control the properties of quantum heat engines via
the coherent control of transport spectral properties. Here we
discussed energy harvesting, but it will also affect absorption
refrigerators [125] as well, where heat autocorrelations will be
important. Additional control may be achieved in interferom-
eters that combine kinetic phases with magnetic field effects
[14] or additional degrees of freedom like, e.g., spin [126].

Concerning the noise, auto-, and crosscorrelations are sen-
sitive to Coulomb interaction effects that are not treated at the
mean-field level. In particular, super-Poissonian autocorrela-
tions are expected in the Coulomb blockade regime [84,127],
which may arise in the weakly coupled short wire limit. This
effect is naively expected to be detrimental to the performance
of the engine for increasing the noise, at the same time reduc-
ing the current.

We have assumed here a phenomelogical approach based
on simple but physically relevant scattering matrices describ-
ing resonant tunneling scatterers in a one-dimensional elastic
conductor, considering that otherwise energy-dependent scat-
tering only emerges due to phase coherence. Possible
additional contributions due to, e.g., the effect of disorder
in the wire potential [109] or of more involved energy de-
pendence in the transmission coefficients simply add a level
of complexity to the optimization problem but do not com-
promise our general conclusions. Extensions of our paper
including the effect of dephasing [17] or of inelastic scattering
due to the (typically weak) interaction with a thermal bath
[110,128] (phononic or electromagnetic environments) are
interesting questions to be addressed in future works.
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APPENDIX: DOUBLE QUANTUM
DOT SCATTERING MATRIX

The transmission and reflection amplitudes for a DQD are
obtained via noninteracting single-particle Green’s functions
[1,129]. We model the scattering region defined by the cou-
pled QDs by a two-site Hamiltonian with same level energy,
ε, and coherent tunneling λ:

ĤDQD =
(

ε λ

λ ε

)
. (A1)

Coupling to left (L′) and right (R′) one-dimensional semi-
infinite leads enters in the calculation of the retarded Green’s

function via self-energies �̂r
L′ , �̂r

R′ ,

Ĝr
S (E ) = [

EÎ − ĤDQD − �̂r
L′ − �̂r

R′
]−1

, (A2)

with the identity matrix Î . In the wide-band limit and for
symmetric coupling to the leads, the self-energy matrices read

�̂r
L′ =

(−i�/2 0
0 0

)
and �̂r

R′ =
(

0 0
0 −i�/2

)
, (A3)

where � = h̄v, v being the velocity of the electrons in the
leads. Self-energies beyond the wide-band limit would intro-
duce an additional modulation to the scattering coefficients
that can be compensated by the position of the tip or the QD
levels [130]. Substituting Eqs. (A1) and (A3) in Eq. (A2), we
obtain the desired Green’s function of the system:

Ĝr
S (E ) = 1

(E−ε+i�/2)2−λ2

(
E−ε+i�/2 λ

λ E−ε+i�/2

)
.

(A4)

The scattering matrix can now be calculated from the retarded
Green’s function using the Fisher-Lee relation [1,131]:

S (E ) = Î − ih̄vĜr
S (E ), (A5)

the elements of which are the transmission and reflection
amplitudes of Eq. (9).
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